
1

The Actris Ghost Theory:
Session Type-Based Ghost Theory

for Reasoning about Reliable Communication

Jonas Kastberg Hinrichsen, Aarhus University

joint work with
Jesper Bengtson, IT University of Copenhagen

Robbert Krebbers, Radboud University

2. May 2022
Iris Workshop’22

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

2

Reliable communication

Reliable communication has a lot of applications

I Shared memory message passing (Go)

I Distributed networks (TCP)

Communication which assumes that:

I Messages are never dropped, duplicated, or arrive out of order

We additionally assume:

I Binary - communication is between two participants

Shared memory message passing primitives (in HeapLang)

new chan (), send c v, recv c

Example Program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A.S |
?A.S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A.S = ?A.S
?A.S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A.S = ?A.S
?A.S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A.S = ?A.S
?A.S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A.S = ?A.S
?A.S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ

Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S

Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ `

λc . let x := recv c in
send c (x + 2)

: chan (?Z. !Z. end)(1 a Γ

3

Session types

Syntax

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

chan (!Z. ?Z. end)

Usage

c : chan S

Duality

!A. S = ?A.S
?A. S = !A.S
end = end

Rules (for shared memory message passing)

Γ ` new chan () : chan S × chan S a Γ
Γ, x : chan (!A.S), y :A ` send x y : 1 a Γ, x : chan S
Γ, x : chan (?A.S) ` recv x : A a Γ, x : chan S

Example program (service thread)

Γ ` λc . let x := recv c in
send c (x + 2) : chan (?Z. !Z. end)(1 a Γ

4

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

4

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

4

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

4

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

5

Problems

1. Lack of expressivity in session types

I Restricted to decidable fragment

I Does not guarantee functional correctness

2. Lack of generality with respect to the underlying implementation

I Communication is assumed to be reliable at the level of the operational semantics

I Does not readily integrate with reliable communication that is implemented

3. Lack of mechanisation results of session type-based systems

I Few results of simpler systems

I No results of systems that combine features such as recursion and subtyping

5

Problems

1. Lack of expressivity in session types

I Restricted to decidable fragment

I Does not guarantee functional correctness

2. Lack of generality with respect to the underlying implementation

I Communication is assumed to be reliable at the level of the operational semantics

I Does not readily integrate with reliable communication that is implemented

3. Lack of mechanisation results of session type-based systems

I Few results of simpler systems

I No results of systems that combine features such as recursion and subtyping

5

Problems

1. Lack of expressivity in session types

I Restricted to decidable fragment

I Does not guarantee functional correctness

2. Lack of generality with respect to the underlying implementation

I Communication is assumed to be reliable at the level of the operational semantics

I Does not readily integrate with reliable communication that is implemented

3. Lack of mechanisation results of session type-based systems

I Few results of simpler systems

I No results of systems that combine features such as recursion and subtyping

6

Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness
I General purpose ghost state mechanisms

I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq

6

Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness
I General purpose ghost state mechanisms

I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq

6

Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness

I General purpose ghost state mechanisms
I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq

6

Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness
I General purpose ghost state mechanisms

I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq

6

Key Idea

Protocols akin to session types for reasoning in the Iris concurrent separation logic

Session types

I Modular verification of channel endpoints

I Ensures safety

Iris concurrent separation logic

I Logic for reasoning about concurrent programs

I Ensures functional correctness
I General purpose ghost state mechanisms

I Implementation-agnostic logical state and its transitions

I Full mechanisation in Coq

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols

[POPL’20]

I Higher-order separation logic session protocols for specifying functional behaviour
I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang)

[POPL’20]

I Implementation-specific session type-style rules for verifying programs that use
reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq

[POPL’20] [LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols [POPL’20]
I Higher-order separation logic session protocols for specifying functional behaviour

I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping

[LMCS’22]

2. The Actris rules (for HeapLang) [POPL’20]
I Implementation-specific session type-style rules for verifying programs that use

reliable communication

3. The Actris Ghost Theory

[LMCS’22]

I Implementation-agnostic framework for specifying and proving
implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq [POPL’20]

[LMCS’22]

I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

7

Contributions

Actris: A framework for proving functional correctness of programs that implement
and use the reliable communication paradigm

1. Introducing dependent separation protocols [POPL’20]
I Higher-order separation logic session protocols for specifying functional behaviour

