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The actor model and message passing

Principled way of writing concurrent programs
» Isolation of concurrent behaviour
P> Threads as services and clients
» Used in Erlang, Elixir, Go, Java, Scala, F# and C#

Message passing primitives
new_chan (), send c v, recv ¢
Example: let(c,c’) = new chan () in
fork {let x = recv ¢’ insend ¢’ (x +2)};
send ¢ 40; recv ¢
Many variants of message passing exist

We consider: asynchronous, order-preserving and reliable
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Problem

Message passing is not a silver bullet for concurrency

“We studied 15 large, mature, and actively maintained actor programs written in
Scala and found that 80% of them mix the actor model with another concurrency
model.” [ Tasharofi et al., ECOOP'13 |

Problem: No existing solution for dependent high-level actor-based reasoning in
combination with existing concurrency models for functional correctness

> Dependent: dependency on previously communicated messages

» High-level: communication of references, channels and higher-order functions
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Key ldea

Protocols akin to session types for reasoning in lIris’s concurrent separation logic

Session types [ Honda et al., ESOP'98 |
» Type system for channel endpoints
» Example: 1Z.?7.end

» Ensures safety and session fidelity

Iris’s concurrent separation logic [ Jung et al., POPL'15 |
> Logic for reasoning about concurrent programs with mutable state
» Example: {{— v}l w{l+— w}
» Supports high-level concurrency reasoning mechanisms

» Ensures functional correctness



Contributions

Actris: A concurrent separation logic for proving functional correctness of programs
that combine message passing with other programming and concurrency paradigms

» Introducing dependent separation protocols
» Integration with Iris and its existing concurrency mechanisms
> Verification of feature-heavy programs including a variant of map-reduce

» Full mechanization in Coq (https://gitlab.mpi-sws.org/iris/actris/)


https://gitlab.mpi-sws.org/iris/actris/

Features of dependent separation protocols

Specification and proof system for message passing that allows
> Resources: sending references

Higher-order: sending function closures

Delegation: sending channels over channels

Dependent: dependency on previous messages

Recursion: looping protocols

Choice: diverging protocols

Manifest sharing: concurrent sharing of channel endpoints
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Subprotocols: weakening mechanism for added flexibility
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Tour of Actris - Goal

Language: ML-like language extended with concurrency, state and message passing

ecExpri=v|x|recf x=ce|ei(e) ]| fork {e} |ref (e)|le| e+ e |
new chan () | send e; ey |recve]|...
Example program:
let (¢, c’) = new_chan () in
fork {let x = recv ¢’ insend ¢’ (x +2)};

send ¢ 40; recv ¢

Goal: prove that returned value is 42



Session types

Symbols

Su=1A.S |
?A.S |

end ...

Example

17.77Z. end

Duality

IA.S = ?A.S
7A.S = 1A.S

end = end

Usage
c:chan S

Rules
new_chan () : chan S x chan S
send : (chan (!A.S) X A) —o chan S

recv: chan (?A.S) — (A x chan §)

10
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Tour of Actris - Type checked

Example program:

let (¢, c’) = new_chan () in
fork {let x = recv ¢’ insend ¢’ (x +2)};
send ¢ 40; recv c

Session types:
¢ : chan (1Z.?Z.end) and
¢’ : chan (?Z.1Z.end)
Properties obtained:
V[ Safety / session fidelity

Functional correctness
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Dependent separation protocols - Definitions

Symbols

Example

Duality

Usage

Dependent separation protocols

(v){P}. prot |

prot = 1X:7T
?x:7(v){P}. prot |

V(x:Z) (x){True}.?2(y:Z) (y){y = (x +2)}.end

VX:7(v){P}. prot = ?x:7(v){P}. prot
?x:7(v){P}. prot = 1X:7(v){P}. prot
end = end

¢ — prot

Session types

Su=1AS |
4.5 |

end |...

