Sessions and Separation

Jonas Kastberg Hinrichsen, IT University of Copenhagen

Under supervision of
Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University

11. June 2021
IT University of Copenhagen

Combining

Combining
Session Types

Combining
Session Types with Separation Logic

Combining
Session Types with Separation Logic
to ensure correctness

Combining
Session Types with Separation Logic
to ensure correctness
of concurrent programs

Combining
Session Types with Separation Logic
to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

Key observation:
IS Important

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

» A way of increasing productivity

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
» A way of increasing productivity

Concurrency is everywhere

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
» A way of increasing productivity

Concurrency is everywhere
» Real world: Cooks in a kitchen

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
» A way of increasing productivity

Concurrency is everywhere
» Real world: Cooks in a kitchen

» Between computers: Server farms

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
» A way of increasing productivity

Concurrency is everywhere
» Real world: Cooks in a kitchen

» Between computers: Server farms
» Within computers: Multi-core processors

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
» A way of increasing productivity

Concurrency is everywhere
» Real world: Cooks in a kitchen

» Between computers: Server farms

» Within computers: Multi-core processors
» A core is like a cook

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task
> A way of increasing productivity

Concurrency is everywhere
» Real world: Cooks in a kitchen

» Between computers: Server farms
» Within computers: Multi-core processors

> A core is like a cook

Concurrent programs: Instructions on how the cores should work together

Problem:
is difficult

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

» Real world: “Too many cooks spoil the broth”

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult
» Real world: “Too many cooks spoil the broth”

» Between computers: Miscommunication

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult
» Real world: “Too many cooks spoil the broth”
» Between computers: Miscommunication

» Within computers: Data races

A problem has been detected and Windows has been shut down to prevent damage
to your computer.

PFN_LIST_CORRUPT

If this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use Safe Mode to remove or disable components, restart
your computer, press F8 to select Advanced Startup Options, and then
select Safe Mode.

Technical information:
**% gTOP: Ox0000004e (0x00000099, 0x00900009, 0x00000900, 0x00000900)

Your computer restarted because of a problem. Press a key or wait a few
seconds to continue starting up.

Votre ordinateur a redémarré en raison d’un probléme. Pour poursuivre
le redémarrage, appuyez sur une touche ou patientez quelques secondes.

El ordenador se ha reiniciado debido a un problema. Para continuar con
el arranque, pulse cualquier tecla o espere unos segundos.

Ihr Computer wurde aufgrund eines Problems neu gestartet. Driicken
Sie zum Fortfahren eine Taste oder warten Sie einige Sekunden.

MBS EELIHIVE1—-FEBEDUIL, COTTENT SHBEI.
WIhH DF—ZRTH . BPRTDEIB/ELEIL.

REEHRCEMEH G, KR—TRE, AF/LORUBEEN.

Goal:

Ensure Correctness
of Concurrent Programs

Goal:

Ensure Correctness
of Concurrent Programs

(i.e., That they do not crash, and produce the expected results)

Goal: Ensure Correctness of Concurrent Programs

Program testing

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

» Running the program with various input, and checking the output

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output
» Problem: Hard to guarantee full code coverage

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

Formal verification

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

Formal verification
» Prove that any execution of the program is correct

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

Formal verification

» Prove that any execution of the program is correct
» Guarantees full code coverage

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

Formal verification

» Prove that any execution of the program is correct
» Guarantees full code coverage
» Also for concurrent programs

10

Goal: Ensure Correctness of Concurrent Programs

Program testing
» Running the program with various input, and checking the output

» Problem: Hard to guarantee full code coverage
» Especially for concurrent programs: Execution order can change

» One chef adds soy sauce, then another salts to taste IZ{
> One chef salts to taste, then another adds soy sauce X

Formal verification

» Prove that any execution of the program is correct
» Guarantees full code coverage
» Also for concurrent programs

» Statically: Without running the program

10

Math!

11

Math!

(Board Games!)

11

Formal Verification

Define a mathematical model

12

Formal Verification

Define a mathematical model (e.g., separation logic)

12

Formal Verification

Define a mathematical model (e.g., separation logic)

P Like designing a board game!

AGES 14+

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!
Specify programs and expected results

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!
Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!
Specify programs and expected results (e.g., {True} sort v {w. sorted_of w v})

P Like a scenario in the board game!

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!

Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!

Carry out derivations

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!

Specify programs and expected results (e.g., {True} sort v {w. sorted_of w v})
P Like a scenario in the board game!

Carry out derivations

> Playing the board game, one rule at a time

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!

Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!

Carry out derivations
P> Playing the board game, one rule at a time

Adequacy

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!

Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!

Carry out derivations
P> Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v. ¢ v} then correct (e, p))

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!

Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!

Carry out derivations
P> Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v. ¢ v} then correct (e, p))

» Winning the board game ensures certain properties (such as correctness)

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!
Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!
Carry out derivations
P> Playing the board game, one rule at a time
Adequacy (e.g., if {True} e {v. ¢ v} then correct (e, p))
» Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

12

Formal Verification

Define a mathematical model (e.g., separation logic)
P Like designing a board game!
Specify programs and expected results (e.g., {True} sort vV {w. sorted_of w v})
P Like a scenario in the board game!
Carry out derivations
P> Playing the board game, one rule at a time
Adequacy (e.g., if {True} e {v. ¢ v} then correct (e, p))
» Winning the board game ensures certain properties (such as correctness)
Just create and play a board game!

