
1

Stripping multiple laters, one step at a time
Introducing the “step-taking modality”

Jonas Kastberg Hinrichsen, Aarhus University

3. March 2023
Iris Seminar, Aarhus University

2

Outline

The presentation addresses the following:

I A brief coverage of what the later modality (the “later”) is

I The ongoing story about adding and stripping more and more laters

I The challenges regarding laters with respect to expressivity and presentation

I A proposal to solve both of these problems: The step-taking modality | P

Please do: ask questions, add missing clarifications, provide running feedback

3

What are laters?

Structural recursion through program steps (step-indexing):

Later-intro
P

.P

Later-mono
P ` Q

.P ` .Q

Ht-frame-later
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Higher-order ghost state (such as Invariants and propositional agreement):

Ht-inv-open
e is atomic {.P ∗ Q} e {w . .P ∗ R}

{P ∗ Q} e {w .R}

HO-agree
ag(P)

γ
ag(Q)

γ

.(P = Q)

“Co-inductive” definitions:

is stream , µX `. (` = inl()) ∨ (∃v , `′. ` = inr(v , `′) ∗ .X `′)

3

What are laters?

Structural recursion through program steps (step-indexing):

Later-intro
P

.P

Later-mono
P ` Q

.P ` .Q

Ht-frame-later
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Higher-order ghost state (such as Invariants and propositional agreement):

Ht-inv-open
e is atomic {.P ∗ Q} e {w . .P ∗ R}

{P ∗ Q} e {w .R}

HO-agree
ag(P)

γ
ag(Q)

γ

.(P = Q)

“Co-inductive” definitions:

is stream , µX `. (` = inl()) ∨ (∃v , `′. ` = inr(v , `′) ∗ .X `′)

3

What are laters?

Structural recursion through program steps (step-indexing):

Later-intro
P

.P

Later-mono
P ` Q

.P ` .Q

Ht-frame-later
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

Higher-order ghost state (such as Invariants and propositional agreement):

Ht-inv-open
e is atomic {.P ∗ Q} e {w . .P ∗ R}

{P ∗ Q} e {w .R}

HO-agree
ag(P)

γ
ag(Q)

γ

.(P = Q)

“Co-inductive” definitions:

is stream , µX `. (` = inl()) ∨ (∃v , `′. ` = inr(v , `′) ∗ .X `′)

4

What are the challenges with laters?

People started putting them in various (sound) places, and they started to crop up in
presented abstract specifications (ghost theories):

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?

4

What are the challenges with laters?

People started putting them in various (sound) places, and they started to crop up in
presented abstract specifications (ghost theories):

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory

Presentation: How do we explain this specification to newcomers (and reviewers)?

4

What are the challenges with laters?

People started putting them in various (sound) places, and they started to crop up in
presented abstract specifications (ghost theories):

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?

5

“Dont think about it”

“We can just get rid of it, when we take a step”

5

“Dont think about it”
“We can just get rid of it, when we take a step”

6

But then the problem multiplied.

7

Multiple laters

People started putting even more laters in (sound) places.

proto-alloc

|V∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: We can just synchronise using a physical lock and take many more steps!
Presentation: How do we present this to newcomers (and reviewers)???

7

Multiple laters

People started putting even more laters in (sound) places.

proto-alloc

|V∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: We can just synchronise using a physical lock and take many more steps!

Presentation: How do we present this to newcomers (and reviewers)???

7

Multiple laters

People started putting even more laters in (sound) places.

proto-alloc

|V∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

|V.|~v2| prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

|V. ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: We can just synchronise using a physical lock and take many more steps!
Presentation: How do we present this to newcomers (and reviewers)???

8

You roll up your sleeves..

9

But what if you can only take one step?
e.g. if you have to put your ghost state in an invariant

10

Stripping multiple laters at every step

People came up with clever solutions to strip multiple laters during one step!

Ht-step-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-step-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ n + 1}

Ht-step-frame
{P} e {w .Q}

{P ∗ n ∗ .n R} e {w .Q ∗ R}

Expressivity: We can strip all the laters we need, by tracking a step lower bound
inside our invariant that grows in tandem with our ghost state, so we can guarantee
that we can always strip the appropriate laters using Ht-step-frame, while updating the
lower bound at every step using Ht-step-incr!
Presentation: ...?

10

Stripping multiple laters at every step

People came up with clever solutions to strip multiple laters during one step!

