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Why: Formal Verification of Message Passing

Rigid validation needed
▶ Critical infrastructure based on concurrency

▶ Concurrency notoriously hard

Concurrency beyond reach of testing
▶ Covering all possible schedulings is infeasible

Formal verification to the rescue
▶ Considers all possible executions at once

Verifying strong guarantees often require manual interaction
▶ Manual interaction demands good abstractions

Message passing is a good (and necessary) abstraction
▶ Good: Used in shared memory (Go)

▶ Necessary: Inherent to distributed systems (TCP)
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What: Message Passing Concurrency in Shared Memory

Shared-memory message passing concurrency:
▶ Structured approach to concurrent programming

▶ Threads act as services or clients

▶ Used in Go, Scala, C#, and more

Bi-directional asynchronous session channels:
new_chan () Create channel and return two endpoints c1 and c2

c.send(v) Send value v over endpoint c
c.recv() Receive and return next inbound value on endpoint c

Example Program:
let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)
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How: Separation Logic Meets Session Types

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)


Goal: Prove crash-freedom (safety) in presence of asserts (functional correctness)

Safety Functional correctness
Type systems Separation logics

Session types ???

c1 : chan (!Z. ?Z. end) ???
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Iris and Actris

Iris: Higher-order concurrent separation logic mechanized in Coq

▶ Separation logic: Modular verification of stateful programs

▶ Higher-order: Enables high-level abstractions

▶ Concurrent: Reasoning about (fine-grained) concurrency

▶ Mechanized in Coq: Validation in the Coq proof assistant with tactic support

▶ 100+ publications since 2015: https://iris-project.org/

Actris: Session type-based extension of Iris
▶ Session type-based: Reasoning about message-passing

concurrency via dependent separation protocols

▶ Verified distributed merge-sort, distributed mapper,

map-reduce, remote procedure calls, and more

▶ Also applied to distributed systems

▶ 6 publications since 2020: https://iris-project.org/actris/

https://iris-project.org/
https://iris-project.org/actris/
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Roadmap of This Talk

Separation Logic
▶ Safety and functional correctness

▶ Modular verification

▶ Verification of example program

Actris
▶ Reasoning methodology for message passing

▶ Demonstration of select Actris features

Beyond this talk
▶ Sample Actris features

▶ The Actris line of work
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Separation Logic

[O’Hearn, Reynolds, Yang 2001]
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Language Under Consideration

HeapLang: Untyped OCaml-like language

v,w ∈Val ::= z | true | false | () | ℓ (z ∈ Z, ℓ ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 |

ref e | ! e | e1 ← e2 |
(e1 ∥ e2) | assert(e) . . .

Example program:
let ℓ1 = ref 0 in
let ℓ2 = ref 0 in(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

assert(! ℓ1 + ! ℓ2 = 4)

Goal: Program does not crash
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Hoare Triples

Hoare triples for partial functional correctness:

{P}e{w. Q}

Precondition

Binder for return value

Postcondition

If the initial state satisfies P, then:

▶ Safety: e does not crash

▶ Postcondition validity: if e terminates with value v, then the final state

satisfies Q[v/w]
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Separation Logic

Separation logic propositions assert ownership of resources

The points-to connective ℓ 7→ v
▶ Provides the knowledge that location ℓ has value v, and

▶ Provides exclusive ownership of ℓ

Separating conjunction P ∗ Q captures that the state consists of disjoint parts

satisfying P and Q.