» That ensures correctness of concurrent programs

12

Goal:

Board game

13

Goal:

Board game
that ensures correctness

13

Goal:
Board game
that ensures correctness
of concurrent programs

13

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)
» Like the theme of the board game

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
> Settle on concurrency mechanisms

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game

» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory
» Cooks collaborate on a shared dish

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game

» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory
» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish
P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

P It is common to combine multiple concurrency mechanisms

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

P It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

P It is common to combine multiple concurrency mechanisms
Then: Settle on the properties to guarantee
» Crash-freedom (safety)

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

P It is common to combine multiple concurrency mechanisms
Then: Settle on the properties to guarantee
» Crash-freedom (safety)

» Terminating programs produce the expected results (functional correctness)

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

» Like the theme of the board game
» Settle on concurrency mechanisms: Tools to describe collaboration
» Shared memory

» Cooks collaborate on a shared dish
P Cooks take turns adding to the shared dish

P> Message passing
> Cooks work separately on different parts of the dish
» Cooks send finished parts to head chef
» Head chef finishes the dish

P It is common to combine multiple concurrency mechanisms
Then: Settle on the properties to guarantee
» Crash-freedom (safety)
» Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Two existing solutions:
Session Types and Separation Logic

15

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer

» Playing and winning requires interactive help

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer
» Playing and winning requires interactive help

» Important to have simple rules

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer
» Playing and winning requires interactive help

» Important to have simple rules (like in chess)

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer
» Playing and winning requires interactive help

» Important to have simple rules (like in chess)

The Iris separation logic Ir(*s

Iris logo: https://iris-project.org/

16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer
» Playing and winning requires interactive help

» Important to have simple rules (like in chess)

The Iris separation logic Ir(*s
» Simple rules for shared memory, and other concurrency mechanisms

Iris logo: https://iris-project.org/ 16

https://iris-project.org/

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory
> Actively being researched since year 2000
» Pioneered by Peter O'hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

> Not automatically solvable by a computer
» Playing and winning requires interactive help

» Important to have simple rules (like in chess)

The Iris separation logic Ir(*s
» Simple rules for shared memory, and other concurrency mechanisms

» Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/ 16

https://iris-project.org/

Existing solution: Session types

Mathematical model for analysing message-passing programs

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

P Actively being researched since the 90s

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

» Problem: Does not generally guarantee functional correctness

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness

Less complicated board game

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness

Less complicated board game

> Automatically solvable by a computer

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda
Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness
Less complicated board game
> Automatically solvable by a computer

P Intuitive rules for message passing

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda
Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness
Less complicated board game
> Automatically solvable by a computer
P Intuitive rules for message passing

Many variants of session types exists

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda
Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness
Less complicated board game
> Automatically solvable by a computer
P Intuitive rules for message passing

Many variants of session types exists
> We consider: Binary session types

17

Existing solution: Session types

Mathematical model for analysing message-passing programs
P Actively being researched since the 90s
» Pioneered by Kohei Honda
Guarantees that programs are crash-free (and deadlock-free)
» Problem: Does not generally guarantee functional correctness
Less complicated board game
> Automatically solvable by a computer
P Intuitive rules for message passing

Many variants of session types exists
> We consider: Binary session types
» Binary: Communication is between two parties

17

Key idea:
Combine
@y O€Ssion Types and
we i) d€paration Logic

18

Key idea:
Combine
@y O€Ssion Types and
we i) d€paration Logic
to ensure correctness

18

Key idea:
Combine
@y O€Ssion Types and
we i) d€paration Logic
to ensure correctness
of concurrent programs

18

Key idea:
Combine
@y O€Ssion Types and
we i) d€paration Logic
to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

18

Contribution 1 of my Ph.D. thesis

Contribution 1:
Actris

19

Contribution 1 of my Ph.D. thesis

Contribution 1:
Actris: A separation logic

19

Contribution 1 of my Ph.D. thesis

Contribution 1:
Actris: A separation logic with a session type-based mechanism

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

19

Contribution 1 of my Ph.D. thesis

Contribution 1:
Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris

my work

Actris

Iris

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris

Session Types

Iris | Actris
X

v |/

Shared memory

my work

Actris

Iris

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris

Session Types | Iris | Actris
Shared memory X |V
. Other concurrency X v |/
c:; Actris
Iris

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with

other concurrency mechanisms
» Built on top of Iris

my work

Actris

Session Types | Iris | Actris
Shared memory X |V
Other concurrency X v v
Crash-freedom v |/

Iris

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring

correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris

Session Types | Iris | Actris
Shared memory X |V
. Other concurrency X v |/
: Actnis Crash-freedom v v |/
Iris Functional correctness | X a4

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring

correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris
Session Types | Iris | Actris

Shared memory

Other concurrency

my work

Actris Crash-freedom

Functional correctness

Iris

NN
NSNS
ANENENENEAN

Message passing

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris
Session Types | Iris | Actris

