
1

Sessions and Separation

Jonas Kastberg Hinrichsen, IT University of Copenhagen

Under supervision of
Jesper Bengtson, IT University of Copenhagen

Robbert Krebbers, Radboud University

11. June 2021
IT University of Copenhagen

2

Combining

Session Types with Separation Logic
to ensure correctness

of concurrent programs
(that use message passing with other concurrency mechanisms)

2

Combining
Session Types

with Separation Logic
to ensure correctness

of concurrent programs
(that use message passing with other concurrency mechanisms)

2

Combining
Session Types with Separation Logic

to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

2

Combining
Session Types with Separation Logic

to ensure correctness

of concurrent programs
(that use message passing with other concurrency mechanisms)

2

Combining
Session Types with Separation Logic

to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

2

Combining
Session Types with Separation Logic

to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

3

Key observation:
Concurrency is important

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms

I Within computers: Multi-core processors
I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

4

Key observation: Concurrency is important

Concurrency: Working together to complete a shared task

I A way of increasing productivity

Concurrency is everywhere

I Real world: Cooks in a kitchen

I Between computers: Server farms
I Within computers: Multi-core processors

I A core is like a cook

Concurrent programs: Instructions on how the cores should work together

5

Problem:
Concurrency is difficult

6

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

I Real world: “Too many cooks spoil the broth”

I Between computers: Miscommunication

I Within computers: Data races

6

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

I Real world: “Too many cooks spoil the broth”

I Between computers: Miscommunication

I Within computers: Data races

6

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

I Real world: “Too many cooks spoil the broth”

I Between computers: Miscommunication

I Within computers: Data races

6

Problem: Concurrency is difficult

Coordinating a concurrent effort is notoriously difficult

I Real world: “Too many cooks spoil the broth”

I Between computers: Miscommunication

I Within computers: Data races

9

Goal:
Ensure Correctness

of Concurrent Programs

(i.e., That they do not crash, and produce the expected results)

9

Goal:
Ensure Correctness

of Concurrent Programs
(i.e., That they do not crash, and produce the expected results)

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output

I Problem: Hard to guarantee full code coverage
I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs

: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3

I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification

I Prove that any execution of the program is correct
I Guarantees full code coverage

I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage

I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

10

Goal: Ensure Correctness of Concurrent Programs

Program testing

I Running the program with various input, and checking the output
I Problem: Hard to guarantee full code coverage

I Especially for concurrent programs: Execution order can change

I One chef adds soy sauce, then another salts to taste �3
I One chef salts to taste, then another adds soy sauce �7

Formal verification
I Prove that any execution of the program is correct

I Guarantees full code coverage
I Also for concurrent programs

I Statically: Without running the program

11

Math!

(Board Games!)

11

Math!
(Board Games!)

12

Formal Verification

Define a mathematical model

(e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results

(e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})

I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy

(e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

12

Formal Verification

Define a mathematical model (e.g., separation logic)

I Like designing a board game!

Specify programs and expected results (e.g., {True} sort ~v {~w . sorted of ~w ~v})
I Like a scenario in the board game!

Carry out derivations

I Playing the board game, one rule at a time

Adequacy (e.g., if {True} e {v . ϕ v} then correct (e, ϕ))

I Winning the board game ensures certain properties (such as correctness)

Just create and play a board game!

I That ensures correctness of concurrent programs

13

Goal:
Board game

that ensures correctness
of concurrent programs

13

Goal:
Board game

that ensures correctness

of concurrent programs

13

Goal:
Board game

that ensures correctness
of concurrent programs

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify

(Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game

I Settle on concurrency mechanisms: Tools to describe collaboration
I Shared memory

I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms

: Tools to describe collaboration
I Shared memory

I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory

I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish

I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing

I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish

I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef

I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

14

Goal: Board game that ensures correctness of concurrent programs

First: Settle on the programming language to verify (Syntax and semantics)

I Like the theme of the board game
I Settle on concurrency mechanisms: Tools to describe collaboration

I Shared memory
I Cooks collaborate on a shared dish
I Cooks take turns adding to the shared dish

I Message passing
I Cooks work separately on different parts of the dish
I Cooks send finished parts to head chef
I Head chef finishes the dish

