
1

Verifying Functional Correctness of Message-Passing

Programs with Separation Logic

Separation Logic meets Session Types

Jonas Kastberg Hinrichsen

Jesper Bengtson Robbert Krebbers Jules Jacobs Daniël Louwrink

Léon Gondelman Mário Pereira Amin Timany Lars Birkedal

May 14. 2024, Uppsala University

2

Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)

2

Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)

2

Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)

2

Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)

2

Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)

3

What: Message Passing Concurrency in Shared Memory

Shared-memory message passing concurrency:
▶ Structured approach to concurrent programming

▶ Threads act as services or clients

▶ Used in Go, Scala, C#, and more

Bi-directional asynchronous session channels:
new_chan () Create channel and return two endpoints c1 and c2

c.send(v) Send value v over endpoint c
c.recv() Receive and return next inbound value on endpoint c

Example Program:
let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

3

What: Message Passing Concurrency in Shared Memory

Shared-memory message passing concurrency:
▶ Structured approach to concurrent programming

▶ Threads act as services or clients

▶ Used in Go, Scala, C#, and more

Bi-directional asynchronous session channels:
new_chan () Create channel and return two endpoints c1 and c2

c.send(v) Send value v over endpoint c
c.recv() Receive and return next inbound value on endpoint c

Example Program:
let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

3

What: Message Passing Concurrency in Shared Memory

Shared-memory message passing concurrency:
▶ Structured approach to concurrent programming

▶ Threads act as services or clients

▶ Used in Go, Scala, C#, and more

Bi-directional asynchronous session channels:
new_chan () Create channel and return two endpoints c1 and c2

c.send(v) Send value v over endpoint c
c.recv() Receive and return next inbound value on endpoint c

Example Program:
let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types ???

c1 : chan (!Z. ?Z. end) ???

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types ???

c1 : chan (!Z. ?Z. end) ???

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types ???

c1 : chan (!Z. ?Z. end) ???

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types ???

c1 : chan (!Z. ?Z. end) ???

! is send, ? is receive

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types Dependent separation protocols

c1 : chan (!Z. ?Z. end) c1 ! ⟨40⟩. ?⟨42⟩. end

! is send, ? is receive

4

How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types Dependent separation protocols

c1 : chan (!Z. ?Z. end) c1 ! ⟨40⟩. ?⟨42⟩. end

! is send, ? is receive

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq

▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

5

Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq
▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/

6

Roadmap of This Talk

Separation Logic
▶ Safety and functional correctness

▶ Modular verification

▶ Verification of example program

Actris
▶ Reasoning methodology for message passing

▶ Demonstration of select Actris features

Beyond this talk
▶ Sample Actris features

▶ The Actris line of work

7

Separation Logic

[O’Hearn, Reynolds, Yang 2001]

8

Language Under Consideration

HeapLang: Untyped OCaml-like language

v,w ∈Val ::= z | true | false | () | ℓ (z ∈ Z, ℓ ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 |

ref e | ! e | e1 ← e2 |
(e1 ∥ e2) | assert(e) . . .

Example program:
let ℓ1 = ref 0 in
let ℓ2 = ref 0 in(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

assert(! ℓ1 + ! ℓ2 = 4)

Goal: Program does not crash

8

Language Under Consideration

HeapLang: Untyped OCaml-like language

v,w ∈Val ::= z | true | false | () | ℓ (z ∈ Z, ℓ ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 |

ref e | ! e | e1 ← e2 |
(e1 ∥ e2) | assert(e) . . .

Example program:
let ℓ1 = ref 0 in
let ℓ2 = ref 0 in(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

assert(! ℓ1 + ! ℓ2 = 4)

Goal: Program does not crash

8

Language Under Consideration

HeapLang: Untyped OCaml-like language

v,w ∈Val ::= z | true | false | () | ℓ (z ∈ Z, ℓ ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 |

ref e | ! e | e1 ← e2 |
(e1 ∥ e2) | assert(e) . . .

