
1

Stripping multiple laters, one step at a time.
Recovering intuitive specifications with the

“step modality”!

Jonas Kastberg Hinrichsen, Aarhus University

May 23, 2023
Iris Workshop, MPI-SWS, Germany

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories

:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).
The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).
The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).

The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).
The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).
The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

2

Ghost theories and the later modality (.)

A significant strength of Iris is the ability to define higher-order abstract ghost theories:

HO-ghost-alloc

|V∃γ. •P γ ∗ ◦P γ

HO-ghost-update
•P γ ◦Q γ

|V •R γ ∗ ◦R γ

HO-ghost-agree
•P γ ◦Q γ

.(P = Q)

The higher-order properties are facilitated via step-indexing, which incur laters (.).
The laters (.) of higher-order ghost theories play a key role in regards to:

I Expressivity: What they can express and how they can be used in other proofs

I Intuition: How intuitive it is to use them and explain them to others

Recent developments of Iris extend later-based expressivity of ghost theories, but the
intuition of using them arguably lacks behind.

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.

We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().

Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.

Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.

Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.

While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.

While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.

Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

3

Logical Steps (.) vs Program Steps ()

Traditionally, higher-order ghost theory transitions (|V) incur a later (.) per transition.
We can strip one later (.) per program step ().
Applying a higher-order ghost theory once per step is historically intuitive.

P1
γ

e1

|V P2
γ

.

 e2

|V

.

. . .

. . .

. . .

Pn
γ

en

|V

.

. . .

. . .

. . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

.

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . | . . .

e1 e2 . . . en . . .

P1
γ |V P2

γ |V . . . Pn
γ |V . . .

| | . . . |

e1 e2 . . . en . . .

More complex higher-order ghost theories incur multiple laters per transition.
Recent developments allow stripping multiple laters per program step.
While this recovers expressivity, intuition lacks behind.
Key Idea: Recover intuition of taking a physical step with a new step modality: |

4

Contributions and outline of this talk

Recalling the ongoing story of adding and resolving more laters in ghost theories

I From the perspective of my work on the Actris Ghost Theory

Introducing the step modality: | P

I A scalable means of leveraging the ever-improving expressivity of later-stripping
mechanisms, alongside intuitive specification and proof patterns

Introducing the Session Escrow Pattern

I A specification pattern built derived via the Actris Ghost Theory for distributed
systems, which was virtually inexpressible without the step modality

Everything in the talk is mechanised as a shallow embedding on top of Iris

4

Contributions and outline of this talk

Recalling the ongoing story of adding and resolving more laters in ghost theories

I From the perspective of my work on the Actris Ghost Theory

Introducing the step modality: | P

I A scalable means of leveraging the ever-improving expressivity of later-stripping
mechanisms, alongside intuitive specification and proof patterns

Introducing the Session Escrow Pattern

I A specification pattern built derived via the Actris Ghost Theory for distributed
systems, which was virtually inexpressible without the step modality

Everything in the talk is mechanised as a shallow embedding on top of Iris

4

Contributions and outline of this talk

Recalling the ongoing story of adding and resolving more laters in ghost theories

I From the perspective of my work on the Actris Ghost Theory

Introducing the step modality: | P

I A scalable means of leveraging the ever-improving expressivity of later-stripping
mechanisms, alongside intuitive specification and proof patterns

Introducing the Session Escrow Pattern

I A specification pattern built derived via the Actris Ghost Theory for distributed
systems, which was virtually inexpressible without the step modality

Everything in the talk is mechanised as a shallow embedding on top of Iris

4

Contributions and outline of this talk

Recalling the ongoing story of adding and resolving more laters in ghost theories

I From the perspective of my work on the Actris Ghost Theory

Introducing the step modality: | P

I A scalable means of leveraging the ever-improving expressivity of later-stripping
mechanisms, alongside intuitive specification and proof patterns

Introducing the Session Escrow Pattern

I A specification pattern built derived via the Actris Ghost Theory for distributed
systems, which was virtually inexpressible without the step modality

Everything in the talk is mechanised as a shallow embedding on top of Iris

5

A story told in multiple steps

6

The first step
P1

γ

e1

|V P2
γ

.

 e2

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants

:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)
Intuition: How do we explain the use of this pattern?