17.77.end
IA.S =?A.S
7A.S = 1A S

end = end

¢ :chan S

12



Dependent

New

Send

Recv

separation protocols - Rules

Dependent separation protocols

Session types

{True}

new_chan ()

c,c’). c — prot x ¢’ — prot
{(

{c— 1X:7 (v){P}. prot x Plt/x]}

send ¢ (v[t/x])
{c — prot[t/X]}

{c—2x:7(v){P}. prot}
recv ¢

{w.3(y: 7). (w=v[y/x]) *

¢ — prot[y/x] + P[y/x1}

new chan () : chan S x chan S

send : (chan (!A.S) x A) —o chan S

recv: chan (?A.S) — (Axchan 5)

13
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Example program:

let (¢, c’) = new_chan () in
fork {let x = recv ¢’ insend ¢’ (x +2)};
send ¢ 40; recv ¢

Dependent separation protocols:

c— V(x:Z) (x){True}.?(y:Z) (y){y = (x +2)}.end
' — x:Z) (x){True}. 1 (y:Z) (y){y = (x +2)}.end
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Tour of Actris - Verified

Example program:

let (¢, c’) = new_chan () in
fork {let x = recv ¢’ insend ¢’ (x +2)};
send ¢ 40; recv ¢

Dependent separation protocols:

c— V(x:Z) (x){True}.?(y:Z) (y){y = (x +2)}.end
' — x:Z) (x){True}. 1 (y:Z) (y){y = (x +2)}.end
Properties obtained:
vf Safety / session fidelity

¥ Functional correctness

and
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Example program:

let (¢,c’) = new_chan () in
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let/{ =ref 40insend c ¢; recv c; /¢
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Example program:

let (¢,c’) = new_chan () in
fork {let{ =recv ¢’inl < (1 £+ 2); send ¢’ ()};
let/{ =ref 40insend c ¢; recv c; /¢

Dependent separation protocols:
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Tour of Actris - References

Example program:

let (¢,c’) = new_chan () in

fork {let{ =recv ¢’ inl + (!¢ +2); send ¢’ ()};

let/{ =ref 40insend c ¢; recv c; /¢

—

[{True} ref v{{. L+ v} }

Dependent separation protocols:

¢ 1(€:Loc) (x: Z) ({0 x}. 2{O)M{£ — (x +2)}.end
¢/ v 2(0:Loc) (x: Z) (O){€ — x}. 1 {()){€ — (x +2)}.end

and
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Tour of Actris - References

Example program:

let (¢,c’) = new_chan () in
fork {let{ =recv ¢’ inl + (!¢ +2); send ¢’ ()};
!

let/{ =ref 40insend c ¢; recv c; /¢
f\j\ L_\
[{True}refv{é.EHv}} [{E'—)V}!K{W.W:VAKHV}}

Dependent separation protocols:

c— (l:Loc) (x:Z) (0){ — x}.2()){¢— (x+2)}.end and
¢/ — ?(l:Loc) (x:Z) (O){l — x}. V(W {¢— (x+2)}.end
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Example - Recursion

Example program:

let (¢, c¢’) = new_chan () in

fork {let go () = (let x = recv ¢’ insend ¢’ (x +2); go ()) ingo ()};
send ¢ 18;let x = recv cin

send ¢ 20;1lety =recvcinx+y
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Example program:

let (¢, c¢’) = new_chan () in

fork {let go () = (let x = recv ¢’ insend ¢’ (x +2); go ()) ingo ()};

send ¢ 18;let x = recv cin
send ¢ 20;1lety =recvcinx+y

Dependent separation protocols:

c— prec. N (x:Z) (x){True}. ?2(y:Z) (y){y = (x +2)}. rec
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec

and
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Example - Recursion

Example program:

let (¢, c¢’) = new_chan () in

fork {let go () = (let x = recv ¢’ insend ¢’ (x +2); go ()) ingo ()};
send ¢ 18;let x = recv cin

send ¢ 20;1lety =recvcinx+y

Dependent separation protocols:

c— prec. V(x:Z) (x){True}. ?(y:Z) (y){y = (x+2)}.rec  and
¢/ — prec. Ax:Z) (x){True}. 1 (y:Z) (y){y = (x + 2)}. rec
Proof:
» Client thread: follows immediately from Actris's rules
> Service thread: follows immediately using Lob induction
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Example - Locks

Example program:
let (¢, ¢’) = new_chan () in
let [k = new_lock () in
fork ¢ fork {acquire lk;send ¢’ 21; release lk};
acquire lk;send ¢’ 21; release lk
recv ¢ +recv C
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Example - Locks

Example program:
let (¢, c’) = new_chan () in
let k = new_lock () in
fork ¢ fork {acquire lk;send ¢’ 21; release lk};
acquire lk;send ¢’ 21; release lk
recv ¢ +recv C