Example program:
let ℓ1 = ref 0 in
let ℓ2 = ref 0 in(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

assert(! ℓ1 + ! ℓ2 = 4)

Goal: Program does not crash

9

Hoare Triples

Hoare triples for partial functional correctness:

{P}e{w. Q}

Precondition

Binder for return value

Postcondition

If the initial state satisfies P, then:

▶ Safety: e does not crash

▶ Postcondition validity: if e terminates with value v, then the final state

satisfies Q[v/w]

10

Separation Logic

Separation logic propositions assert ownership of resources

The points-to connective ℓ 7→ v
▶ Provides the knowledge that location ℓ has value v, and

▶ Provides exclusive ownership of ℓ

Separating conjunction P ∗ Q captures that the state consists of disjoint parts

satisfying P and Q.

Enables modular reasoning, through disjointness:

Ht-frame

{P} e {w. Q}
{P ∗ R} e {w. Q ∗ R}

10

Separation Logic

Separation logic propositions assert ownership of resources

The points-to connective ℓ 7→ v
▶ Provides the knowledge that location ℓ has value v, and

▶ Provides exclusive ownership of ℓ

Separating conjunction P ∗ Q captures that the state consists of disjoint parts

satisfying P and Q.

Enables modular reasoning, through disjointness:

Ht-frame

{P} e {w. Q}
{P ∗ R} e {w. Q ∗ R}

11

Hoare Triples for Seperation Logic

Hoare triples for references:

Ht-alloc

{True} ref v {ℓ. ℓ 7→ v}
Ht-load

{ℓ 7→ v} ! ℓ {w. w = v ∗ ℓ 7→ v}
Ht-store

{ℓ 7→ v} ℓ← w {ℓ 7→ w}

Hoare triples for structural expressions:

Ht-let

{P} e1 {w1. Q} ∀w1. {Q} e2[w1/x] {w2. R}
{P} let x = e1 in e2 {w2. R}

Ht-assert

{P} e {w. w = true ∗ Q}
{P} assert(e) {Q}

Ht-seq

{P} e1 {w1. Q} ∀w1. {Q} e2 {w2.R}
{P} e1; e2 {w2. R}

Ht-par

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} (e1 ∥ e2) {Q1 ∗ Q2}

11

Hoare Triples for Seperation Logic

Hoare triples for references:

Ht-alloc

{True} ref v {ℓ. ℓ 7→ v}
Ht-load

{ℓ 7→ v} ! ℓ {w. w = v ∗ ℓ 7→ v}
Ht-store

{ℓ 7→ v} ℓ← w {ℓ 7→ w}

Hoare triples for structural expressions:

Ht-let

{P} e1 {w1. Q} ∀w1. {Q} e2[w1/x] {w2. R}
{P} let x = e1 in e2 {w2. R}

Ht-assert

{P} e {w. w = true ∗ Q}
{P} assert(e) {Q}

Ht-seq

{P} e1 {w1. Q} ∀w1. {Q} e2 {w2.R}
{P} e1; e2 {w2. R}

Ht-par

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} (e1 ∥ e2) {Q1 ∗ Q2}

12

Example Program - Verified

{True}

let ℓ1 = ref 0 in

//Ht-let,Ht-alloc

let ℓ2 = ref 0 in

//Ht-let,Ht-alloc,Ht-frame

(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

//Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)

{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in

//Ht-let,Ht-alloc

let ℓ2 = ref 0 in

//Ht-let,Ht-alloc,Ht-frame

(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

//Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in

//Ht-let,Ht-alloc,Ht-frame

(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

//Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in //Ht-let,Ht-alloc,Ht-frame

{ℓ1 7→ 0 ∗ ℓ2 7→ 0}(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

//Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in //Ht-let,Ht-alloc,Ht-frame

{ℓ1 7→ 0 ∗ ℓ2 7→ 0}(
{ℓ1 7→ 0}
ℓ1 ← ! ℓ1 + 2

{ℓ2 7→ 0}
ℓ2 ← ! ℓ2 + 2

)
; //Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in //Ht-let,Ht-alloc,Ht-frame