Enables modular reasoning, through disjointness:

Ht-frame

{P} e {w. Q}
{P ∗ R} e {w. Q ∗ R}
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Hoare Triples for Seperation Logic

Hoare triples for references:

Ht-alloc

{True} ref v {ℓ. ℓ 7→ v}
Ht-load

{ℓ 7→ v} ! ℓ {w. w = v ∗ ℓ 7→ v}
Ht-store

{ℓ 7→ v} ℓ← w {ℓ 7→ w}

Hoare triples for structural expressions:

Ht-let

{P} e1 {w1. Q} ∀w1. {Q} e2[w1/x] {w2. R}
{P} let x = e1 in e2 {w2. R}

Ht-assert

{P} e {w. w = true ∗ Q}
{P} assert(e) {Q}

Ht-seq

{P} e1 {w1. Q} ∀w1. {Q} e2 {w2.R}
{P} e1; e2 {w2. R}

Ht-par

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} (e1 ∥ e2) {Q1 ∗ Q2}
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Example Program - Verified

{True}

let ℓ1 = ref 0 in

//Ht-let,Ht-alloc

let ℓ2 = ref 0 in

//Ht-let,Ht-alloc,Ht-frame

(
ℓ1 ← ! ℓ1 + 2 ℓ2 ← ! ℓ2 + 2

)
;

//Ht-seq,Ht-par

,Ht-load,Ht-store

assert(! ℓ1 + ! ℓ2 = 4)

{True}
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Example Program - Verified
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But What About Channels?

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)


Goal: Program does not crash

Sub-Goal: Hoare triples for channel primitives

Ht-new

{???} new_chan () {???}
Ht-send

{???} c.send(v) {???}
Ht-recv

{???} c.recv() {???}

Key Idea: Separate channel endpoint ownership à la Session Types
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Ht-new

{???} new_chan () {???}
Ht-send

{???} c.send(v) {???}
Ht-recv

{???} c.recv() {???}

Key Idea: Separate channel endpoint ownership à la Session Types
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Actris

Channel Endpoint Ownership: c p

Dependent Separation Protocols: ! ⟨v⟩. p | ?⟨v⟩. p | end

Example: ! ⟨40⟩. ?⟨42⟩. end

Duality: ! ⟨v⟩. p = ?⟨v⟩. p ?⟨v⟩. p = ! ⟨v⟩. p end = end

Rules:

Ht-send

{c ! ⟨v⟩. p} c.send(v) {c p}
Ht-recv

{c ?⟨v⟩. p} c.recv() {w. w = v ∗ c p}

Ht-new

{True} new_chan () {(c1, c2). c1 p ∗ c2 p}
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Example Channel Program - Verified

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)



Protocols:

c1 ! ⟨40⟩. ?⟨42⟩. end
c2 ?⟨40⟩. ! ⟨42⟩. end

Goal complete: Program verified safe to execute for any scheduling

Problem: Protocols too restrictive; right thread works for any integer
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Actris with Quantifiers

Dependent Separation Protocols: ! (⃗x : τ⃗)⟨v⟩. p | ? (⃗x : τ⃗)⟨v⟩. p | end

Example: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end

Duality: ! (⃗x : τ⃗)⟨v⟩. p = ? (⃗x : τ⃗)⟨v⟩. p ? (⃗x : τ⃗)⟨v⟩. p = ! (⃗x : τ⃗)⟨v⟩. p

Rules:

Ht-send

{c ! (⃗x : τ⃗)⟨v⟩. p} c.send(v [⃗t/x⃗])
{

c p[⃗t/x⃗]
}

Ht-recv

{c ? (⃗x : τ⃗)⟨v⟩. p} c.recv()
{

w. ∃(⃗t : τ⃗). w = v [⃗t/x⃗] ∗ c p[⃗t/x⃗]
}
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Example Channel Program - Quantifiers

Example Program:

let (c1, c2) = new_chan () in c1.send(40);
let y = c1.recv() in
assert(y = 42)

let x = c2.recv() in
c2.send(x + 2)



Protocols:

c1 ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end
c2 ?(x : Z) ⟨x⟩. ! ⟨x + 2⟩. end

Goal complete: Right thread now modularly compose with arbitrary clients
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Example Reference Program

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()



Protocols?

