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Session Types and Separation Logic
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Existing solution: Separation Logic

Mathematical model for analysing programs with shared memory

I Actively being researched since year 2000

I Pioneered by Peter O’hearn and John C. Reynolds

Guarantees crash-freedom and functional correctness
Complicated board game

I Not automatically solvable by a computer

I Playing and winning requires interactive help

I Important to have simple rules (like in chess)

The Iris separation logic

I Simple rules for shared memory, and other concurrency mechanisms

I Problem: Lack of simple rules for message passing

Iris logo: https://iris-project.org/

https://iris-project.org/
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Existing solution: Session types

Mathematical model for analysing message-passing programs

I Actively being researched since the 90s

I Pioneered by Kohei Honda

Guarantees that programs are crash-free (and deadlock-free)

I Problem: Does not generally guarantee functional correctness

Less complicated board game

I Automatically solvable by a computer

I Intuitive rules for message passing

Many variants of session types exists
I We consider: Binary session types

I Binary: Communication is between two parties
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Key idea:
Combine

(Binary) Session Types and
(the Iris) Separation Logic

to ensure correctness
of concurrent programs

(that use message passing with other concurrency mechanisms)
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Contribution 1 of my Ph.D. thesis

Contribution 1:

Actris

: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Session Types Iris Actris
Shared memory 7 3 3

Other concurrency 7 3 3

Crash-freedom 3 3 3

Functional correctness 7 3 3

Message passing 3 7 3

Deadlock-freedom 3 7 7

Automatically solvable 3 7 7
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Bugs and Cheating

I Bugs: Contradictory rules
I Like drawing infinite cards (or obtaining a paradox)

I Cheating: Not following the rules of the board game

Bugs or cheating = All bets are off

I No guaranteed properties from winning

These are complicated board games

I Difficult to avoid bugs

I Cheating can happen by accident
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Solution: Mechanisation!

Turning the board game

into a video game!
I More restrictive design environment = Less chance of contradictory rules

I Interactive theorem prover (Coq)
I Like a very strict game engine

I Strict referee
I No accidental cheating

Mechanisation takes time

I Iris has already been fully mechanised in Coq

Coq image: https://ilyasergey.net/pnp/
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Full mechanisation of Actris on top of Iris in Coq

I With verified program examples (e.g., a variant of the map-reduce algorithm)
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Observation:
Ongoing effort on

mechanising Session Types
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Solution: Semantic Typing (Board game inception)

Playing a board game inside another board game

I Like Pacman in Factorio

Defining a session type system within Actris

I Using the session-type based mechanism to model session types

Inherit the properties of Actris

I The mechanisation of Actris

I The session type-based features of Actris

I The other concurrency mechanisms of Iris

Pacman image: https://www.youtube.com/watch?v=_VR_b9YwqH8
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Defining and mechanising a Semantic Session Type System on top of Actris on
top of Iris in Coq

I With verified program examples (e.g., a message-passing-based producer-consumer)
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Contributions of my PhD thesis

Contribution 1:

Actris: A separation logic with a session type-based mechanism for ensuring
correctness of concurrent programs that combine binary message passing with
other concurrency mechanisms
I Built on top of Iris

Contribution 2:

Full mechanisation of Actris in Coq
I With verified program examples (e.g., a variant of the map-reduce algorithm)

Contribution 3:

Defining and mechanising a Semantic Session Type System on top of Actris
I With verified program examples (e.g., a message-passing-based producer-consumer)
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Thesis: Chapter 3
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Jesper Bengtson, IT University of Copenhagen
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Operational Semantics

Operational semantics: A mathematical model of a programming language

Programming Language: Representative language with

I Higher-order functions

I Higher-order mutable references

I Fork-based concurrency

v ∈ Val ::= () | i | b | ` | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc)

e ∈ Expr ::= v | x | e1(e2) | ref (e) | ! e | e1 ← e2 | fork {e} | . . .