Dependent separation protocols:
lock prot (n:N) =
if n =0 then end
else ?7(21){True}. lock prot (n—1)
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Example - Locks

Example program:
let (¢, c’) = new_chan () in
let k = new_lock () in
fork ¢ fork {acquire lk;send ¢’ 21; release lk};
acquire lk;send ¢’ 21; release lk
recv ¢ +recv C

Dependent separation protocols:
lock prot (n:N) =
if n =0 then end
else ?7(21){True}. lock prot (n—1)

¢ = lock_prot 2 and
¢’ — lock prot 2

17



Example - Locks

Example program:
let (¢, c’) = new_chan () in
let k = new_lock () in
fork { fork {acquire lk;send ¢’ 21; release lk}; »;
acquire lk;send ¢’ 21; release lk
recv ¢ +recv C

Dependent separation protocols: Hoare triple for critical section:
lock prot (n:N) = is_ |97C7k7!/ff(é|’]ff — 19?}{}’{9‘}]1*
if n =0 then end (o : Auth(N)|") #] ol : Auth(N)|"

else ?(21){True}. lock prot (n—1) acquire /k; send ¢’ 21: release lk

¢ = lock_prot 2 and {True}

¢’ — lock prot 2
17



Paper [POPL'20]: https://itu.dk/people/jkas/papers/actris_popl.pdf
Mechanisation: https://gitlab.mpi-sws.org/iris/actris/-/tree/popl20

Actris: Session-Type Based Reasoning in Separation Logic

JONAS KASTBERG HINRICHSEN, IT University of Copenhagen, Denmark
JESPER BENGTSON, IT University of Copenhagen, Denmark
ROBBERT KREBBERS, Delft University of Technology, The Netherlands

Message passing is a useful abstraction to impl concurrent p For real-world systems, however,
it is often bined with other pra ing and concurrency paradigms, such as higher-order functions,
mutable state, shared-memory concurrency, and locks. We present Actris: a logic for proving functional
correctness of programs that use a combination of the aforementioned features. Actris combines the power
of modern concurrent separation logics with a first-class protocol mechanism—based on session types—for
reasoning about message passing in the presence of other concurrency paradigms. We show that Actris
provides a suitable level of abstraction by proving functional correctness of a variety of examples, including a
distributed merge sort, a distributed load-balancing mapper, and a variant of the map-reduce model, using
relatively simple specifications. Soundness of Actris is proved using a model of its protocol mechanism in the
Iris framework. We mechanised the theory of Actris, together with tactics for symbolic execution of programs,
as well as all examples in the paper, in the Coq proof assistant.

CCS Concepts: « Theory of computation — Separation logic; Program verification; Programming logic.
Additional Key Words and Phrases: Message passing, actor model, concurrency, session types, Iris

ACM Reference Format:

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: Session-Type Based Reasoning
in Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article 6 (January 2020), 30 pages. https://doi.org/10.
1145/3371074

1 INTRODUCTION


https://itu.dk/people/jkas/papers/actris_popl.pdf
https://gitlab.mpi-sws.org/iris/actris/-/tree/popl20

Actris 2.0

joint work with

Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University
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let (¢,c’) = new_chan () in

fork {send ¢’ 20; let x = recv ¢’ insend ¢’ (x +2)};
send c 20;

let x =recv cin

lety =recvcinx+y

Dependent separation protocols needed for verification
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Problem 1 - Lack of expressivity

Actris 1.0 does not take advantage of the asynchronous semantics
» Bi-directional buffers allows messages in transit in both directions
Example Program

let (¢,c’) = new_chan () in

fork {send ¢’ 20; let x = recv ¢’ insend ¢’ (x +2)};
send c 20;

let x =recv cin

lety =recvcinx+y

Dependent separation protocols needed for verification
¢ — V(x:Z) (x){True}. ?(20){True}. ?(x + 2){True}. end
¢’ — 1(20){True}. ?2(x:Z) (x){True}.! (x + 2){True}. end
Actris 1.0 requires protocols to be structurally dual

» Every send matched by a receive and vice versa

and
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Problem 2 - Lack of extensionality

Example program

let (¢, c¢’) = new_chan () in

fork {let w = recv ¢’ insend ¢’ (length w)};
let v = repeat 42 42 in

send c v; recv C
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Problem 2 - Lack of extensionality