Shared memory

Other concurrency

Actris Crash-freedom

my work

Iris Functional correctness

Message passing

ANENE IR N IR
IR ENENENEN
L IENENANENEN

Deadlock-freedom

Contribution 1 of my Ph.D. thesis

Contribution 1:

my work

Actris: A separation logic with a session type-based mechanism for ensuring

correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris

Actris

Iris

Session Types

Iris

Actris

Shared memory

Other concurrency

Crash-freedom

Functional correctness

Message passing

Deadlock-freedom

Automatically solvable

NN N XN X >

IR IENENENEN

XIXININN NS

19

Problem:
Bugs and cheating in the board game

20

Problem: Bugs and cheating in the board game

Bugs and Cheating

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game
Bugs or cheating = All bets are off

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game
Bugs or cheating = All bets are off

» No guaranteed properties from winning

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game
Bugs or cheating = All bets are off

» No guaranteed properties from winning
These are complicated board games

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game
Bugs or cheating = All bets are off

» No guaranteed properties from winning
These are complicated board games

» Difficult to avoid bugs

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
» Bugs: Contradictory rules
» Like drawing infinite cards (or obtaining a paradox)

» Cheating: Not following the rules of the board game
Bugs or cheating = All bets are off

» No guaranteed properties from winning
These are complicated board games

» Difficult to avoid bugs

» Cheating can happen by accident

21

Solution:
Mechanisation!

22

Solution: Mechanisation!

Turning the board game

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!
> More restrictive design environment

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!
> More restrictive design environment = Less chance of contradictory rules

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!
> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)
» Like a very strict game engine

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!
> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)
» Like a very strict game engine
» Strict referee

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)
» Like a very strict game engine
» Strict referee
» No accidental cheating

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)
» Like a very strict game engine
» Strict referee
» No accidental cheating

Mechanisation takes time

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Solution: Mechanisation!

Turning the board game into a video game!

> More restrictive design environment = Less chance of contradictory rules
» Interactive theorem prover (Coq)
» Like a very strict game engine
» Strict referee
» No accidental cheating

Mechanisation takes time

» Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

23

https://ilyasergey.net/pnp/

Contribution 2 of my Ph.D. thesis

Contribution 2:
Full mechanisation of Actris on top of Iris in Coq

24

Contribution 2 of my Ph.D. thesis

Contribution 2:
Full mechanisation of Actris on top of Iris in Coq
> With verified program examples (e.g., a variant of the map-reduce algorithm)

24

Observation:
Ongoing effort on
mechanising Session Types

25

Problem:
No mechanisation of session type
systems that combine advanced features

26

Problem:
No mechanisation of session type
systems that combine advanced features

(That we know of)

26

Solution:
Semantic Typing

27

Solution:
Semantic Typmg

(Board game inception)

27

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

» Like Pacman in Factorio

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio

Defining a session type system within Actris

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio
Defining a session type system within Actris

» Using the session-type based mechanism to model session types

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio
Defining a session type system within Actris

» Using the session-type based mechanism to model session types

Semantic Session
Type System
Actris

Iris

Inherit the properties of Actris

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio
Defining a session type system within Actris

» Using the session-type based mechanism to model session types

Semantic Session
Type System
Actris

Iris

Inherit the properties of Actris

» The mechanisation of Actris

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio
Defining a session type system within Actris

» Using the session-type based mechanism to model session types

Semantic Session
Type System
Actris

Iris

Inherit the properties of Actris
» The mechanisation of Actris

» The session type-based features of Actris

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game
» Like Pacman in Factorio
Defining a session type system within Actris

» Using the session-type based mechanism to model session types

Semantic Session
Type System
Actris

Iris

Inherit the properties of Actris
» The mechanisation of Actris
» The session type-based features of Actris

» The other concurrency mechanisms of Iris

28

https://www.youtube.com/watch?v=_VR_b9YwqH8

Contribution 3 of my PhD thesis

Contribution 3:
Defining and mechanising a Semantic Session Type System on top of Actris on

top of Iris in Coq
Semantic Session
Type System
Actris

Iris

Cog|

29

Contribution 3 of my PhD thesis

Contribution 3:

Defining and mechanising a Semantic Session Type System on top of Actris on
top of Iris in Coq

» With verified program examples (e.g., a message-passing-based producer-consumer)

Semantic Session
Type System
Actris

Iris

(Cog|

29

Contributions of my PhD thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for
of that combine binary message passing with
other concurrency mechanisms

» Built on top of Iris
Contribution 2:
Full mechanisation of Actris in Coq
> With verified program examples (e.g., a variant of the map-reduce algorithm)
Contribution 3:
Defining and mechanising a Semantic Session Type System on top of Actris
> With verified program examples (e.g., a message-passing-based producer-consumer)

30

Publications

Actris: Session-Type Based Reasoning in Separation Logic
> ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL'20]

Actris: Session-Type Based R

Separation Logic

JONAS KASTBERG HINRICH:
JESPER BENGTSON, IT
ROBBERT KREBBERS,

31

Publications

Actris: Session-Type Based Reasoning in Separation Logic
> ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL'20]
Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

» Journal of Logical Methods in Computer Science [LMCS] (Conditionally accepted)

Actris: Session-Type Based Reasoning in Separation Logic

1 BASED REASONING

JONAS KASTBERG HINRI
JESPER BENGTSON, T Ui
ROBBERT KREBBERS, Do

ACIRIS 2.0: ASYNCHRONOUS SESSION-1
IN SEPARATION LO

ICHEEN, JESPER B2

31

Publications

Actris: Session-Type Based Reasoning in Separation Logic

> ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL'20]
Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

