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Outline

The presentation addresses the following:

I A brief coverage of what the later modality (the “later”) is

I The ongoing story about adding and stripping more and more laters

I The challenges regarding laters with respect to expressivity and presentation

I A proposal to solve both of these problems: The step-taking modality | P

Please do: ask questions, add missing clarifications, provide running feedback
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What are laters?

Structural recursion through program steps (step-indexing):

Later-intro
P

.P

Later-mono
P ` Q

.P ` .Q

Ht-frame-later
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Higher-order ghost state (such as Invariants and propositional agreement):

Ht-inv-open
e is atomic {.P ∗ Q} e {w . .P ∗ R}

{P ∗ Q} e {w .R}

HO-agree
ag(P)

γ
ag(Q)

γ

.(P = Q)

“Co-inductive” definitions:

is stream , µX `. (` = inl()) ∨ (∃v , `′. ` = inr(v , `′) ∗ .X `′)
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What are the challenges with laters?

People started putting them in various (sound) places, and they started to crop up in
presented abstract specifications (ghost theories):

proto-recv-r
prot ctx χ ([w ] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x ]) ∗ P[~y/~x ] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x ]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?
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“Dont think about it”

“We can just get rid of it, when we take a step”
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But then the problem multiplied.
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Multiple laters

People started putting even more laters in (sound) places.

proto-alloc

|V∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x ]]) ~v2 ∗ prot ownl χ (prot[~t/~x ])

proto-recv-r
prot ctx χ ([w ] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x ]) ∗ P[~y/~x ] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x ]

Expressivity: We can just synchronise using a physical lock and take many more steps!
Presentation: How do we present this to newcomers (and reviewers)???
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You roll up your sleeves..
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But what if you can only take one step?
e.g. if you have to put your ghost state in an invariant
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Stripping multiple laters at every step

People came up with clever solutions to strip multiple laters during one step!

Ht-step-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-step-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ n + 1}

Ht-step-frame
{P} e {w .Q}

{P ∗ n ∗ .n R} e {w .Q ∗ R}

Expressivity: We can strip all the laters we need, by tracking a step lower bound
inside our invariant that grows in tandem with our ghost state, so we can guarantee
that we can always strip the appropriate laters using Ht-step-frame, while updating the
lower bound at every step using Ht-step-incr!
Presentation: ...?
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Well..
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What is the problem?

There is currently no way to present specification patterns without the context of the
later-stripping mechanism.

Ideally we would like to precisely present the transitions in the ghost state, while
abstracting over the later-stripping mechanism.

wishful-proto-alloc

∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

wishful-proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]

prot ctx χ (~v1 · [v [~t/~x ]]) ~v2 ∗ prot ownl χ (prot[~t/~x ])

wishful-proto-recv-r
prot ctx χ ([w ] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

∃~y . (w = v [~y/~x ]) ∗ P[~y/~x ] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x ]
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Solution: Introducing the step-taking modality!

| P

Recovers the intuition that we can get P after taking a step:

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally looks like the original later-stripping rule:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}
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Abstract specification of later-stripping mechanism

The step-taking modality can be used to express the later-stripping mechanism as an
abstract specification pattern (rather than via Hoare triples):

Step-step-get

| 0

Step-step-incr
n

| n + 1

Step-step-frame
n ∗ .n P
| P

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

These rules supercede the former Hoare triple rules for the later-stripping mechanism
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Abstract specifications of ghost theory

We can derive abstractions with the step-taking modality on top of each other:

prot ctx step χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|

Step-proto-alloc

| ∃χ. prot ctx step χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

Step-proto-send-l
prot ctx step χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]

| prot ctx step χ (~v1 · [v [~t/~x ]]) ~v2 ∗ prot ownl χ (prot[~t/~x ])

Step-proto-recv-r
prot ctx step χ ([w ] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

| ∃~y . (w = v [~y/~x ]) ∗ P[~y/~x ] ∗ prot ctx step χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x ]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?
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Hidden benefit of the step-taking modality abstracting over laters

Derived abstractions may hide the number of laters that is needed to be stripped

:

sescrow-init

|V∃χ. ses own χ left 0 0 prot ∗ ses own χ right 0 0 prot

sescrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) ∗ P[~t/~x ]

|V. ses own χ s (n + 1) m (prot[~t/~x ]) ∗ ses idx χ s n (v [~t/~x ])

sescrow-recv
ses own χ s n m (?(~x :~τ) 〈v〉{P}. prot) ∗ ses idx χ s m w

|V.??? ∃(~y : ~τ). ses own χ s n (m + 1) (prot[~y/~x ]) ∗ w = v [~y/~x ] ∗ P[~y/~x ]
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The step-taking modality definition

| P , ∀n. • nV ( • n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority ( • n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority ( • n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken ( • n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority ( • n)

I Show P

OBS: details about masks are omitted for brevity sake
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OBS: details about masks are omitted for brevity sake



19

The step-taking modality definition

| P , ∀n. • nV ( • n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority ( • n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority ( • n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken ( • n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority ( • n)

I Show P

OBS: details about masks are omitted for brevity sake
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The step-taking modality properties

The step-taking modality enjoys a mix of the rules for the later modality and the ghost
update modality:

Step-intro
P

| P

Step-mono
P ` Q

| P ` | Q

Step-upd
|V| |VP

| P

Step-sep-comm
| P ∗ | Q

| P ∗ Q

These lets us derive abstract specification patterns on top of each other, without
breaking abstraction
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Further motivation for the step-taking modality

A valid concern is that the step-taking modality will become the new later modality

| n

The intention is that this wont happen.
Regardless of how later-stripping mechanisms evolved, the step-taking modality should
always capture the notion of being able to strip however many laters is available during
one step!
If multiple step-taking modalities are iterated, that should semantically mean that
multiple steps are intended to be taken.



22

Questions?