Example program

let (¢, c¢’) = new_chan () in

fork {let w = recv ¢’ insend ¢’ (length w)};
let v = repeat 42 42 in

send c v; recv C

Protocols cannot send more than expected

c— I(v:Val)(x: List Z) (v){is_int_1list v x}.?(|X|){True}.end
¢/— ?(v: Val)(w : List Val) (v){is_list v w}.! ({w|){True}.end

Actris 1.0 requires protocol payloads to be identical

» One cannot send more or receive less than needed

and

21
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Key ldea

Integrate asynchronous session subtyping with Actris

Asynchronous session subtyping [ Mostrous et al., Inf.Comput'2015 |
> Swapping: ?A.1B.S5 <:1B.?7A.S
Example: ?Gift. 1 Thanks. end <: 1 Thanks. ?Gift. end
B<:A S<:T A< B S<:T

» Contra and covariance of send / receive:

IAS<:IB.T PA.S<:?B. T
Example: ?(List Z).!Z.end <: ?(List any).!Z.end
. A< B Nl-e: A S<:'T
» Subsumption:
+e: B chan S <:chan T
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Problem 1 - Type Checked

Example program

let (¢,c’) = new_chan () in

fork {send ¢’ 20; let x = recv ¢’ insend ¢’ (x +2)};
send c 20;

let x =recv cin

lety =recvcinx+y
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Problem 1 - Type Checked

Example program

let (¢,c’) = new_chan () in

fork {send ¢’ 20; let x = recv ¢’ insend ¢’ (x +2)};
send c 20;

let x =recv cin

lety =recvcinx+y

Session types needed for type checking

c:chan (1Z.?Z.?Z.end) and
¢’ : chan (1Z.7Z.1Z. end)

Allocated dual session types Subtype relation of service protocol
c:chan (1Z.?Z.?Z.end) and ?77.1Z.17.end
¢’ : chan (?Z.1Z.1Z. end) <:172.77.1Z.end
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Problem 2 - Type Checked

Example program

let (¢,c’) = new_chan () in

fork {let w = recv ¢’ insend ¢’ (length w)};
let v =repeat 42 42 in

send Cc v, recv C
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Problem 2 - Type Checked

Example program

let (¢,c’) = new_chan () in

fork {let w = recv ¢’ insend ¢’ (length w)};
let v =repeat 42 42 in

send Cc v, recv C

Corresponding session types

c:!(List Z).?Z.end and
¢’ : ?(List any).!Z.end

Allocated dual session types Subtype relation of service protocol
c:!(List Z).?Z.end and ?(List Z).1Z.end
¢’ :?(List Z).!Z.end <: ?(List any).!Z.end
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Subprotocols

Swap

Send

Recv

Sub.

Subprotocols Subtyping
X T(v{P}.1y:d (w){Q}. prot 7A.1B.S
Cly:d(w){Q}.?2x:7(v){P}. prot <:1B.7A.S
Vy:5. Q = 3X:7T. P x (vi = vp) x >(prot; C proty) B<:A S<:T
1X: 7 (vi){P}. prot; C 1y:5 (w){Q}. prot, IAS < IB. T
VX:7T. P = 3y:0. Q * (v = va) x>(prot; C prot,) A< B S<T
X7 (v1){P}. prot; C ?y:5 (v){Q}. prot, PAS<:?B.T
prot; T prot, ¢ »— proty A< B e A
¢ »— prot, e: B
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Problem 1 - Verified

Example program

let (¢, c’) = new_chan () in

fork {send ¢’ 20; let x = recv ¢’ insend ¢’ (x +2)};
send ¢ 20;

let x =recv cin

lety =recvcinx+y
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Problem 2 - Verified

Example program

let (¢, ¢’) = new_chan () in

fork {let w = recv ¢’ insend ¢’ (length w)};
let v = repeat 42 42 in

send c v; recv C
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Expressivity beyond asynchronous session subtyping

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations p

Fv){Px Q}.end C ! (v){Q}.end

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations

P
Fv){Px Q}.end C ! (v){Q}.end
Sending and recovering a “frame” P {g{ € }g} R}
*R}e{Q *