I It is common to combine multiple concurrency mechanisms

Then: Settle on the properties to guarantee

I Crash-freedom (safety)

I Terminating programs produce the expected results (functional correctness)

Finally: Settle on the rules, and prove adequacy

15

Two existing solutions:
Session Types and Separation Logic

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness

Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules

(like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

16

Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists

I We consider: Binary session types
I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

17

Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties

18

Key idea:
Combine

(Binary) Session Types and
(the Iris) Separation Logic

to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)

18

Key idea:
Combine

(Binary) Session Types and
(the Iris) Separation Logic
to ensure correctness

of concurrent programs
(that use message passing with other concurrency mechanisms)

18

Key idea:
Combine

(Binary) Session Types and
(the Iris) Separation Logic
to ensure correctness

of concurrent programs

(that use message passing with other concurrency mechanisms)

18

Key idea:
Combine

(Binary) Session Types and
(the Iris) Separation Logic
to ensure correctness

of concurrent programs
(that use message passing with other concurrency mechanisms)

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris

: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic

with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism

for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness

of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs

that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms

I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

19

Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7

20

Problem:
Bugs and cheating in the board game

21

Problem: Bugs and cheating in the board game

Bugs and Cheating

I Bugs: Contradictory rules
I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards

(or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

21

Problem: Bugs and cheating in the board game

Bugs and Cheating
I Bugs: Contradictory rules

I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident

22

Solution:
Mechanisation!

23

Solution: Mechanisation!

Turning the board game

into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!

I More restrictive design environment = Less chance of contradictory rules
I Interactive theorem prover (Coq)

I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment

= Less chance of contradictory rules
I Interactive theorem prover (Coq)

I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover

(Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)

I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee

I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

23

Solution: Mechanisation!

Turning the board game into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/

https://ilyasergey.net/pnp/

24

Contribution 2 of my Ph.D. thesis

Contribution 2:

Full mechanisation of Actris on top of Iris in Coq

I With verified program examples (e.g., a variant of the map-reduce algorithm)

24

Contribution 2 of my Ph.D. thesis

Contribution 2:

Full mechanisation of Actris on top of Iris in Coq
I With verified program examples (e.g., a variant of the map-reduce algorithm)

25

Observation:
Ongoing effort on

mechanising Session Types

26

Problem:
No mechanisation of session type

systems that combine advanced features

(That we know of)

26

Problem:
No mechanisation of session type

systems that combine advanced features
(That we know of)

27

Solution:
Semantic Typing

(Board game inception)

27

Solution:
Semantic Typing

(Board game inception)

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

28

Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8

https://www.youtube.com/watch?v=_VR_b9YwqH8

29

Contribution 3 of my PhD thesis

Contribution 3:

Defining and mechanising a Semantic Session Type System on top of Actris on
top of Iris in Coq

I With verified program examples (e.g., a message-passing-based producer-consumer)

29

Contribution 3 of my PhD thesis

Contribution 3:

Defining and mechanising a Semantic Session Type System on top of Actris on
top of Iris in Coq
I With verified program examples (e.g., a message-passing-based producer-consumer)

30

Contributions of my PhD thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Contribution 2:

Full mechanisation of Actris in Coq
I With verified program examples (e.g., a variant of the map-reduce algorithm)

Contribution 3:

Defining and mechanising a Semantic Session Type System on top of Actris
I With verified program examples (e.g., a message-passing-based producer-consumer)

31

Publications

Actris: Session-Type Based Reasoning in Separation Logic

I ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL’20]

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

I Journal of Logical Methods in Computer Science [LMCS] (Conditionally accepted)

Machine-Checked Semantic Session Typing

I Certified Programs and Proofs Conference 2021 [CPP’21] (Distinguished Paper Award)

31

Publications

Actris: Session-Type Based Reasoning in Separation Logic

I ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL’20]

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

I Journal of Logical Methods in Computer Science [LMCS] (Conditionally accepted)

Machine-Checked Semantic Session Typing

I Certified Programs and Proofs Conference 2021 [CPP’21] (Distinguished Paper Award)

31

Publications

Actris: Session-Type Based Reasoning in Separation Logic

I ACM SIGPLAN Symposium on Principles of Programming Languages 2020 [POPL’20]