» Journal of Logical Methods in Computer Science [LMCS] (Conditionally accepted)
Machine-Checked Semantic Session Typing

P Certified Programs and Proofs Conference 2021 [CPP'21] (Distinguished Paper Award)

Actris: Session-Type Based R

Separation Logic Machine-Checked Semantic Session Typing

JONAS KASTBERG HINRICHSEN,
JESPER BENGTSON, IT
ROBBERT KREBBERS,

31

Actris and Actris 2.0

Papers: POPL'20 and LMCS
Thesis: Chapter 3
joint work with

Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University

32

Operational Semantics

Operational semantics: A mathematical model of a programming language

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions

» Higher-order mutable references

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency

veValu=()|i|b|l|recf x:=¢e]... (i€Z,beB,{cloc)
ecExpri=v|x|e(e)|ref(e)|le|e < e |fork {e}]...

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency

veValu=()|i|b|l|recf x:=¢e]... (i€Z,beB,{cloc)
ecExpri=v|x|e(e)|ref(e)|le|e < e |fork {e}]...

HeaplLang: Language shipped with Iris

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency

veValu=()|i|b|l|recf x:=¢e]... (i€Z,beB,{cloc)
ecExpri=v|x|e(e)|ref(e)|le|e < e |fork {e}]...

HeaplLang: Language shipped with Iris

» Includes many state-of-the-art features

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency
veValu=()|i|b|l|recf x:=¢e]... (i€Z,beB,{cloc)
ecExpri=v|x|e(e)|ref(e)|le|e < e |fork {e}]...

HeaplLang: Language shipped with Iris
» Includes many state-of-the-art features

» Integrated with the Iris separation logic

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

» Higher-order functions
» Higher-order mutable references

» Fork-based concurrency

veValu=()|i|b|l|recf x:=¢e]... (i€Z,beB,{cloc)
ecExpri=v|x|e(e)|ref(e)|le|e < e |fork {e}]...

HeaplLang: Language shipped with Iris
» Includes many state-of-the-art features
» Integrated with the Iris separation logic

» Already mechanised, with tactic support

33

Implementation of message-passing primitives

Extend HeaplLang with message passing

34

Implementation of message-passing primitives

Extend HeaplLang with message passing

P> As a straightforward implementation using lock-protected buffers

34

Implementation of message-passing primitives

Extend HeaplLang with message passing
P> As a straightforward implementation using lock-protected buffers
Message-passing primitives
new_chan (): Allocate channel and return two channel endpoints
send c v : Send the value v over the channel endpoint ¢

recv ¢ : Await and return the first value over channel endpoint ¢

34

Implementation of message-passing primitives

Extend HeaplLang with message passing
P> As a straightforward implementation using lock-protected buffers
Message-passing primitives
new_chan (): Allocate channel and return two channel endpoints
send c v : Send the value v over the channel endpoint ¢
recv ¢ : Await and return the first value over channel endpoint ¢
Example: 1let (c,c’) :=new_chan ()in

fork {let x := recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

34

Implementation of message-passing primitives

Extend HeaplLang with message passing
P> As a straightforward implementation using lock-protected buffers
Message-passing primitives
new_chan (): Allocate channel and return two channel endpoints
send c v : Send the value v over the channel endpoint ¢
recv ¢ : Await and return the first value over channel endpoint ¢
Example: 1let (c,c’) :=new_chan ()in

fork {let x := recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

34

Implementation of message-passing primitives

Extend HeaplLang with message passing
P> As a straightforward implementation using lock-protected buffers
Message-passing primitives
new_chan (): Allocate channel and return two channel endpoints
send c v : Send the value v over the channel endpoint ¢
recv ¢ : Await and return the first value over channel endpoint ¢
Example: 1let (c,c’) :=new_chan ()in

fork {let x := recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

Many variants of message passing exist
Ours is: binary, asynchronous, order-preserving and reliable
To simulate state-of-the-art message passing (like in the Go language)

34

Goal

Example program:

let (¢, c’) := new_chan () in
fork {let x := recv ¢’ insend ¢’ (x+2)};
send ¢ 40; recv ¢

// Service thread
// Client thread

35

Goal

Example program:

let (¢, c’) := new_chan () in
fork {let x := recv ¢’ insend ¢’ (x+2)};
send ¢ 40; recv ¢

Show that:
Program does not crash

Program is correct (returns 42)

// Service thread
// Client thread

35

Session types (recap)

Symbols

A:=Z|B|1]|
chan S| ...

36

Session types (recap)

Symbols
A:=Z|B|1|
chan S| ...
Su=1AS |
7A.S |
end |...