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations

P
Fv){Px Q}.end C ! (v){Q}.end
Sending and recovering a “frame” P {g{ € }g} R}
*R}e{Q *

Fv){P}. 2(w){Q}.end
CHW){Px*xR}.?2(w){Q« R}.end

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations

P
Fv){Px Q}.end C ! (v){Q}.end
Sending and recovering a “frame” P {g?}r € }g} R}
*R}e{Q *

Fv){P}. 2(w){Q}.end
CHW){Px*xR}.?2(w){Q« R}.end

Lob-based reasoning for non-structural subprotocol relations

28



Additional properties of subprotocols

Expressivity beyond asynchronous session subtyping

Eagerly resolving obligations

P
Fv){Px Q}.end C ! (v){Q}.end
Sending and recovering a “frame” P {g{ € }g} R}
*R}e{Q *

Fv){P}. 2(w){Q}.end
CHW){Px*xR}.?2(w){Q« R}.end

Lob-based reasoning for non-structural subprotocol relations

wrec. 1 (42){True}. rec
C uprec. ! (42){True}. ! (42){True}. rec

28



Draft [LMCS]: https://itu.dk/people/jkas/papers/actris_Imcs.pdf
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ACTRIS 2.0: ASYNCHRONOUS SESSION-TYPE BASED REASONING
IN SEPARATION LOGIC

JONAS KASTBERG HINRICHSEN, JESPER BENGTSON, AND ROBBERT KREBBERS

IT University of Copenhagen, Denmark
e-mail address: jkasQitu.dk

IT University of Copenhagen, Denmark
e-mail address: bengtson@itu.dk
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e-mail address: mail@robbertkrebbers.nl

ABSTRACT. Message passing is a useful abstraction to implement concurrent programs. For
real-world systems, however, it is often combined with other programming and concurrency
paradigms, such as higher-order functions, mutable state, shared-memory concurrency,
and locks. We present Actris: a logic for proving functional correctness of programs that
use a combination of the aforementioned features. Actris combines the power of modern
concurrent separation logics with a first-class protocol mechanism—based on session types—
for reasoning about message passing in the presence of other concurrency paradigms. We
show that Actris provides a suitable level of abstraction by proving functional correctness
of a variety of examples, including a distributed merge sort, a distributed load-balancing
mapper, and a variant of the map-reduce model, using concise specifications.

While Actris was already presented in a conference paper (POPL’20), this paper expands
the prior presentation significantly. Moreover, it extends Actris to Actris 2.0 with a notion
of subprotocols—based on session-type subtyping—that permits additional flexibility when
composing channel endpoints, and that takes full advantage of the asynchronous semantics
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Soundness and implementation of Actris

30



Soundness of Actris

If {True} e {v.(v)} is provable in Actris then:

ol Safety/session fidelity: e will not crash and not send wrong messages

¥/ Functional correctness: If e terminates with v, the postcondition ®(v) holds
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Implementation and model of Actris in Iris

Approach:
» Define the type of prot with support from Iris’s recursive domain equation solver
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Benefits:

¥f Actris’s soundness result is a corollary of Iris's soundness

o Readily integrates with other concurrency mechanisms in Iris

¥ Can readily reuse lIris's support for interactive proofs in Coq
¥f Small Coq development (~5000 lines in total)
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ABSTRACT. Message passing is a useful abstraction to implement concurrent programs. For
real-world systems, however, it is often combined with other programming and concurrency
paradigms, such as higher-order functions, mutable state, shared-memory concurrency,
and locks. We present Actris: a logic for proving functional correctness of programs that
use a combination of the aforementioned features. Actris combines the power of modern
concurrent separation logics with a first-class protocol mechanism—based on session types—
for reasoning about message passing in the presence of other concurrency paradigms. We
show that Actris provides a suitable level of abstraction by proving functional correctness
of a variety of examples, including a distributed merge sort, a distributed load-balancing
mapper, and a variant of the map-reduce model, using concise specifications.