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩. ?⟨()⟩. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩. ! ⟨()⟩. end

Problem: Implicit transfer of control not possible to capture

Key Idea: Resources in protocols

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}
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Actris with Resources

Dependent Separation Protocols: ! (⃗x : τ⃗)⟨v⟩{P}. p | ? (⃗x : τ⃗)⟨v⟩{P}. p | end

Example: ! (ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ?⟨()⟩{ℓ 7→ (x + 2)}. end

Duality: ! (⃗x : τ⃗)⟨v⟩{P}. p = ? (⃗x : τ⃗)⟨v⟩{P}. p ? (⃗x : τ⃗)⟨v⟩{P}. p = ! (⃗x : τ⃗)⟨v⟩{P}. p

Rules:

Ht-send{
c ! (⃗x : τ⃗)⟨v⟩{P}. p ∗ P[⃗t/x⃗]

}
c.send(v [⃗t/x⃗])

{
c p[⃗t/x⃗]

}
Ht-recv

{c ? (⃗x : τ⃗)⟨v⟩{P}. p} c.recv()
{

w. ∃(⃗t : τ⃗). w = v [⃗t/x⃗] ∗ c p[⃗t/x⃗] ∗ P[⃗t/x⃗]
}
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Example Reference Program - Verified

Example Program:

let (c1, c2) = new_chan () in
let ℓ = ref 40 in
c1.send(ℓ);
c1.recv();
assert(! ℓ = 42)

let ℓ = c2.recv() in
ℓ← ! ℓ+ 2;
c2.send()


Protocols:

c1 ! (ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ?⟨()⟩{ℓ 7→ (x + 2)}. end
c2 ?(ℓ : Loc, x : Z) ⟨ℓ⟩{ℓ 7→ x}. ! ⟨()⟩{ℓ 7→ (x + 2)}. end

ℓ 7→ v: Ownership of reference ℓ pointing to v
{True} ref v {ℓ. ℓ 7→ v} {ℓ 7→ v} ! v {w. w = v ∗ ℓ 7→ v} {ℓ 7→ v} ℓ← w {ℓ 7→ w}
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Beyond This Talk
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And Much More

Sample of additional Actris features:

Exchanging channels: ! (c : Chan, p : iProto) ⟨c⟩{c ! ⟨42⟩. p}. end

Recursion: µ(p : iProto). ! (c : Chan) ⟨c⟩{c ! ⟨42⟩. p}. p
Exchanging closures: ! (f :Val, Φ :Val→ iProp) ⟨f⟩{({True} f () {w.Φ w})}.

?(w :Val) ⟨w⟩{Φ w}. end

Verified programs:
▶ Distributed merge-sort

▶ Distributed load-balancing mapper

▶ Shared-memory Map-Reduce

▶ Remote procedure calls

▶ Distributed locks

Fully validated and mechanized in Iris in Coq up to operational semantics
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The Actris Line of Work

[POPL’20] Actris (This talk)

▶ Dependent separation protocols

▶ Actris for shared memory message passing

[CPP’21] Semantic Session Type System [Distinguished Paper Award]

▶ Semantic session types: !A.S ≜ ! (v :Val) ⟨v⟩{A v}.S
[LMCS’22] Actris 2.0

▶ Language-parametric validation of Actris rules

▶ Subprotocols: ! (x : Z) ⟨x⟩. ?⟨x + 2⟩. end ⊑ ! ⟨40⟩. ?⟨42⟩. end
[ICFP’23a] Actris in Distributed Systems

[ICFP’23b] Minimalistic Actris (Session channels via one-shot channels)

[POPL’24] Deadlock-freedom via Actris

[Ongoing Work] Multiparty Actris: ! [i] (x : Z) ⟨x⟩. ?[j] ⟨x + 2⟩. end
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! ⟨“Thank you”⟩{ActrisKnowledge}.
µrec. ?(q : Question) ⟨q⟩{AboutActris q}.

! (a : Answer) ⟨a⟩{Insightful q a}. rec


