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Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread
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Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A.S |
?A.S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A.S = ?A.S
?A.S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)( 1 a Γ
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Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)
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Problems

1. Lack of expressivity in session types

I Restricted to decidable fragment

I Does not guarantee functional correctness

2. Lack of generality with respect to the underlying implementation

I Communication is assumed to be reliable at the level of the operational semantics

I Does not readily integrate with reliable communication that is implemented

3. Lack of mechanisation results of session type-based systems

I Few results of simpler systems

I No results of systems that combine features such as recursion and subtyping
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Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness
I General purpose ghost state mechanisms

I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq
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Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/
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1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris
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Dependent separation protocols

Session type-inspired protocols for functional correctness

:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end
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1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris
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Actris Rules (for HeapLang)

Actris Session types

Usage c � prot c : chan S

New
{True}
new chan (){

(c, c ′). c � prot ∗ c ′� prot
} Γ ` new chan () : chan S × chan S a Γ

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x ]

}
send c (v [~t/~x ]){
c � prot[~t/~x ]

} Γ, x : chan (!A.S), y :A ` send x y : 1 a
Γ, x : chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x ]) ∗
P[~y/~x ] ∗ c�prot[~y/~x ]}

Γ, x : chan (?A.S) ` recv x : A a
Γ, x : chan S
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Example program - via Actris rules

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash

�3 Program is correct (returns 42)
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The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication

:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2
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← ~v2 ←
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The ghost state identifier (χ) associates the fragments
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The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x ]]) ~v2

)
∗ prot ownl χ (prot[~t/~x ])

(send)

prot ctx χ ~v1 ([w ] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x ]) ∗ P[~y/~x ] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x ])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric
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View shifts (V) can be made in between any program step:

Ht-vs
P V P ′ {

P ′} e
{
w .Q ′} (∀w .Q ′ V Q)

{P} e {w .Q}
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Subprotocol relation (v) inspired by asynchronous session subtyping



15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x ]]) ~v2

)
∗ prot ownl χ (prot[~t/~x ])

(send)

prot ctx χ ~v1 ([w ] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x ]) ∗ P[~y/~x ] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x ])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

A later per inbound message as a side-effect of the protocols being higher-order

I Recent change to Iris: each step can strip laters based on total steps taken
Ht-step-lb-get
{P ∗ 0} e {w .Q}
{P} e {w .Q}

Ht-step-lb-incr
{P} e {w .Q ∗ (n + 1)}
{P ∗ n} e {w .Q}

Ht-step-lb-skip
P1 V .n R {P2} e {w .Q ∗ R}

{P1 ∗ P2 ∗ n} e {w .Q}
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Ht-step-lb-get
{P ∗ 0} e {w .Q}
{P} e {w .Q}

Ht-step-lb-incr
{P} e {w .Q ∗ (n + 1)}
{P ∗ n} e {w .Q}

Ht-step-lb-skip
P1 V .n R {P2} e {w .Q ∗ R}

{P1 ∗ P2 ∗ n} e {w .Q}

Lower bound of total steps taken ( n)

Strip laters corresponding to lower bound



16

Proving the
Actris Rules
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in HeapLang
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Shared memory message passing in HeapLang

We must first provide an implementation of the message passing primitives

new chan ()

:= let (l , r , lk) := (lnil (), lnil (), new lock ()) in
((l , r , lk), (r , l , lk))

send c v

:= let (l , r , lk) := c in
acquire lk;
lsnoc l v ;

release lk

recv c

:= match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

try recv c := let (l , r , lk) := c in
acquire lk;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk; ret
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Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot

requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)
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List ownership (isList l ~x) asserts exclusive ownership of the list l with contents ~x

Ht-lnil

{True} lnil {l . isList l [ ]}
Ht-lsnoc

{isList l ~x ∗ I x v} lsnoc l v {isList l (~x · [x ])}
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Lock ownership (is lock lk R) asserts that the lock lk governs the proposition R

Ht-acquire

{is lock lk R} acquire lk {R}
Ht-release

{is lock lk R ∗ R} release lk {True}
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Proving the Actris rules - newchan

We wish to prove:

{True} new chan () {w . ∃c1, c2.w = (c1, c2) ∗ c1� prot ∗ c2� prot}

It follows almost directly from the rule:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)
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Proving the Actris rules - send

We wish to prove:{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x ]

}
send c (v [~t/~x ])

{
c � prot[~t/~x ]

}
It follows almost directly from the rule:

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x ]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x ]]) ~v2

)
∗ prot ownl χ (prot[~t/~x ])

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)
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Proving the Actris rules - recv

We wish to prove:

{c � ?~x :~τ 〈v〉{P}. prot} recv c {w . ∃~y .w = v [~y/~x ] ∗ c � prot[~y/~x ] ∗ P[~y/~x ]}

It follows almost directly from the rule:

prot ctx χ ~v1 ([w ] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x ]) ∗ P[~y/~x ] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x ])

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)
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1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris
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Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver

I Define constructors, operations, and relations on prot
I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules
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Publications

Actris: Session-Type Based Reasoning in Separation Logic

I ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL’20]

Machine-Checked Semantic Session Typing

I Certified Programs and Proofs Conference 2021 [CPP’21] (Distinguished paper award)

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

I Journal of Logical Methods in Computer Science [LMCS’22] (Pending copy-editing)
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Future work

The Actris story is not over

RefinedC-style proof automation for reliable communication

I Symbolically verified programs for a subset of the protocol specifications

Multi-party dependent separation protocols

I Communication protocols that describe more than two parties

Deadlock and resource-leak-freedom guarantees

I Guarantees that the communication is deadlock free

I Guarantees that terminated communication leaves no leftover resources

Formal generalisation of the channel primitives and ownership

I Parametric abstractions that scales to different languages
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! 〈“Thank you”〉{ActrisKnowledge}.
µrec. ?(q : Question) 〈q〉{AboutActris q}.

! (a : Answer) 〈a〉{Insightful q a}. rec