While Actris was already presented in a conference paper (POPL’20), this paper expands
the prior presentation significantly. Moreover, it extends Actris to Actris 2.0 with a notion
of subprotocols—based on session-type subtyping—that permits additional flexibility when
composing channel endpoints, and that takes full advantage of the asynchronous semantics
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Semantic Session Typing

joint work with

Daniél Louwrink, Universty of Amsterdam
Jesper Bengtson, IT University of Copenhagen
Robbert Krebbers, Radboud University
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Problem

No formal connection between dependent separation protocols and session types
» Protocols merely designed in the style of session types
Lack of expressivity of existing session type systems
» Polymorphism, recursion, and subtyping have been studied individually
> No session type system that combines all three
Lack of mechanised soundness proofs for session type systems
> Few results exist for simpler systems

P> None exist for more expressive systems
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Key ldea
Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

» Types defined as predicates over values: Z £ Aw. w € Z
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Key ldea
Semantic Typing using lris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types defined as predicates over values: Z £ Aw. w € Z
» Judgement defined as safety-capturing evaluation: N e: A
> Rules proven as lemmas: Fi:Z ~ J[€Z
» Soundness inherited from underlying logic
Iris [Iris project]
» Semantic type system for ML-like language with concurrency and state
https://gitlab.mpi-sws.org/iris/tutorial-popl20
» Mechanised in Coq
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Key ldea
Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]
» Types defined as predicates over values: Z £ Aw. w € Z
» Judgement defined as safety-capturing evaluation: N e: A
> Rules proven as lemmas: Fi:Z ~ J[€Z
» Soundness inherited from underlying logic
Iris [Iris project]
» Semantic type system for ML-like language with concurrency and state
https://gitlab.mpi-sws.org/iris/tutorial-popl20
» Mechanised in Coq
Actris [ Hinrichsen et al., POPL'20 |
> Dependent separation protocols: Session type-style logical protocols
» Mechanised in Coq
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Contributions

Semantic Session Type System

» Formal connection between dependent separation protocols and session types

P> Rich extensible type system for session types

» Term and session type equi-recursion

» Term and session type polymorphism

» Term and (asynchronous) session type subtyping

» Unique and shared reference types, copyable types, lock types

» Full mechanisation in Coq
» Supports integration of safe yet untypeable programs
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Machine-Checked Semantic Session Typing

Jonas Kastberg Hinrichsen
IT University of Copenhagen, Denmark

Robbert Krebbers
Radboud University and Delft University of Technology,
The Netherlands

Abstract

Session types—a family of type systems for message-passing
concurrency—have been subject to many extensions, where
each extension comes with a separate proof of type safety.
These extensions cannot be readily combined, and their
proofs of type safety are generally not machine checked, mak-
ing their correctness less trustworthy. We overcome these
shortcomings with a semantic approach to binary asynchro-
nous affine session types, by developing a logical relations
model in Coq using the Iris program logic. We demonstrate
the power of our approach by combining various forms of
polymorphism and recursion, asynchronous subtyping, ref-
erences, and locks/mutexes. As an additional benefit of the
semantic approach, we demonstrate how to manually prove
the typing judgements of racy, but safe, programs that cannot
be type checked using only the rules of the type system.

Daniél Louwrink
University of Amsterdam, The Netherlands

Jesper Bengtson
IT University of Copenhagen, Denmark

using logical relations defined in terms of a program logic
[Appel et al. 2007; Dreyer et al. 2009, 2019].

The semantic approach addresses the challenges above as
(1) typing judgements are definitions in the program logic,
and typing rules are lemmas in the program logic (they are
not inductively defined), which means that extending the
system with new typing rules boils down to proving the
corresponding typing lemmas correct; (2) safe functions that
cannot be conventionally type checked can still be seman-
tically type checked by manually proving a typing lemma
(3) all of our results have been mechanised in Coq using Iris
[Jung et al. 2016, 2018b, 2015; Krebbers et al. 2018, 2017a,b]
giving us a high degree of trust that they are correct.

The syntactic approach requires global proofs of progress
(well-typed programs are either values or can take a step)
and preservation (steps taken by the program do not change
types), culminating in type safety (well-typed programs do
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Ongoing and future work

Ongoing work
» Dependent separation protocols as specifications for TCP-based communication in
distributed systems
» Multi-party dependent separation protocols (based on [ Honda et al., POPL'08 ])
Future Work
» Deadlock free communication (based on ongoing work by Jules Jacobs)
» Linearity of channels through Iron [ Bizjak et al., POPL'19 |
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I (“Thank you"){ActrisKnowledge}.
prec. 7(q : Question) (q){AboutActris q}.
I (a: Answer) (a){Insightful q a}. rec
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