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)
Intuition: How do we explain the use of this pattern?

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)
Intuition: How do we explain the use of this pattern?

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)
Intuition: How do we explain the use of this pattern?

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)

Intuition: How do we explain the use of this pattern?

7

The Actris (1.0) Ghost Theory [POPL’20]

A language-agnostic higher-order specification pattern for reasoning about reliable
resource transfer between two participants:

P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot | prot ownr χ prot | . . .

prot ::= ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end

pre-proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied once every step (as it incurs one later)
Intuition: How do we explain the use of this pattern?

8

“Dont worry, just take a step”

We can resolve a later every step

, and we can always update ghost state

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

A historically accepted intuition for step-indexed logics

8

“Dont worry, just take a step”
We can resolve a later every step

, and we can always update ghost state

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

A historically accepted intuition for step-indexed logics

8

“Dont worry, just take a step”
We can resolve a later every step, and we can always update ghost state

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

A historically accepted intuition for step-indexed logics

8

“Dont worry, just take a step”
We can resolve a later every step, and we can always update ghost state

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

A historically accepted intuition for step-indexed logics

9

But what if there are multiple laters?
P1

γ |V P2
γ

.

e1 e2 . . . en

10

Actris (2.0) Ghost Theory [LMCS’22]

An extension of Actris 1.0, that imposed an iterated number of laters in the send rule,
relative to inbound buffer ~v2:

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2|prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Limited to sequentual programs and coarse-grained concurrency, as each
ghost theory transition incurs multiple laters
Intuition: How do we present this use???

10

Actris (2.0) Ghost Theory [LMCS’22]

An extension of Actris 1.0, that imposed an iterated number of laters in the send rule,
relative to inbound buffer ~v2:

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2|prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Limited to sequentual programs and coarse-grained concurrency, as each
ghost theory transition incurs multiple laters

Intuition: How do we present this use???

10

Actris (2.0) Ghost Theory [LMCS’22]

An extension of Actris 1.0, that imposed an iterated number of laters in the send rule,
relative to inbound buffer ~v2:

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2|prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Limited to sequentual programs and coarse-grained concurrency, as each
ghost theory transition incurs multiple laters
Intuition: How do we present this use???

11

One step at a time..

12

But what if you can only take one step?
P1

γ |V P2
γ

.

e1 e2

E.g. if you have to put your ghost state in an invariant:

∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Invariants impose that we must strip all laters during a single step.

NB: Invariant mask details are omitted in this talk.

12

But what if you can only take one step?
P1

γ |V P2
γ

.

e1 e2

E.g. if you have to put your ghost state in an invariant:

∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Invariants impose that we must strip all laters during a single step.

NB: Invariant mask details are omitted in this talk.

12

But what if you can only take one step?
P1

γ |V P2
γ

.

e1 e2

E.g. if you have to put your ghost state in an invariant:

∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Invariants impose that we must strip all laters during a single step.

NB: Invariant mask details are omitted in this talk.

12

But what if you can only take one step?
P1

γ |V P2
γ

.

e1 e2

E.g. if you have to put your ghost state in an invariant:

∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Invariants impose that we must strip all laters during a single step.

NB: Invariant mask details are omitted in this talk.

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n)

:

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame’
{P} e {w .Q}

{P ∗ n ∗ .(n+1) R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2| ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!
Intuition: ...?

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n):

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame’
{P} e {w .Q}

{P ∗ n ∗ .(n+1) R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|

∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!
Intuition: ...?

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n):

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame
{P} e {w .Q}

{P ∗ n ∗ |≡VI. (n+1)R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2| ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!
Intuition: ...?