Ht-step-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-step-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ n + 1}

Ht-step-frame
{P} e {w .Q}

{P ∗ n ∗ .n R} e {w .Q ∗ R}

Expressivity: We can strip all the laters we need, by tracking a step lower bound
inside our invariant that grows in tandem with our ghost state, so we can guarantee
that we can always strip the appropriate laters using Ht-step-frame, while updating the
lower bound at every step using Ht-step-incr!

Presentation: ...?

10

Stripping multiple laters at every step

People came up with clever solutions to strip multiple laters during one step!

Ht-step-get
{P ∗ 0} e {Φ}
{P} e {Φ}

Ht-step-incr
{P} e {w .Q}

{P ∗ n} e {w .Q ∗ n + 1}

Ht-step-frame
{P} e {w .Q}

{P ∗ n ∗ .n R} e {w .Q ∗ R}

Expressivity: We can strip all the laters we need, by tracking a step lower bound
inside our invariant that grows in tandem with our ghost state, so we can guarantee
that we can always strip the appropriate laters using Ht-step-frame, while updating the
lower bound at every step using Ht-step-incr!
Presentation: ...?

11

Well..

12

What is the problem?

There is currently no way to present specification patterns without the context of the
later-stripping mechanism.

Ideally we would like to precisely present the transitions in the ghost state, while
abstracting over the later-stripping mechanism.

wishful-proto-alloc

∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

wishful-proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

wishful-proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

12

What is the problem?

There is currently no way to present specification patterns without the context of the
later-stripping mechanism.
Ideally we would like to precisely present the transitions in the ghost state, while
abstracting over the later-stripping mechanism.

wishful-proto-alloc

∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

wishful-proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

wishful-proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

12

What is the problem?

There is currently no way to present specification patterns without the context of the
later-stripping mechanism.
Ideally we would like to precisely present the transitions in the ghost state, while
abstracting over the later-stripping mechanism.

wishful-proto-alloc

∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

wishful-proto-send-l
prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

prot ctx χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

wishful-proto-recv-r
prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

13

Solution: Introducing the step-taking modality!

| P

Recovers the intuition that we can get P after taking a step:

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally looks like the original later-stripping rule:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

13

Solution: Introducing the step-taking modality!

| P
Recovers the intuition that we can get P after taking a step:

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally looks like the original later-stripping rule:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

13

Solution: Introducing the step-taking modality!

| P
Recovers the intuition that we can get P after taking a step:

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

Intentionally looks like the original later-stripping rule:

Ht-later-frame
{P} e {w .Q}

{P ∗ .R} e {w .Q ∗ R}

14

Abstract specification of later-stripping mechanism

The step-taking modality can be used to express the later-stripping mechanism as an
abstract specification pattern (rather than via Hoare triples):

Step-step-get

| 0

Step-step-incr
n

| n + 1

Step-step-frame
n ∗ .n P
| P

Ht-step-modality
{P} e {w .Q}

{P ∗ | R} e {w .Q ∗ R}

These rules supercede the former Hoare triple rules for the later-stripping mechanism

15

Abstract specifications of ghost theory

We can derive abstractions with the step-taking modality on top of each other:

prot ctx step χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|

Step-proto-alloc

| ∃χ. prot ctx step χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

Step-proto-send-l
prot ctx step χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

| prot ctx step χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Step-proto-recv-r
prot ctx step χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

| ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx step χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?

15

Abstract specifications of ghost theory

We can derive abstractions with the step-taking modality on top of each other:

prot ctx step χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|

Step-proto-alloc

| ∃χ. prot ctx step χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

Step-proto-send-l
prot ctx step χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

| prot ctx step χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Step-proto-recv-r
prot ctx step χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

| ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx step χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory

Presentation: How do we explain this specification to newcomers (and reviewers)?

15

Abstract specifications of ghost theory

We can derive abstractions with the step-taking modality on top of each other:

prot ctx step χ ~v1 ~v2 , prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|

Step-proto-alloc

| ∃χ. prot ctx step χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

Step-proto-send-l
prot ctx step χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]

| prot ctx step χ (~v1 · [v [~t/~x]]) ~v2 ∗ prot ownl χ (prot[~t/~x])

Step-proto-recv-r
prot ctx step χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)

| ∃~y . (w = v [~y/~x]) ∗ P[~y/~x] ∗ prot ctx step χ ~v1 ~v2 ∗ prot ownr χ prot[~y/~x]

Expressivity: Fine! We do take a step whenever we use the ghost theory
Presentation: How do we explain this specification to newcomers (and reviewers)?