36

Session types (recap)

Symbols

Example

17.77.end

36

Session types (recap)

Symbols

Example

17.77.end

Duality
IA.S = 7A.5
7A.S = 1A.S
end = end

36

Session types (recap)

Symbols

Example

17.77.end

Duality
IA.S = ?7A.5
7A.S = 1A.S
end = end
Usage
c:chan S

36

Session types (recap)

Symbols

Example

17.77.end

Duality
IA.S = ?7A.5
7A.5 = 1A.S

end = end

Usage
c:chan §

Rules
new_chan : 1 —o chan S x chan S
send : (chan (!A.S) x A) —o chan S

recv: chan (?A.S) — (A X chan S)

36

Example program - via session types

Example program:

let (¢, c’) := new_chan () in
fork {let x := recv ¢ insend ¢’ (x +2)};
send ¢ 40; recv ¢

// Service thread
// Client thread

37

Example program - via session types

Example program:

let (¢, c’) := new_chan () in
fork {let x :=recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

Session types:
¢ : chan (1Z.7Z.end) and
¢’ : chan (?Z.!Z.end)

37

Example program - via session types

Example program:

let (¢, c’) := new_chan () in

fork {let x := recv ¢’ insend ¢’ (x + 2)};

send ¢ 40; recv ¢

Session types:
¢ : chan (1Z.?Z.end)
¢’ : chan (?Z.!Z.end)
Properties obtained:
o Program does not crash

Program is correct (returns 42)

// Client thread

and

// Service thread

37

Actris

38

Actris:
Dependent separation protocols

38

Actris:
Dependent separation protocols

(Like logical session types)

38

Dependent separation protocols - Definitions

Dependent separation protocols

7(v){P}.prot |
T (v){P}. prot |

Symbols | prot :=1Xx:
?X:

Session types

S:=1AS5
?A.S

end

39

Dependent separation protocols - Definitions

Symbols

Example

Dependent separation protocols

(v){P}. prot |

prot = 1X:7T
?x:7(v){P}. prot |

V(x:Z) (x){True}.?2(y:Z) (y){y = (x +2)}.end

Session types

S:=1AS5
?A.S

end

17.77.end

39

Dependent separation protocols - Definitions

Symbols

Example

Duality

Dependent separation protocols

(v){P}. prot

prot = 1X:7T
?x: 7 (v){P}. prot

V(x:Z) (x){True}.?2(y:Z) (y){y = (x +2)}.end

VX:7(v){P}. prot = ?x:7(v){P}. prot
(V{PY. prot = 1%:7 (v){P}. prot

end = end

7—_’
7__’

—

X

Session types

Su=1AS |
4.5 |

end |...
17.77.end
IA.S =?A.5
7A.S = IAS

end = end

39

Dependent separation protocols - Definitions

Symbols

Example

Duality

Usage

Dependent separation protocols

(v){P}. prot |

prot = 1X:7T
?x:7(v){P}. prot |

V(x:Z) (x){True}.?2(y:Z) (y){y = (x +2)}.end

VX:7(v){P}. prot = ?x:7(v){P}. prot
?x:7(v){P}.prot = 1x:7(v){P}. prot
end = end

¢ — prot

Session types

Su=1AS |
4.5 |

end |...

17.77.end
IA.S =7A.S
72A.S = 1A S

end = end

¢ :chan S

39

Dependent

New

separation protocols - Rules

Dependent separation protocols

Session types

{True}

new_chan ()

c,c’). c — prot x ¢’ — prot
{(

new chan:1-—ochan S X chan S

40

Dependent

New

Send

separation protocols - Rules

Dependent separation protocols

Session types

{True}

new_chan ()

c,c’). c — prot x ¢’ — prot
{(

{c— 1X:7 (v){P}. prot x Plt/x]}

send ¢ (v[t/x])
{c — prot[t/X]}

new chan:1-—ochan S X chan S

send : (chan (!A.S) x A) —o chan S

40

Dependent

New

Send

Recv

separation protocols - Rules

Dependent separation protocols

Session types

{True}

new_chan ()

c,c’). c — prot x ¢’ — prot
{(

{c— 1X:7 (v){P}. prot x Plt/x]}

send ¢ (v[t/x])
{c — prot[t/X]}

{c—2x:7 (v){P}. prot}
recv ¢

{w.3(y: 7). (w=v[y/x]) *

Ply/x] * c— prot[y/x]}

new chan:1-—ochan S X chan S

send : (chan (!A.S) x A) —o chan S

recv: chan (?A.S) — (Axchan 5)

40

Example program - via dependent separation protocols

Example program:

let (¢, c’) := new chan () in
fork {let x :=recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

41

Example program - via dependent separation protocols

Example program:
let (¢, c’) := new chan () in
fork {let x :=recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

Dependent separation protocols:

c— 1(x:2Z) (x){True}.?(y:Z) (y){y = (x + 2)}.end and
¢! — x:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}.end

41

Example program - via dependent separation protocols

Example program:

let (¢, c’) := new chan () in
fork {let x :=recv ¢’ insend ¢’ (x+2)}; // Service thread
send ¢ 40; recv ¢ // Client thread

Dependent separation protocols:

c— 1(x:2Z) (x){True}.?(y:Z) (y){y = (x + 2)}.end and
¢! — x:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}.end
Properties obtained:
I Program does not crash (safety)

VI Program is correct (returns 42)

41

Example program - References

Example program:

let (¢, c’) := new_chan () in
fork {let/ :=recv ¢'inl « (£ +2); send ¢’ ()};
let{:=ref 40insend c ¢; recvc; !/

// Service thread
// Client thread

42

Example program - References

Example program:

let (¢, c’) := new_chan () in
fork {let/:=recv ¢'inl «+ (!¢ +2); send ¢’ ()}; // Service thread
let/ :=ref 40insend c ¥; recv c; !/ // Client thread

Dependent separation protocols:

c— (l:Loc) (x:Z) (0){ — x}.2()){¢— (x+2)}.end and
¢/ — ?(l:Loc) (x:Z) (O){l — x}. V(W {¢— (x+2)}.end