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n):

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame
{P} e {w .Q}

{P ∗ n ∗ |≡VI. (n+1)R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2| ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!
Intuition: ...?

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n):

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame
{P} e {w .Q}

{P ∗ n ∗ |≡VI. (n+1)R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2| ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!

Intuition: ...?

13

Stripping multiple laters during a single physical step

[Matsushita et. al, 2022] extends Iris to allow stripping laters corresponding to total
number of steps taken at every step, tracked via time receipts (n):

Ht-time-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-time-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ (n + 1)}

Ht-time-frame
{P} e {w .Q}

{P ∗ n ∗ |≡VI. (n+1)R} e {w .Q ∗ R}

We can then track the relevant step count lower bounds in our invariant:

prot ctx χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2| ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . .

Expressivity: Can use the send rule at every step, as we can strip all the necessary
laters using Ht-step-frame, and update the step count lower bounds in tandem with
our ghost state using Ht-step-incr!
Intuition: ...?

14

Well..

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step

I But we need to manually apply the later-stripping mechanism
I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters

I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

.

e1 e2

15

So what is the problem?

The ghost theory stopped being a self-contained pattern

I We can soundly apply the ghost theory once every step
I But we need to manually apply the later-stripping mechanism

I To strip multiple laters
I To keep the local step count lower bounds up to date

Key Idea: What if we can capture the idea of taking a step to abstract over the
later-stripping mechanism?

P1
γ |V P2

γ

|

e1 e2

16

Solution: Introducing the step modality!

| P

Captures the semantics of taking a program step.
Recovers the intuition that we can get P after taking a single step:

Ht-step-frame
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally mimics the semantics of the original later- and update-stripping rules:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

16

Solution: Introducing the step modality!

| P
Captures the semantics of taking a program step.

Recovers the intuition that we can get P after taking a single step:

Ht-step-frame
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally mimics the semantics of the original later- and update-stripping rules:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

16

Solution: Introducing the step modality!

| P
Captures the semantics of taking a program step.

Recovers the intuition that we can get P after taking a single step:

Ht-step-frame
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally mimics the semantics of the original later- and update-stripping rules:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

16

Solution: Introducing the step modality!

| P
Captures the semantics of taking a program step.

Recovers the intuition that we can get P after taking a single step:

Ht-step-frame
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally mimics the semantics of the original later- and update-stripping rules:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Ht-csq-vs

P V P ′ {P ′} e {w .Q ′} ∀w .Q ′ V Q

{P} e {w .Q}

17

Step-based Actris Ghost Theory

Instead of ghost theories that expose verification details (such as laters):

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

We can now have high-level patterns that hide such details:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied at every step!
Intuition: How do we explain this specification to newcomers (and reviewers)?

17

Step-based Actris Ghost Theory

Instead of ghost theories that expose verification details (such as laters):

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

We can now have high-level patterns that hide such details:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied at every step!
Intuition: How do we explain this specification to newcomers (and reviewers)?

17

Step-based Actris Ghost Theory

Instead of ghost theories that expose verification details (such as laters):

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

We can now have high-level patterns that hide such details:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied at every step!

Intuition: How do we explain this specification to newcomers (and reviewers)?

17

Step-based Actris Ghost Theory

Instead of ghost theories that expose verification details (such as laters):

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

We can now have high-level patterns that hide such details:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Expressivity: Can be applied at every step!
Intuition: How do we explain this specification to newcomers (and reviewers)?

18

“Dont worry, just take a step”

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped

:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .

Ideal-session-escrow-send
ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .

Ideal-session-escrow-send
ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .

Ideal-session-escrow-send
ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .

Ideal-session-escrow-send
ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .

Naive-session-escrow-send
ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

|V.??? ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
session-escrow-send-l

ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
session-escrow-send-l

ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

19

The Session Escrow Pattern [ICFP’23] (Conditionally Accepted)

Derived abstractions may hide the number of laters that needs to be stripped:

P,Q ::= . . . | ses ownl χ n m prot | ses ownr χ n m prot |
ses idxl χ i v | ses idxr χ i v | . . .

ses ownl χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
ses ownr χ n m prot , ∃~v1, ~v2. prot ctx χ ~v1 ~v2 ∗ . . . ∗ . . .
session-escrow-send-l

ses ownl χ n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses ownl χ (n + 1) m (prot[~t/~x]) ∗ ses idxl χ n (v [~t/~x])

This ghost theory is virtually inexpressible without the step modality

I Inexpressible without explicitly mentioning the later-stripping mechanism

20

So how do we derive
step-based ghost theories?

21

Step modality proof interface

The step modality admits a step-based version of the time receipt mechanism:

Step-time-get

| 0

Step-time-incr
n

| (n + 1)

Step-time-frame

n |≡VI. (n+1)P

| P

Additionally, the step modality enjoys a mix of the later and update modality rules:

Step-intro
P

| P

Step-mono
P ` Q

| P ` | Q

Step-sep-comm
| P | Q

| P ∗ Q

Step-upd
|V| |VP

| P

Step-later
.P

| P

21

Step modality proof interface

The step modality admits a step-based version of the time receipt mechanism:

Step-time-get

| 0

Step-time-incr
n

| (n + 1)

Step-time-frame

n |≡VI. (n+1)P

| P

Additionally, the step modality enjoys a mix of the later and update modality rules:

Step-intro
P

| P

Step-mono
P ` Q

| P ` | Q

Step-sep-comm
| P | Q

| P ∗ Q

Step-upd
|V| |VP

| P

Step-later
.P

| P

22

Vertical modularity of the step modality

The step modality properties lets us derive step-based ghost theories on top of the
time receipt later-stripping mechanism

:

Step-time-frame
n |≡VI. (n+1)

P

| P ∧

Step-time-incr
n

| (n + 1) ∧

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x]) ⇒

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

22

Vertical modularity of the step modality

The step modality properties lets us derive step-based ghost theories on top of the
time receipt later-stripping mechanism:

Step-time-frame
n |≡VI. (n+1)

P

| P ∧

Step-time-incr
n

| (n + 1)

∧

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x]) ⇒

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

22

Vertical modularity of the step modality

The step modality properties lets us derive step-based ghost theories on top of the
time receipt later-stripping mechanism:

Step-time-frame
n |≡VI. (n+1)

P

| P ∧

Step-time-incr
n

| (n + 1) ∧

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

⇒

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

22

Vertical modularity of the step modality

The step modality properties lets us derive step-based ghost theories on top of the
time receipt later-stripping mechanism:

Step-time-frame
n |≡VI. (n+1)

P

| P ∧

Step-time-incr
n

| (n + 1) ∧

proto-send-l
prot ctx χ ~v1 ~v2 prot ownl χ (! ~x :~τ 〈v〉{P}. prot) P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x]) ⇒

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

23

Vertical modularity of the step modality

. . . and even each other!

:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x]) ⇒

session-escrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

23

Vertical modularity of the step modality

. . . and even each other!:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

⇒

session-escrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

23

Vertical modularity of the step modality

. . . and even each other!:

Step-proto-send-l
. prot ctx χ ~v1 ~v2 . prot ownl χ (! ~x :~τ 〈v〉{P}. prot) .P[~t/~x])

| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x]) ⇒

session-escrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) P[~t/~x]

| ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

24

So how does it work?

Well, one approach is...

24

So how does it work?
Well, one approach is...