{ℓ1 7→ 0 ∗ ℓ2 7→ 0}{ℓ1 7→ 0}
ℓ1 ← ! ℓ1 + 2
{ℓ1 7→ 2}

{ℓ2 7→ 0}
ℓ2 ← ! ℓ2 + 2
{ℓ2 7→ 2}

 ; //Ht-seq,Ht-par,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in //Ht-let,Ht-alloc,Ht-frame

{ℓ1 7→ 0 ∗ ℓ2 7→ 0}{ℓ1 7→ 0}
ℓ1 ← ! ℓ1 + 2
{ℓ1 7→ 2}

{ℓ2 7→ 0}
ℓ2 ← ! ℓ2 + 2
{ℓ2 7→ 2}

 ; //Ht-seq,Ht-par,Ht-load,Ht-store

{ℓ1 7→ 2 ∗ ℓ2 7→ 2}
assert(! ℓ1 + ! ℓ2 = 4)
{True}

12

Example Program - Verified

{True}
let ℓ1 = ref 0 in //Ht-let,Ht-alloc

{ℓ1 7→ 0}
let ℓ2 = ref 0 in //Ht-let,Ht-alloc,Ht-frame

{ℓ1 7→ 0 ∗ ℓ2 7→ 0}{ℓ1 7→ 0}
ℓ1 ← ! ℓ1 + 2
{ℓ1 7→ 2}

{ℓ2 7→ 0}
ℓ2 ← ! ℓ2 + 2
{ℓ2 7→ 2}

 ; //Ht-seq,Ht-par,Ht-load,Ht-store

{ℓ1 7→ 2 ∗ ℓ2 7→ 2}
assert(! ℓ1 + ! ℓ2 = 4) //Ht-load,Ht-assert

{True}

13

But What About Channels?

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Program does not crash

Sub-Goal: Hoare triples for channel primitives

Ht-new

{???} new_chan () {???}
Ht-send

{???} c.send(v) {???}
Ht-recv

{???} c.recv() {???}

Key Idea: Separate channel endpoint ownership à la Session Types

13

But What About Channels?

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Program does not crash

Sub-Goal: Hoare triples for channel primitives

Ht-new

{???} new_chan () {???}
Ht-send

{???} c.send(v) {???}
Ht-recv

{???} c.recv() {???}

Key Idea: Separate channel endpoint ownership à la Session Types

13

But What About Channels?

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Goal: Program does not crash

Sub-Goal: Hoare triples for channel primitives

Ht-new

{???} new_chan () {???}
Ht-send

{???} c.send(v) {???}
Ht-recv

{???} c.recv() {???}

Key Idea: Separate channel endpoint ownership à la Session Types

14

Actris

Hinrichsen et al.

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

15

Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}

16

Example Channel Program - Verified

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! ⟨40⟩. ?⟨42⟩. end
c2 ?⟨40⟩. ! ⟨42⟩. end

Goal complete: Program verified safe to execute for any scheduling

Problem: Protocols too restrictive; right thread works for any integer

16

Example Channel Program - Verified

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! ⟨40⟩. ?⟨42⟩. end
c2 ?⟨40⟩. ! ⟨42⟩. end

Goal complete: Program verified safe to execute for any scheduling

Problem: Protocols too restrictive; right thread works for any integer

16

Example Channel Program - Verified

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! ⟨40⟩. ?⟨42⟩. end
c2 ?⟨40⟩. ! ⟨42⟩. end

Goal complete: Program verified safe to execute for any scheduling

Problem: Protocols too restrictive; right thread works for any integer

16

Example Channel Program - Verified

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! ⟨40⟩. ?⟨42⟩. end
c2 ?⟨40⟩. ! ⟨42⟩. end