16

“Dont think about it”

“We can just get rid of it, when we take a step”

16

“Dont think about it”
“We can just get rid of it, when we take a step”

17

Hidden benefit of the step-taking modality abstracting over laters

Derived abstractions may hide the number of laters that is needed to be stripped

:

sescrow-init

|V∃χ. ses own χ left 0 0 prot ∗ ses own χ right 0 0 prot

sescrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) ∗ P[~t/~x]

|V. ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

sescrow-recv
ses own χ s n m (?(~x :~τ) 〈v〉{P}. prot) ∗ ses idx χ s m w

|V.??? ∃(~y : ~τ). ses own χ s n (m + 1) (prot[~y/~x]) ∗ w = v [~y/~x] ∗ P[~y/~x]

17

Hidden benefit of the step-taking modality abstracting over laters

Derived abstractions may hide the number of laters that is needed to be stripped:

sescrow-init

|V∃χ. ses own χ left 0 0 prot ∗ ses own χ right 0 0 prot

sescrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) ∗ P[~t/~x]

|V. ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

sescrow-recv
ses own χ s n m (?(~x :~τ) 〈v〉{P}. prot) ∗ ses idx χ s m w

|V.??? ∃(~y : ~τ). ses own χ s n (m + 1) (prot[~y/~x]) ∗ w = v [~y/~x] ∗ P[~y/~x]

18

Hidden benefit of the step-taking modality abstracting over laters

Derived abstractions may hide the number of laters that is needed to be stripped:

sescrow-init

| ∃χ. ses own χ left 0 0 prot ∗ ses own χ right 0 0 prot

sescrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) ∗ P[~t/~x]

| ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

sescrow-recv
ses own χ s n m (?(~x :~τ) 〈v〉{P}. prot) ∗ ses idx χ s m w

| ∃(~y : ~τ). ses own χ s n (m + 1) (prot[~y/~x]) ∗ w = v [~y/~x] ∗ P[~y/~x]

This abstract specificiation pattern is undefinable without the step-taking modality.

18

Hidden benefit of the step-taking modality abstracting over laters

Derived abstractions may hide the number of laters that is needed to be stripped:

sescrow-init

| ∃χ. ses own χ left 0 0 prot ∗ ses own χ right 0 0 prot

sescrow-send
ses own χ s n m (! (~x :~τ) 〈v〉{P}. prot) ∗ P[~t/~x]

| ses own χ s (n + 1) m (prot[~t/~x]) ∗ ses idx χ s n (v [~t/~x])

sescrow-recv
ses own χ s n m (?(~x :~τ) 〈v〉{P}. prot) ∗ ses idx χ s m w

| ∃(~y : ~τ). ses own χ s n (m + 1) (prot[~y/~x]) ∗ w = v [~y/~x] ∗ P[~y/~x]

This abstract specificiation pattern is undefinable without the step-taking modality.

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

19

The step-taking modality definition

| P , ∀n. • nV (• n ∗ (.n+1
• n + 1V • n + 1 ∗ P))

It reads as follows:

I Get the step-taking authority (• n)

I Take a ghost step (in which n may be approximated)

I Give back the step-taking authority (• n)

I Strip laters according to the authorty (.n)

I Get the updated step-taking authority, as a step has been taken (• n)

I Take a ghost step (in which local step lower bounds can be updated)

I Give back the step-taking authority (• n)

I Show P

OBS: details about masks are omitted for brevity sake

20

The step-taking modality properties

The step-taking modality enjoys a mix of the rules for the later modality and the ghost
update modality:

Step-intro
P

| P

Step-mono
P ` Q

| P ` | Q

Step-upd
|V| |VP

| P

Step-sep-comm
| P ∗ | Q

| P ∗ Q

These lets us derive abstract specification patterns on top of each other, without
breaking abstraction

21

Further motivation for the step-taking modality

A valid concern is that the step-taking modality will become the new later modality

| n

The intention is that this wont happen.
Regardless of how later-stripping mechanisms evolved, the step-taking modality should
always capture the notion of being able to strip however many laters is available during
one step!
If multiple step-taking modalities are iterated, that should semantically mean that
multiple steps are intended to be taken.

22

Questions?