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

I Journal of Logical Methods in Computer Science [LMCS] (Conditionally accepted)

Machine-Checked Semantic Session Typing

I Certified Programs and Proofs Conference 2021 [CPP’21] (Distinguished Paper Award)

32

Actris and Actris 2.0
Papers: POPL’20 and LMCS

Thesis: Chapter 3

joint work with

Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University

33

Operational Semantics

Operational semantics: A mathematical model of a programming language

Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language

with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

33

Operational Semantics

Operational semantics: A mathematical model of a programming language
Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

34

Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)

35

Goal

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Show that:

Program does not crash

Program is correct (returns 42)

35

Goal

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Show that:

Program does not crash

Program is correct (returns 42)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A.S |
?A.S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A.S)((A× chan S)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A.S)((A× chan S)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A.S)((A× chan S)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A.S)((A× chan S)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A.S)((A× chan S)

36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1(chan S × chan S

send : (chan (!A.S)× A)(chan S

recv : chan (?A. S)((A× chan S)

37

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

37

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

37

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)

38

Actris

:
Dependent separation protocols

(Like logical session types)

38

Actris:
Dependent separation protocols

(Like logical session types)

38

Actris:
Dependent separation protocols

(Like logical session types)

39

Dependent separation protocols - Definitions

Dependent separation protocols Session types

Symbols prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

Usage c � prot c : chan S

39

Dependent separation protocols - Definitions

Dependent separation protocols Session types

Symbols prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

Usage c � prot c : chan S

39

Dependent separation protocols - Definitions

Dependent separation protocols Session types

Symbols prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A. S = ?A.S
?A. S = !A.S
end = end

Usage c � prot c : chan S

39

Dependent separation protocols - Definitions

Dependent separation protocols Session types

Symbols prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A. S = ?A.S
?A. S = !A.S
end = end

Usage c � prot c : chan S

40

Dependent separation protocols - Rules

Dependent separation protocols Session types

New
{True}
new chan (){

(c , c ′). c � prot ∗ c ′� prot
} new chan : 1(chan S × chan S

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} send : (chan (!A.S)×A)(chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗
P[~y/~x] ∗ c�prot[~y/~x]}

recv : chan (?A. S)((A×chan S)

40

Dependent separation protocols - Rules

Dependent separation protocols Session types

New
{True}
new chan (){

(c , c ′). c � prot ∗ c ′� prot
} new chan : 1(chan S × chan S

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} send : (chan (!A. S)×A)(chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗
P[~y/~x] ∗ c�prot[~y/~x]}

recv : chan (?A. S)((A×chan S)

40

Dependent separation protocols - Rules

Dependent separation protocols Session types

New
{True}
new chan (){

(c , c ′). c � prot ∗ c ′� prot
} new chan : 1(chan S × chan S

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x]

}
send c (v [~t/~x]){
c � prot[~t/~x]

} send : (chan (!A. S)×A)(chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c
{w . ∃(~y : ~τ). (w =v [~y/~x]) ∗

P[~y/~x] ∗ c�prot[~y/~x]}

recv : chan (?A. S)((A×chan S)

41

Example program - via dependent separation protocols

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash (safety)

�3 Program is correct (returns 42)

41

Example program - via dependent separation protocols

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash (safety)

�3 Program is correct (returns 42)

41

Example program - via dependent separation protocols

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash (safety)

�3 Program is correct (returns 42)

42

Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v} {` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end

42

Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v} {` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end

42

Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v}

{` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end

42

Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v} {` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end

42

Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v} {` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end

43

Example program - Recursion

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Proof:

I Client thread: follows immediately from Actris’s rules

I Service thread: follows immediately using Löb induction

43

Example program - Recursion

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Proof:

I Client thread: follows immediately from Actris’s rules

I Service thread: follows immediately using Löb induction

43

Example program - Recursion

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Proof:

I Client thread: follows immediately from Actris’s rules

I Service thread: follows immediately using Löb induction

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping)

:

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v ! (x1 :Z) 〈x1〉{True}. ?(y1 :Z) 〈y1〉{y1 = (x1 + 2)}.

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v ! (x1 :Z) 〈x1〉{True}. ?(y1 :Z) 〈y1〉{y1 = (x1 + 2)}.