I Step-indexed recursion
I Subprotocols inspired by asynchronous session subtyping [LMCS’22]

2. The Actris rules (for HeapLang) [POPL’20]
I Implementation-specific session type-style rules for verifying programs that use

reliable communication

3. The Actris Ghost Theory [LMCS’22]
I Implementation-agnostic framework for specifying and proving

implementation-specific Actris rules

4. A full mechanisation of Actris on top of Iris in Coq [POPL’20] [LMCS’22]
I With tactic support
I https://gitlab.mpi-sws.org/iris/actris/

https://gitlab.mpi-sws.org/iris/actris/

8

1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris

9

Dependent separation protocols

Session type-inspired protocols for functional correctness

:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ)

, physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v)

, propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)

I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A. S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)
I Dependent: the variables ~x :~τ bind into v , P, and prot

I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A. S = ?A.S
?A. S = !A.S
end = end

9

Dependent separation protocols

Session type-inspired protocols for functional correctness:
I Exchanges of: logical variables (~x :~τ), physical values (v), propositions (P)
I Dependent: the variables ~x :~τ bind into v , P, and prot
I First class citizens of Iris (COFEs): higher-order, impredicativity, recursion

Dependent separation protocols Session types

Syntax prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A. S = ?A.S
?A. S = !A.S
end = end

10

1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris

11

Actris Rules (for HeapLang)

Actris Session types

Usage c � prot c : chan S

New
{True}
new chan (){

(c, c ′). c � prot ∗ c ′� prot
} Γ ` new chan () : chan S × chan S a Γ

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} Γ, x : chan (!A.S), y :A ` send x y : 1 a
Γ, x : chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗
P[~y/~x] ∗ c�prot[~y/~x]}

Γ, x : chan (?A.S) ` recv x : A a
Γ, x : chan S

11

Actris Rules (for HeapLang)

Actris Session types

Usage c � prot c : chan S

New
{True}
new chan (){

(c, c ′). c � prot ∗ c ′� prot
} Γ ` new chan () : chan S × chan S a Γ

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} Γ, x : chan (!A.S), y :A ` send x y : 1 a
Γ, x : chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗
P[~y/~x] ∗ c�prot[~y/~x]}

Γ, x : chan (?A.S) ` recv x : A a
Γ, x : chan S

11

Actris Rules (for HeapLang)

Actris Session types

Usage c � prot c : chan S

New
{True}
new chan (){

(c, c ′). c � prot ∗ c ′� prot
} Γ ` new chan () : chan S × chan S a Γ

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} Γ, x : chan (!A.S), y :A ` send x y : 1 a
Γ, x : chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗
P[~y/~x] ∗ c�prot[~y/~x]}

Γ, x : chan (?A.S) ` recv x : A a
Γ, x : chan S

11

Actris Rules (for HeapLang)

Actris Session types

Usage c � prot c : chan S

New
{True}
new chan (){

(c, c ′). c � prot ∗ c ′� prot
} Γ ` new chan () : chan S × chan S a Γ

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} Γ, x : chan (!A.S), y :A ` send x y : 1 a
Γ, x : chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c
{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗

P[~y/~x] ∗ c�prot[~y/~x]}

Γ, x : chan (?A.S) ` recv x : A a
Γ, x : chan S

12

Example program - via Actris rules

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash

�3 Program is correct (returns 42)

12

Example program - via Actris rules

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash

�3 Program is correct (returns 42)

12

Example program - via Actris rules

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash

�3 Program is correct (returns 42)

12

Example program - via Actris rules

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash

�3 Program is correct (returns 42)

13

1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication

:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication:

I The individual states of the protocols: prot1 and prot2

I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

14

The Actris Ghost Theory - Logical fragments

The logical fragments must capture the state of the reliable communication:

I The individual states of the protocols: prot1 and prot2
I The messages in transit in either direction: ~v1 and ~v2

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

→ ~v1 →

← ~v2 ←

prot1 prot2

The ghost state identifier (χ) associates the fragments

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

View shifts (V) can be made in between any program step:

Ht-vs
P V P ′ {

P ′} e
{
w .Q ′} (∀w .Q ′ V Q)