42

Example program - References

Example program:

let (¢, c’) := new_chan () in
fork {let/:=recv ¢'inl «+ (!¢ +2); send ¢’ ()}; // Service thread
let/ :=ref 40insend c ¥; recv c; !/ // Client thread

—

[{True} ref v{l. L+ v} }

Dependent separation protocols:

c— (l:Loc) (x:Z) (0){ — x}.2()){¢— (x+2)}.end and
¢/ — ?(l:Loc) (x:Z) (O){l — x}. V(W {¢— (x+2)}.end

42

Example program - References

Example program:

let (¢, c’) := new_chan () in
fork {let/:=recv ¢'inl «+ (!¢ +2); send ¢’ ()}; // Service thread

let/ :=ref 40insend c ¥; recv c; !/ // Client thread
K\}
[{True}refv{ﬂ.EHv}} [{E'—)V}!K{W.W:VAK'—)V}}

Dependent separation protocols:

c— (l:Loc) (x:Z) (0){ — x}.2()){¢— (x+2)}.end and
¢/ — ?(l:Loc) (x:Z) (O){l — x}. V(W {¢— (x+2)}.end

42

Example program - References

Example program: E{K vl w{l— W}}

let (¢, c’) := new_chan () in
fork {let/:=recv ¢'inl < (!¢ +2); send ¢’ ()}; // Service thread

let/ :=ref 40insend c ¥; recv c; !/ // Client thread
K\}
[{True}refv{ﬂ.EHv}} [{E'—)V}!K{W.W:VAK'—)V}}

Dependent separation protocols:

c— (l:Loc) (x:Z) (0){ — x}.2()){¢— (x+2)}.end and
¢/ — ?(l:Loc) (x:Z) (O){l — x}. V(W {¢— (x+2)}.end

42

Example program - Recursion

Example program:

let (¢, c’) := new chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};
send ¢ 18; let x :=recv cin

send ¢ 20; lety :=recv cinx+y

// Service thread
// Client thread

43

Example program - Recursion

Example program:

let (¢, c’) := new chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; let x ;== recv cin // Client thread
send ¢ 20; lety :=recv cinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

43

Example program - Recursion

Example program:

let (¢, c’) := new chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; let x ;== recv cin // Client thread
send ¢ 20; lety :=recv cinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec
Proof:
» Client thread: follows immediately from Actris’s rules

> Service thread: follows immediately using Lob induction

43

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; let x := recv ¢ in
send ¢ 20; lety :(=recv cinx+y

// Service thread
// Client thread

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; let x := recv ¢ in
send ¢ 20; lety :=recvcinx+y

// Service thread
// Client thread

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; send ¢ 20;
letx:=recvcinlety:=recvcinx+y

// Service thread
// Client thread

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x :=recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; send ¢ 20; // Client thread
letx:=recvcinlety:=recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x :=recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; send ¢ 20; // Client thread
letx:=recvcinlety:=recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C)

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x :=recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; send ¢ 20; // Client thread
letx:=recvcinlety:=recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C) (Inspired by asynchronous session subtyping)

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x :=recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; send ¢ 20; // Client thread
letx:=recvcinlety:=recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C) (Inspired by asynchronous session subtyping):

prec. V(x:Z) (x){True}. ?2(y:Z) (y){y = (x +2)}. rec
C urec. ! (x:Z) (x){True}.?2(y:Z) (y){y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (¢, c’) := new_chan () in

fork {loop {let x :=recv ¢’ insend ¢’ (x+2)}}; // Service thread
send ¢ 18; send ¢ 20; // Client thread
letx:=recvcinlety:=recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec
Subprotocol relation (C) (Inspired by asynchronous session subtyping):

prec. V(x:Z) (x){True}. ?2(y: Z) (y){y = (x +2)}. rec

C 10a:2Z) (a){True}. 2(n:Z) (n){n = (a +2)}.
prec. V(x:Z) (x){True}. ?2(y:Z) (y){y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:
let (¢, c’) := new_chan () in
fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; send ¢ 20;
letx:=recvcinlety:=recvcinx+y

// Service thread
// Client thread

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C) (Inspired by asynchronous session subtyping):

prec.t (x:2) (x){True}. 2(y : Z) (y){y = (x + 2)}. rec
C 1(xa:Z) Ga){True}. 2(y1: Z) (){y1 = (xa +2)}-
H(x2:Z) (x2){True}. 2(y2: Z) (y2 ><{yz (x2 +2)}.

prec.{ (x: Z) (x){True}. 2(y: Z) (y){y = (x +2)}. rec
44

Example program - Subprotocols (Actris 2.0)

Example program:
let (¢, c’) := new_chan () in
fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; send ¢ 20;
letx:=recvcinlety:=recvcinx+y

// Service thread
// Client thread

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C) (Inspired by asynchronous session subtyping):

prec. V(x:Z) (x){True}. ?2(y:Z) (y){y = (x +2)}. rec
C 10a:Z) Ga){Truel. 7(y1: Z) (i){ys = (a +2) -
o Z2) () { True}. 2y2: Z) (y2){y2 = (2 + 2)}.

prec. ! (x:Z) (x){True}. ?2(y: Z) (y){y = (x + 2)}. rec
44

Example program - Subprotocols (Actris 2.0)