! (x2 :Z) 〈x2〉{True}. ?(y2 :Z) 〈y2〉{y2 = (x2 + 2)}.
µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v ! (x1 :Z) 〈x1〉{True}. ?(y1 :Z) 〈y1〉{y1 = (x1 + 2)}.

! (x2 :Z) 〈x2〉{True}. ?(y2 :Z) 〈y2〉{y2 = (x2 + 2)}.
µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; send c 20; // Client thread
let x := recv c in let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v) (Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v ! (x1 :Z) 〈x1〉{True}. ! (x2 :Z) 〈x2〉{True}.

?(y1 :Z) 〈y1〉{y1 = (x1 + 2)}. ?(y2 :Z) 〈y2〉{y2 = (x2 + 2)}.
µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec

45

Adequacy and implementation of Actris

46

Adequacy of Actris

If {True} e {v . ϕ v} is provable in Actris then:

�3 Safety: e will not crash

�3 Functional correctness: If e terminates with v , the postcondition ϕ v holds

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2

I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

47

Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)

48

More on Actris

Features:

I Higher-order: sending function closures

I Delegation: sending channels over channels

I Branching: protocols with choice

I Integration with other concurrency mechanisms of Iris

Case Studies:

I Various channel-based merge sort variants

I Channel-based load-balancing mapper

I A variant of map-reduce

Model:

I Dependent separation protocols: prot

I Channel endpoint ownership: c � prot

I Subprotocol relation: prot1 v prot2
In the thesis and associated papers!

49

Semantic Session Typing
Paper: CPP’21

Thesis: Chapter 4

joint work with

Daniël Louwrink, University of Amsterdam
Jesper Bengtson, IT University of Copenhagen

Robbert Krebbers, Radboud University

50

Problem

No formal connection between dependent separation protocols and session types

I Protocols merely designed in the style of session types

Lack of expressivity of existing session type systems

I Polymorphism, recursion, and subtyping have been studied individually

I No session type system that combines all three

Ongoing effort of mechanising adequacy proofs for session type systems

I Results exist for simpler systems

I None exist for more expressive systems

50

Problem

No formal connection between dependent separation protocols and session types

I Protocols merely designed in the style of session types

Lack of expressivity of existing session type systems

I Polymorphism, recursion, and subtyping have been studied individually

I No session type system that combines all three

Ongoing effort of mechanising adequacy proofs for session type systems

I Results exist for simpler systems

I None exist for more expressive systems

50

Problem

No formal connection between dependent separation protocols and session types

I Protocols merely designed in the style of session types

Lack of expressivity of existing session type systems

I Polymorphism, recursion, and subtyping have been studied individually

I No session type system that combines all three

Ongoing effort of mechanising adequacy proofs for session type systems

I Results exist for simpler systems

I None exist for more expressive systems

51

Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z

I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z

 i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z

I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing using Iris

and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

51

Key idea

Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z
I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq

52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple
Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A.S) � recv c : A �Γ, c : chan S

52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple

Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A.S) � recv c : A �Γ, c : chan S

52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple
Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A. S) � recv c : A �Γ, c : chan S

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

`

λc . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

7

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

` λc . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 7

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma

provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery!

Beyond the scope of this presentation

53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

� λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z) 3

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation

54

More on the semantic session type system

Features:

I Term and session type equi-recursion

I Term and session type polymorphism

I Term and (asynchronous) session type subtyping

I Unique and shared reference types, copyable types, lock types

I Integration of racy yet safe programs

Case Study:

I Racy yet safe message-passing-based producer-consumer

In the thesis and associated paper!

55

Future work

56

Future work

Future Work

I Multi-party communication via multi-party dependent separation protocols (based
on [Honda et al., POPL’08])

I Deadlock and resource-leak-freedom (based on ongoing work by Jules Jacobs)

I Proof automation via refinedC-style semantic refinement session types [Sammler
et al., PLDI’21]

I Specifications for TCP-based communication in distributed systems based on
dependent separation protocols

57

! 〈“Thank you”〉{ActrisKnowledge}.
µrec. ?(q : Question) 〈q〉{AboutActris q}.

! (a : Answer) 〈a〉{Insightful q a}. rec