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

25

The (simplified) step modality definition

Designed as a “frame” around the Hoare triple (/ weakest precondition):

| P , ∀n. • nV (• n ∗ (|≡VI. (n+1)
• (n + 1)V • (n + 1) ∗ P))

It reads as follows:

I Get the total step count (• n)

I Take a ghost step (in which n may be approximated with any local m)

I Give back the total step count (• n)

I Strip laters (and ghost steps) relative to the total step count (|≡VI. (n+1))

I Get the updated total step count, as a step has been taken (• (n + 1))

I Take a ghost step (where local state can be updated mV (m + 1))

I Give back the updated total step count (• (n + 1))

I Prove the goal P

26

The step modality definition

The actual modality is language-generic, and is defined in terms of the
language-parametric state interpretation: S σ n κs nt

| P , ∀σ1, n, κ, κs, nt.
S σ1 n (κ · κs) nt V

(S σ1 n (κ · κs) nt ∗
|≡VI. ((n. n)+1)∀σ2, nt ′.

S σ2 (n + 1) κs (nt ′ · nt)V
S σ2 (n + 1) κs (nt ′ · nt) ∗ P))

Language “primitive” rules should then be proven for the later-stripping mechanism of
choice, e.g. the ones for time receipts (where S σ n κs nt , • n ∗ . . .):

Step-time-get

| 0

Step-time-incr
n

| (n + 1)

Step-time-frame

n |≡VI. (n+1)P

| P

26

The step modality definition

The actual modality is language-generic, and is defined in terms of the
language-parametric state interpretation: S σ n κs nt

| P , ∀σ1, n, κ, κs, nt.
S σ1 n (κ · κs) nt V

(S σ1 n (κ · κs) nt ∗
|≡VI. ((n. n)+1)∀σ2, nt ′.

S σ2 (n + 1) κs (nt ′ · nt)V
S σ2 (n + 1) κs (nt ′ · nt) ∗ P))

Language “primitive” rules should then be proven for the later-stripping mechanism of
choice, e.g. the ones for time receipts (where S σ n κs nt , • n ∗ . . .):

Step-time-get

| 0

Step-time-incr
n

| (n + 1)

Step-time-frame

n |≡VI. (n+1)P

| P

26

The step modality definition

The actual modality is language-generic, and is defined in terms of the
language-parametric state interpretation: S σ n κs nt

| P , ∀σ1, n, κ, κs, nt.
S σ1 n (κ · κs) nt V

(S σ1 n (κ · κs) nt ∗
|≡VI. ((n. n)+1)∀σ2, nt ′.

S σ2 (n + 1) κs (nt ′ · nt)V
S σ2 (n + 1) κs (nt ′ · nt) ∗ P))

Language “primitive” rules should then be proven for the later-stripping mechanism of
choice, e.g. the ones for time receipts (where S σ n κs nt , • n ∗ . . .):

Step-time-get

| 0

Step-time-incr
n

| (n + 1)

Step-time-frame

n |≡VI. (n+1)P

| P

27

A work in progress

The definition and interface is not final

However, everything in this talk has been fully mechanised using it.
Mechanisation:

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887

https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887
https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

27

A work in progress
The definition and interface is not final

However, everything in this talk has been fully mechanised using it.
Mechanisation:

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887

https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887
https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

27

A work in progress
The definition and interface is not final

However, everything in this talk has been fully mechanised using it.
Mechanisation:

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887

https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/887
https://gitlab.mpi-sws.org/iris/actris/-/merge_requests/30

28

Some reflections on the step modality

What if the modality abstracts away necessary details? (e.g. specific number of laters)

I The purpose of the step modality is to allow user-friendly specifications.

I One should retain the stronger specifications alongside the step-based ones.

Will we just end up with nested step modalities?: | n P

I Only if one actually must take multiple steps.

How is the step modality related to later credits?

I They solve different problems, and can be used together

What about rules that didn’t need to take a step? (like allocation rules)

I There is an associated (omitted) “pre-step” modality

Is the step modality obsolete in Transfinite Iris?

I Pretty much, yeah

28

Some reflections on the step modality

What if the modality abstracts away necessary details? (e.g. specific number of laters)

I The purpose of the step modality is to allow user-friendly specifications.

I One should retain the stronger specifications alongside the step-based ones.

Will we just end up with nested step modalities?: | n P

I Only if one actually must take multiple steps.

How is the step modality related to later credits?