HeapLang: Language shipped with Iris

I Includes many state-of-the-art features

I Integrated with the Iris separation logic

I Already mechanised, with tactic support
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Implementation of message-passing primitives

Extend HeapLang with message passing

I As a straightforward implementation using lock-protected buffers

Message-passing primitives

new chan (): Allocate channel and return two channel endpoints

send c v : Send the value v over the channel endpoint c

recv c : Await and return the first value over channel endpoint c

Example: let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Many variants of message passing exist

Ours is: binary, asynchronous, order-preserving and reliable

To simulate state-of-the-art message passing (like in the Go language)
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Goal

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Show that:

Program does not crash

Program is correct (returns 42)
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Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A.S |
?A.S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A.S)( (A× chan S)



36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A.S)( (A× chan S)



36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A.S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A.S)( (A× chan S)



36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A.S)( (A× chan S)



36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A.S)( (A× chan S)



36

Session types (recap)

Symbols

A ::= Z | B | 1 |
chan S | . . .

S ::= !A. S |
?A. S |
end | . . .

Example

!Z. ?Z. end

Duality

!A.S = ?A. S
?A.S = !A. S
end = end

Usage

c : chan S

Rules

new chan : 1( chan S × chan S

send : (chan (!A.S)× A)( chan S

recv : chan (?A. S)( (A× chan S)



37

Example program - via session types

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Session types:
c : chan (!Z. ?Z. end) and

c ′ : chan (?Z. !Z. end)

Properties obtained:

�3 Program does not crash

�7 Program is correct (returns 42)
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:
Dependent separation protocols

(Like logical session types)
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Dependent separation protocols - Definitions

Dependent separation protocols Session types

Symbols prot ::= ! ~x :~τ 〈v〉{P}. prot |
?~x :~τ 〈v〉{P}. prot |
end

S ::= !A. S |
?A.S |
end | . . .

Example ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end !Z. ?Z. end

Duality ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot
?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

!A.S = ?A.S
?A. S = !A.S
end = end

Usage c � prot c : chan S
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Dependent separation protocols - Rules

Dependent separation protocols Session types

New
{True}
new chan (){

(c , c ′). c � prot ∗ c ′� prot
} new chan : 1( chan S × chan S

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x ]

}
send c (v [~t/~x ]){
c � prot[~t/~x ]

} send : (chan (!A.S)×A)( chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c

{w . ∃(~y : ~τ). (w =v [~y/~x ]) ∗
P[~y/~x ] ∗ c�prot[~y/~x ]}

recv : chan (?A. S)( (A×chan S)
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} new chan : 1( chan S × chan S

Send

{
c � ! ~x :~τ 〈v〉{P}. prot ∗ P[~t/~x ]

}
send c (v [~t/~x ]){
c � prot[~t/~x ]

} send : (chan (!A. S)×A)( chan S

Recv
{c�?~x :~τ 〈v〉{P}. prot}
recv c
{w . ∃(~y : ~τ). (w =v [~y/~x ]) ∗

P[~y/~x ] ∗ c�prot[~y/~x ]}

recv : chan (?A. S)( (A×chan S)
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Example program - via dependent separation protocols

Example program:

let (c , c ′) := new chan () in
fork {let x := recv c ′ in send c ′ (x + 2)} ; // Service thread
send c 40; recv c // Client thread

Dependent separation protocols:

c � ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. end and

c ′� ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. end

Properties obtained:

�3 Program does not crash (safety)

�3 Program is correct (returns 42)
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Example program - References

Example program:

let (c , c ′) := new chan () in
fork {let ` := recv c ′ in `← (! `+ 2); send c ′ ()} ; // Service thread
let ` := ref 40 in send c `; recv c ; ! ` // Client thread

{True} ref v {`. ` 7→ v} {` 7→ v} ! ` {w .w = v ∧ ` 7→ v}

{` 7→ v} `← w {` 7→ w}

Dependent separation protocols:

c � ! (` :Loc) (x :Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x + 2)}. end and

c ′� ?(` :Loc) (x :Z) 〈`〉{` 7→ x}. ! 〈()〉{` 7→ (x + 2)}. end
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Example program - Recursion

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Proof:

I Client thread: follows immediately from Actris’s rules

I Service thread: follows immediately using Löb induction
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44

Example program - Subprotocols (Actris 2.0)

Example program:

let (c , c ′) := new chan () in
fork {loop {let x := recv c ′ in send c ′ (x + 2)}} ; // Service thread
send c 18; let x := recv c in // Client thread
send c 20; let y := recv c in x + y

Dependent separation protocols:

c � µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec and

c ′� µrec . ?(x :Z) 〈x〉{True}. ! (y :Z) 〈y〉{y = (x + 2)}. rec

Subprotocol relation (v)