Example program:
let (¢, c’) := new_chan () in
fork {loop {let x := recv ¢’ insend ¢’ (x + 2)}};

send ¢ 18; send ¢ 20;
letx:=recvcinlety:=recvcinx+y

// Service thread
// Client thread

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}.rec and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

Subprotocol relation (C) (Inspired by asynchronous session subtyping):

x:Z) (x){True}. ?(y:Z) (y){y = (x +2)}. rec

prec. ! (
C 1(x1:Z) (xa){True}.! (x2:Z) (x0){ True}.
2y 2))y = Ga +2)1.2(y2: Z) (y2){y2 = (2 + 2)}-
prec. t (x: Z) (x){True}. 2(y: Z) (y){y = (x + 2)}. rec
44

Adequacy and implementation of Actris

45

Adequacy of Actris

If {True} e {v. v} is provable in Actris then:

V[Safety: e will not crash

¥/ Functional correctness: If e terminates with v, the postcondition © v holds

46

Implementation and model of Actris in Iris

Approach:

» Define the type of prot using the Iris recursive domain equation solver

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver

» Define operations and relations on prot, such as prot and prot; C prot,

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,

» Implement new_chan, send, and recv on top of HeaplLang

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,
» Implement new_chan, send, and recv on top of HeaplLang

» Define ¢ — prot using Iris’s invariants and ghost state mechanisms

47

Implementation and model of Actris in Iris

Approach:

>

>
>
>
>

Define the type of prot using the Iris recursive domain equation solver
Define operations and relations on prot, such as prot and prot; C prot,
Implement new_chan, send, and recv on top of HeaplLang

Define ¢ — prot using Iris’s invariants and ghost state mechanisms

Prove Actris's proof rules as lemmas in lIris

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,
» Implement new_chan, send, and recv on top of HeaplLang
» Define ¢ — prot using Iris’s invariants and ghost state mechanisms
» Prove Actris's proof rules as lemmas in Iris

Benefits:

VI Actris's adequacy result is a corollary of Iris's adequacy

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,
» Implement new_chan, send, and recv on top of HeaplLang
» Define ¢ — prot using Iris’s invariants and ghost state mechanisms
» Prove Actris's proof rules as lemmas in Iris

Benefits:
VI Actris's adequacy result is a corollary of Iris's adequacy

4 Readily integrates with other concurrency mechanisms in Iris

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,
» Implement new_chan, send, and recv on top of HeaplLang
» Define ¢ — prot using Iris’s invariants and ghost state mechanisms
» Prove Actris's proof rules as lemmas in Iris
Benefits:
VI Actris's adequacy result is a corollary of Iris's adequacy
4 Readily integrates with other concurrency mechanisms in Iris

¥ Can readily reuse Iris’s support for interactive proofs in Coq

47

Implementation and model of Actris in Iris

Approach:
» Define the type of prot using the Iris recursive domain equation solver
» Define operations and relations on prot, such as prot and prot; C prot,
» Implement new_chan, send, and recv on top of HeaplLang
» Define ¢ — prot using Iris’s invariants and ghost state mechanisms
» Prove Actris's proof rules as lemmas in Iris
Benefits:
VI Actris's adequacy result is a corollary of Iris's adequacy
4 Readily integrates with other concurrency mechanisms in Iris
¥ Can readily reuse Iris’s support for interactive proofs in Coq
¥/ Small Coq development (~5000 lines in total)

47

More on Actris

Features:
» Higher-order: sending function closures
» Delegation: sending channels over channels
» Branching: protocols with choice
> Integration with other concurrency mechanisms of Iris
Case Studies:
» Various channel-based merge sort variants
» Channel-based load-balancing mapper
» A variant of map-reduce
Model:
> Dependent separation protocols: prot
» Channel endpoint ownership: ¢ — prot
» Subprotocol relation: prot; C prot,
In the thesis and associated papers!

48

Semantic Session Typing
Paper: CPP’'21
Thesis: Chapter 4

joint work with

Daniél Louwrink, University of Amsterdam
Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University

49

Problem

No formal connection between dependent separation protocols and session types

» Protocols merely designed in the style of session types

50

Problem

No formal connection between dependent separation protocols and session types
» Protocols merely designed in the style of session types

Lack of expressivity of existing session type systems
» Polymorphism, recursion, and subtyping have been studied individually

> No session type system that combines all three

50

Problem

No formal connection between dependent separation protocols and session types
» Protocols merely designed in the style of session types
Lack of expressivity of existing session type systems
» Polymorphism, recursion, and subtyping have been studied individually
> No session type system that combines all three
Ongoing effort of mechanising adequacy proofs for session type systems
P> Results exist for simpler systems

P> None exist for more expressive systems

50

Key idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

» Types are defined as predicates over values: Z £ \w. w € Z

51

Key idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z

» Typing judgement are defined as safety-capturing evaluation: TFe: A

51

Key idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z
» Typing judgement are defined as safety-capturing evaluation: TFe: A

» Typing rules are proven as lemmas: Fi:Z

51

Key idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z
» Typing judgement are defined as safety-capturing evaluation: TFe: A

» Typing rules are proven as lemmas: Fi:Z ~ €7

51

Key idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z
» Typing judgement are defined as safety-capturing evaluation: TFe: A
» Typing rules are proven as lemmas: Fi:Z ~ €7