I They solve different problems, and can be used together

What about rules that didn’t need to take a step? (like allocation rules)

I There is an associated (omitted) “pre-step” modality

Is the step modality obsolete in Transfinite Iris?

I Pretty much, yeah

28

Some reflections on the step modality

What if the modality abstracts away necessary details? (e.g. specific number of laters)

I The purpose of the step modality is to allow user-friendly specifications.

I One should retain the stronger specifications alongside the step-based ones.

Will we just end up with nested step modalities?: | n P

I Only if one actually must take multiple steps.

How is the step modality related to later credits?

I They solve different problems, and can be used together

What about rules that didn’t need to take a step? (like allocation rules)

I There is an associated (omitted) “pre-step” modality

Is the step modality obsolete in Transfinite Iris?

I Pretty much, yeah

28

Some reflections on the step modality

What if the modality abstracts away necessary details? (e.g. specific number of laters)

I The purpose of the step modality is to allow user-friendly specifications.

I One should retain the stronger specifications alongside the step-based ones.

Will we just end up with nested step modalities?: | n P

I Only if one actually must take multiple steps.

How is the step modality related to later credits?

I They solve different problems, and can be used together

What about rules that didn’t need to take a step? (like allocation rules)

I There is an associated (omitted) “pre-step” modality

Is the step modality obsolete in Transfinite Iris?

I Pretty much, yeah

28

Some reflections on the step modality

What if the modality abstracts away necessary details? (e.g. specific number of laters)

I The purpose of the step modality is to allow user-friendly specifications.

I One should retain the stronger specifications alongside the step-based ones.

Will we just end up with nested step modalities?: | n P

I Only if one actually must take multiple steps.

How is the step modality related to later credits?

I They solve different problems, and can be used together

What about rules that didn’t need to take a step? (like allocation rules)

I There is an associated (omitted) “pre-step” modality

Is the step modality obsolete in Transfinite Iris?

I Pretty much, yeah

29

Future work

Better support for invariant masks

I Currently does not have nice modality rules

Consider language-agnostic later-stripping mechanisms

I Currently later-stripping rules are proven per language

Better Iris proofmode support

I Currently works for non-viewshift updates

Consider use cases besides later-stripping

I Abstract access to state interpretation may be beneficial for other problems

Looking for feedback!

I Suggestions for improvements, usefulness, etc.

29

Future work

Better support for invariant masks

I Currently does not have nice modality rules

Consider language-agnostic later-stripping mechanisms

I Currently later-stripping rules are proven per language

Better Iris proofmode support

I Currently works for non-viewshift updates

Consider use cases besides later-stripping

I Abstract access to state interpretation may be beneficial for other problems

Looking for feedback!

I Suggestions for improvements, usefulness, etc.

29

Future work

Better support for invariant masks

I Currently does not have nice modality rules

Consider language-agnostic later-stripping mechanisms

I Currently later-stripping rules are proven per language

Better Iris proofmode support

I Currently works for non-viewshift updates

Consider use cases besides later-stripping

I Abstract access to state interpretation may be beneficial for other problems

Looking for feedback!

I Suggestions for improvements, usefulness, etc.

29

Future work

Better support for invariant masks

I Currently does not have nice modality rules

Consider language-agnostic later-stripping mechanisms

I Currently later-stripping rules are proven per language

Better Iris proofmode support

I Currently works for non-viewshift updates

Consider use cases besides later-stripping

I Abstract access to state interpretation may be beneficial for other problems

Looking for feedback!

I Suggestions for improvements, usefulness, etc.

29

Future work

Better support for invariant masks

I Currently does not have nice modality rules

Consider language-agnostic later-stripping mechanisms

I Currently later-stripping rules are proven per language

Better Iris proofmode support

I Currently works for non-viewshift updates

Consider use cases besides later-stripping

I Abstract access to state interpretation may be beneficial for other problems

Looking for feedback!

I Suggestions for improvements, usefulness, etc.

30

Step-questions?

Question

| Answer