{P} e {w .Q}

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

Subprotocol relation (v) inspired by asynchronous session subtyping

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

A later per inbound message as a side-effect of the protocols being higher-order

I Recent change to Iris: each step can strip laters based on total steps taken
Ht-step-lb-get
{P ∗ 0} e {w .Q}
{P} e {w .Q}

Ht-step-lb-incr
{P} e {w .Q ∗ (n + 1)}
{P ∗ n} e {w .Q}

Ht-step-lb-skip
P1 V .n R {P2} e {w .Q ∗ R}

{P1 ∗ P2 ∗ n} e {w .Q}

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

A later per inbound message as a side-effect of the protocols being higher-order

I Recent change to Iris: each step can strip laters based on total steps taken
Ht-step-lb-get
{P ∗ 0} e {w .Q}
{P} e {w .Q}

Ht-step-lb-incr
{P} e {w .Q ∗ (n + 1)}
{P ∗ n} e {w .Q}

Ht-step-lb-skip
P1 V .n R {P2} e {w .Q ∗ R}

{P1 ∗ P2 ∗ n} e {w .Q}

Lower bound of total steps taken (n)

15

The Actris Ghost Theory - Rules

Fragments:

t, u,P,Q ::= . . . | prot ctx χ ~v1 ~v2 | prot ownl χ prot1 | prot ownr χ prot2 | . . .

Rules:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (new)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

(send)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])
(recv)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (subprotocol)

NB: only the rules of the left protocol are shown, as the right ones are symmetric

A later per inbound message as a side-effect of the protocols being higher-order

I Recent change to Iris: each step can strip laters based on total steps taken
Ht-step-lb-get
{P ∗ 0} e {w .Q}
{P} e {w .Q}

Ht-step-lb-incr
{P} e {w .Q ∗ (n + 1)}
{P ∗ n} e {w .Q}

Ht-step-lb-skip
P1 V .n R {P2} e {w .Q ∗ R}

{P1 ∗ P2 ∗ n} e {w .Q}

Lower bound of total steps taken (n)

Strip laters corresponding to lower bound

16

Proving the
Actris Rules

for shared memory message passing
in HeapLang

17

Shared memory message passing in HeapLang

We must first provide an implementation of the message passing primitives

new chan ()

:= let (l , r , lk) := (lnil (), lnil (), new lock ()) in
((l , r , lk), (r , l , lk))

send c v

:= let (l , r , lk) := c in
acquire lk;
lsnoc l v ;

release lk

recv c

:= match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

try recv c := let (l , r , lk) := c in
acquire lk;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk; ret

17

Shared memory message passing in HeapLang

We must first provide an implementation of the message passing primitives

new chan () := let (l , r , lk) := (lnil (), lnil (), new lock ()) in
((l , r , lk), (r , l , lk))

send c v

:= let (l , r , lk) := c in
acquire lk;
lsnoc l v ;

release lk

recv c

:= match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

try recv c := let (l , r , lk) := c in
acquire lk;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk; ret

17

Shared memory message passing in HeapLang

We must first provide an implementation of the message passing primitives

new chan () := let (l , r , lk) := (lnil (), lnil (), new lock ()) in
((l , r , lk), (r , l , lk))

send c v := let (l , r , lk) := c in
acquire lk;
lsnoc l v ;

release lk

recv c

:= match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

try recv c := let (l , r , lk) := c in
acquire lk;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk; ret

17

Shared memory message passing in HeapLang

We must first provide an implementation of the message passing primitives

new chan () := let (l , r , lk) := (lnil (), lnil (), new lock ()) in
((l , r , lk), (r , l , lk))

send c v := let (l , r , lk) := c in
acquire lk;
lsnoc l v ;

release lk

recv c := match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

try recv c := let (l , r , lk) := c in
acquire lk;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk; ret

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot

requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state

:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot

I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2

I Include the step lower bound for each logical buffer: |~v1| and |~v2|
I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk.
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state

(for HeapLang)

I Capture the structure of the channel abstraction c

: (l , r , lk) / (r , l , lk)

I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers

: isList l ~v1 / isList r ~v2

I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints

: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

List ownership (isList l ~x) asserts exclusive ownership of the list l with contents ~x