» Adequacy is inherited from underlying logic

51

Key idea
Semantic Typing using lris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z
» Typing judgement are defined as safety-capturing evaluation: TFe: A
» Typing rules are proven as lemmas: Fi:Z ~ €7
» Adequacy is inherited from underlying logic
Iris [lris project]
» Semantic type system for Heaplang
» Mechanised in Coq

51

Key idea

Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types are defined as predicates over values: Z £ \w. w € Z
» Typing judgement are defined as safety-capturing evaluation: TFe: A
» Typing rules are proven as lemmas: Fi:Z ~ €7
» Adequacy is inherited from underlying logic
Iris [lris project]
» Semantic type system for Heaplang
» Mechanised in Coq
Actris [Hinrichsen et al., POPL'20 |
> Dependent separation protocols: Session type-style logical protocols

» Mechanised in Coq

51

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

IA.S = 1(v:Val)(v){Av}. S chan S & \w.w — S
?A.S £ ?(v:Val)(v){AVv}.S
end £ end

52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

IA.S = 1(v:Val)(v){Av}. S chan S & \w.w — S
?A.S £ ?(v:Val)(v){AVv}.S
end £ end

Typing judgement is defined in terms of the Hoare triple

52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

IA.S = 1(v:Val)(v){Av}. S chan S & \w.w — S
?A.S £ ?(v:Val)(v){AVv}.S
end £ end

Typing judgement is defined in terms of the Hoare triple
Session typing rules are proven using the rules for dependent separation protocols

['F new chan () : chan S X chan S = T
M c:chan (!A.S),x:AFsendcx :1 3 Tl,c:chan S
[, c:chan (?A.S) F recv ¢ tA 4T,c:chan §

52

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

Ac. (recv ¢ || recv ¢) : chan (?Z.?Z.end) — (Z X Z)

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

F Ac. (recv ¢ || recv ¢) : chan (?Z.?Z.end) — (Z X Z)

X

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

E Ac. (recv ¢ || recv ¢) : chan (?Z.7Z.end) — (Z x Z)

v

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac. (recv ¢ || recv ¢) : chan (?Z.7Z.end) — (Z x Z)

The judgement is just another lemma

v

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac.(recv c || recv ¢) : chan (?Z.?Z.end) — (Z x Z)

The judgement is just another lemma provable by unfolding all type-level definitions
{(c — ?(v1 : Val) (vi){v1 € Z}.?(v2 : Val) (va){wv» € Z}.end)}
(recv c || recv ¢)
{v.3vi,va. (v = (vi,w)) x>(vi € Z) x>(v2 € Z)}

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac.(recv c || recv ¢) : chan (?Z.7Z.end) — (Z X Z) V

The judgement is just another lemma provable by unfolding all type-level definitions
{(c — ?(v1:Val) (vi){v1 € Z}.?(v2 : Val) (va){wv» € Z}.end)}
(recv c || recv ¢)
{v.3vi,va. (v = (vi,w)) x>(vi € Z) x>(v2 € Z)}

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac.(recv ¢ || recv ¢) : chan (?Z.7Z.end) — (Z x Z)

The judgement is just another lemma provable by unfolding all type-level definitions
{(c — ?(v1:Val) (vi){v1 € Z}.?(v2 : Val) (va){wv» € Z}.end)}
(recv c || recv ¢)
{v.3vi,va. (v = (vi,w)) x>(vi € Z) x>(v2 € Z)}

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac.(recv ¢ || recv ¢) : chan (?Z.7Z.end) — (Z x Z)

The judgement is just another lemma provable by unfolding all type-level definitions
{(c — ?(v1:Val) (vi){v1 € Z}.?(v2 : Val) (va){wv» € Z}.end)}
(recv c || recv ¢)
{v.3vi,va. (v = (vi,w)) x>(vi € Z) x>(v2 € Z)}

Using Iris’s ghost state machinery!

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:
E Ac.(recv ¢ || recv ¢) : chan (?Z.7Z.end) — (Z x Z)

The judgement is just another lemma provable by unfolding all type-level definitions
{(c — ?(v1:Val) (vi){v1 € Z}.?(v2 : Val) (va){wv» € Z}.end)}
(recv c || recv ¢)
{v.3vi,va. (v = (vi,w)) x>(vi € Z) x>(v2 € Z)}

USing Iris’s ghOSt state maChinery! Beyond the scope of this presentation

53

More on the semantic session type system

Features:
> Term and session type equi-recursion
> Term and session type polymorphism
» Term and (asynchronous) session type subtyping
» Unique and shared reference types, copyable types, lock types
> Integration of racy yet safe programs
Case Study:

P> Racy yet safe message-passing-based producer-consumer

In the thesis and associated paper!

54

Future work

55

Future work

Future Work

>

>

Multi-party communication via multi-party dependent separation protocols (based
on [Honda et al., POPL'08])

Deadlock and resource-leak-freedom (based on ongoing work by Jules Jacobs)

Proof automation via refinedC-style semantic refinement session types [Sammler
et al., PLDI'21 |

Specifications for TCP-based communication in distributed systems based on
dependent separation protocols

56

I (“Thank you"){ActrisKnowledge}.
prec. 7(q : Question) (q){AboutActris q}.
I (a: Answer) (a){Insightful q a}. rec

57