(Inspired by asynchronous session subtyping):

µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
v µrec . ! (x :Z) 〈x〉{True}. ?(y :Z) 〈y〉{y = (x + 2)}. rec
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Adequacy and implementation of Actris
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Adequacy of Actris

If {True} e {v . ϕ v} is provable in Actris then:

�3 Safety: e will not crash

�3 Functional correctness: If e terminates with v , the postcondition ϕ v holds
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Implementation and model of Actris in Iris

Approach:

I Define the type of prot using the Iris recursive domain equation solver

I Define operations and relations on prot, such as prot and prot1 v prot2
I Implement new chan, send, and recv on top of HeapLang

I Define c � prot using Iris’s invariants and ghost state mechanisms

I Prove Actris’s proof rules as lemmas in Iris

Benefits:

�3 Actris’s adequacy result is a corollary of Iris’s adequacy

�3 Readily integrates with other concurrency mechanisms in Iris

�3 Can readily reuse Iris’s support for interactive proofs in Coq

�3 Small Coq development (∼5000 lines in total)
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More on Actris

Features:

I Higher-order: sending function closures

I Delegation: sending channels over channels

I Branching: protocols with choice

I Integration with other concurrency mechanisms of Iris

Case Studies:

I Various channel-based merge sort variants

I Channel-based load-balancing mapper

I A variant of map-reduce

Model:

I Dependent separation protocols: prot

I Channel endpoint ownership: c � prot

I Subprotocol relation: prot1 v prot2
In the thesis and associated papers!
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Problem

No formal connection between dependent separation protocols and session types

I Protocols merely designed in the style of session types

Lack of expressivity of existing session type systems

I Polymorphism, recursion, and subtyping have been studied individually

I No session type system that combines all three

Ongoing effort of mechanising adequacy proofs for session type systems

I Results exist for simpler systems

I None exist for more expressive systems
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Key idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Types are defined as predicates over values: Z , λw .w ∈ Z

I Typing judgement are defined as safety-capturing evaluation: Γ � e : A

I Typing rules are proven as lemmas: � i : Z  i ∈ Z
I Adequacy is inherited from underlying logic

Iris [Iris project]

I Semantic type system for HeapLang

I Mechanised in Coq

Actris [ Hinrichsen et al., POPL’20 ]

I Dependent separation protocols: Session type-style logical protocols

I Mechanised in Coq
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Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple
Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A.S) � recv c : A �Γ, c : chan S



52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple

Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A.S) � recv c : A �Γ, c : chan S



52

Semantic Session Types

Semantic session types are defined as dependent separation protocols:

!A.S , ! (v : Val) 〈v〉{Av}.S
?A.S , ?(v : Val) 〈v〉{Av}. S
end , end

chan S , λw .w � S

Typing judgement is defined in terms of the Hoare triple
Session typing rules are proven using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, c : chan (!A.S), x :A � send c x : 1 �Γ, c : chan S

Γ, c : chan (?A. S) � recv c : A �Γ, c : chan S



53

Manual typing proofs of racy yet safe programs

Consider the following program and typing judgement:

`

λc . (recv c || recv c) : chan (?Z. ?Z. end)( (Z× Z)

7

The judgement is just another lemma provable by unfolding all type-level definitions

{(c � ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end)}
(recv c || recv c)

{v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

Using Iris’s ghost state machinery! Beyond the scope of this presentation
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More on the semantic session type system

Features:

I Term and session type equi-recursion

I Term and session type polymorphism

I Term and (asynchronous) session type subtyping

I Unique and shared reference types, copyable types, lock types

I Integration of racy yet safe programs

Case Study:

I Racy yet safe message-passing-based producer-consumer

In the thesis and associated paper!
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Future work
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Future work

Future Work

I Multi-party communication via multi-party dependent separation protocols (based
on [ Honda et al., POPL’08 ])

I Deadlock and resource-leak-freedom (based on ongoing work by Jules Jacobs)

I Proof automation via refinedC-style semantic refinement session types [ Sammler
et al., PLDI’21 ]

I Specifications for TCP-based communication in distributed systems based on
dependent separation protocols
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! 〈“Thank you”〉{ActrisKnowledge}.
µrec. ?(q : Question) 〈q〉{AboutActris q}.

! (a : Answer) 〈a〉{Insightful q a}. rec