Goal complete: Program verified safe to execute for any scheduling

Problem: Protocols too restrictive; right thread works for any integer

17

Actris with Quantifiers

Dependent Separation Protocols: ! (⃗x : τ⃗)⟨v⟩. p | ? (⃗x : τ⃗)⟨v⟩. p | end

Example: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end

Duality: ! (⃗x : τ⃗)⟨v⟩. p = ? (⃗x : τ⃗)⟨v⟩. p ? (⃗x : τ⃗)⟨v⟩. p = ! (⃗x : τ⃗)⟨v⟩. p

Rules:

Ht-send

{c ! (⃗x : τ⃗)⟨v⟩. p} c.send(v [⃗t/x⃗])
{

c p[⃗t/x⃗]
}

Ht-recv

{c ? (⃗x : τ⃗)⟨v⟩. p} c.recv()
{

w. ∃(⃗t : τ⃗). w = v [⃗t/x⃗] ∗ c p[⃗t/x⃗]
}

18

Example Channel Program - Quantifiers

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end
c2 ?(x : Z) ⟨x⟩. ! ⟨x + 2⟩. end

Goal complete: Right thread now modularly compose with arbitrary clients

18

Example Channel Program - Quantifiers

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end
c2 ?(x : Z) ⟨x⟩. ! ⟨x + 2⟩. end

Goal complete: Right thread now modularly compose with arbitrary clients

18

Example Channel Program - Quantifiers

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)

Protocols:

c1 ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end
c2 ?(x : Z) ⟨x⟩. ! ⟨x + 2⟩. end

Goal complete: Right thread now modularly compose with arbitrary clients

19

Example Reference Program

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()

Protocols?

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩. ?⟨()⟩. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩. ! ⟨()⟩. end

Problem: Implicit transfer of control not possible to capture

Key Idea: Resources in protocols

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}

19

Example Reference Program

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()

Protocols?

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩. ?⟨()⟩. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩. ! ⟨()⟩. end

Problem: Implicit transfer of control not possible to capture

Key Idea: Resources in protocols

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}

19

Example Reference Program

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()

Protocols?

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩. ?⟨()⟩. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩. ! ⟨()⟩. end

Problem: Implicit transfer of control not possible to capture

Key Idea: Resources in protocols

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}

19

Example Reference Program

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()

Protocols?

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩. ?⟨()⟩. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩. ! ⟨()⟩. end

Problem: Implicit transfer of control not possible to capture

Key Idea: Resources in protocols

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}

20

Actris with Resources

Dependent Separation Protocols: ! (⃗x : τ⃗)⟨v⟩{P}. p | ? (⃗x : τ⃗)⟨v⟩{P}. p | end

Example: ! (ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ?⟨()⟩{ℓ 7→ (x + 2)}. end

Duality: ! (⃗x : τ⃗)⟨v⟩{P}. p = ? (⃗x : τ⃗)⟨v⟩{P}. p ? (⃗x : τ⃗)⟨v⟩{P}. p = ! (⃗x : τ⃗)⟨v⟩{P}. p

Rules:

Ht-send{
c ! (⃗x : τ⃗)⟨v⟩{P}. p ∗ P[⃗t/x⃗]

}
c.send(v [⃗t/x⃗])

{
c p[⃗t/x⃗]

}
Ht-recv

{c ? (⃗x : τ⃗)⟨v⟩{P}. p} c.recv()
{

w. ∃(⃗t : τ⃗). w = v [⃗t/x⃗] ∗ c p[⃗t/x⃗] ∗ P[⃗t/x⃗]
}

21

Example Reference Program - Verified

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()

Protocols:

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ?⟨()⟩{ℓ 7→ (x + 2)}. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ! ⟨()⟩{ℓ 7→ (x + 2)}. end

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}

22

Beyond This Talk

23

And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end

Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p
Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.

?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics

23

And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end
Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p

Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.
?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics

23

And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end
Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p
Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.

?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics

23

And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end
Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p
Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.

?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics

23

And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end
Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p
Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.

?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S

[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end

[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

24

The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end

25

! ⟨“Thank you”⟩{ActrisKnowledge}.
µrec. ?(q : Question) ⟨q⟩{AboutActris q}.

! (a : Answer) ⟨a⟩{Insightful q a}. rec