Ht-lnil

{True} lnil {l . isList l []}
Ht-lsnoc

{isList l ~x ∗ I x v} lsnoc l v {isList l (~x · [x])}

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

Lock ownership (is lock lk R) asserts that the lock lk governs the proposition R

Ht-acquire

{is lock lk R} acquire lk {R}
Ht-release

{is lock lk R ∗ R} release lk {True}

18

Defining the channel endpoint ownership

Defining the channel endpoint ownership c � prot requires connecting the
implementation-agnostic logical state with the implementation-specific physical state:
I Implementation-agnostic logical state

I Assert ownership of the respective protocol: prot ownl χ prot / prot ownr χ prot
I Include the shared protocol context: prot ctx χ ~v1 ~v2
I Include the step lower bound for each logical buffer: |~v1| and |~v2|

I Implementation-specific physical state (for HeapLang)
I Capture the structure of the channel abstraction c : (l , r , lk) / (r , l , lk)
I Connect the physical state to the logical buffers: isList l ~v1 / isList r ~v2
I Include a means of synchronisation between the two endpoints: is lock lk R

In the case of the HeapLang implementation it can then be defined as follows:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

19

Proving the Actris rules - newchan

We wish to prove:

{True} new chan () {w . ∃c1, c2.w = (c1, c2) ∗ c1� prot ∗ c2� prot}

It follows almost directly from the rule:

TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

20

Proving the Actris rules - send

We wish to prove:{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x])

{
c � prot[~t/~x]

}
It follows almost directly from the rule:

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P[~t/~x]V
.|~v2|

(
prot ctx χ (~v1 · [v [~t/~x]]) ~v2

)
∗ prot ownl χ (prot[~t/~x])

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

21

Proving the Actris rules - recv

We wish to prove:

{c � ?~x :~τ 〈v〉{P}. prot} recv c {w . ∃~y .w = v [~y/~x] ∗ c � prot[~y/~x] ∗ P[~y/~x]}

It follows almost directly from the rule:

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
. ∃(~y : ~τ). (w = v [~y/~x]) ∗ P[~y/~x] ∗

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot[~y/~x])

And the definition of the channel endpoint ownership:

c � prot , ∃χ, l , r , lk .
(

(c = (l , r , lk) ∗ prot ownl χ prot) ∨
(c = (r , l , lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. isList l ~v1 ∗ isList r ~v2 ∗
prot ctx χ ~v1 ~v2 ∗ |~v1| ∗ |~v2|)

22

1. Dependent separation protocols
2. Actris Rules

3. Actris Ghost Theory
4. Mechanisation of Actris

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver

I Define constructors, operations, and relations on prot
I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for HeapLang):
I Implement the communication primitives in HeapLang

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

23

Mechanisation of Actris

Dependent separation protocols:

I Define the type of prot using Iris’s recursive domain equation solver
I Define constructors, operations, and relations on prot

I ! ~x :~τ 〈v〉{P}. prot, prot, and prot1 v prot2

Actris Ghost Theory:

I Define a notion of protocol consistency via the subprotocol relation

I Define the fragments via protocol consistency and Iris’s higher-order ghost state

I Prove the ghost theory rules via properties of the protocol consistency

Actris Rules (for your language!):
I Implement the communication primitives in your language!

I e.g. send and recv

I Define the channel endpoint ownership c � prot using the Actris ghost theory

I Prove the Actris rules as lemmas in Iris, using the ghost theory rules

24

Publications

Actris: Session-Type Based Reasoning in Separation Logic

I ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL’20]

Machine-Checked Semantic Session Typing

I Certified Programs and Proofs Conference 2021 [CPP’21] (Distinguished paper award)

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

I Journal of Logical Methods in Computer Science [LMCS’22] (Pending copy-editing)

25

Future work

The Actris story is not over

RefinedC-style proof automation for reliable communication

I Symbolically verified programs for a subset of the protocol specifications

Multi-party dependent separation protocols

I Communication protocols that describe more than two parties

Deadlock and resource-leak-freedom guarantees

I Guarantees that the communication is deadlock free

I Guarantees that terminated communication leaves no leftover resources

Formal generalisation of the channel primitives and ownership

I Parametric abstractions that scales to different languages

26

! 〈“Thank you”〉{ActrisKnowledge}.
µrec. ?(q : Question) 〈q〉{AboutActris q}.

! (a : Answer) 〈a〉{Insightful q a}. rec

