
1

Mechanised Semantic Session Typing

Jonas Kastberg Hinrichsen, IT University of Copenhagen

Joint work with
Daniël Louwrink, University of Amsterdam

Robbert Krebbers, Delft University of Technology
Jesper Bengtson, IT University of Copenhagen

04 June 2020
VEST

2

Problem

Mechanising session types is hard

, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort

2

Problem

Mechanising session types is hard

, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort

2

Problem

Mechanising session types is hard

, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort

2

Problem

Mechanising session types is hard

, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort

2

Problem

Mechanising session types is hard, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation

using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

3

Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules

4

Goal:
A “mechanisable” session type system

5

Solution:
A semantic session type system!

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z

I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck

and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas

: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z

 i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z

I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B

� b : B

6

Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B

7

Key Idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Linearity and binders can be inherited from underlying logic

I Extensions can be added modularly

Iris [Iris project]

I Higher-Order: Recursion, Polymorphism

I Concurrent: Ghost state mechanisms to reason about concurrency

I Separation Logic: Implicit separation of linear ownership

I Mechanised in Coq (which has binder support)

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols (DSP): Session type-style logical protocols

I Mechanised in Coq

7

Key Idea

Semantic Typing using Iris

and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Linearity and binders can be inherited from underlying logic

I Extensions can be added modularly

Iris [Iris project]

I Higher-Order: Recursion, Polymorphism

I Concurrent: Ghost state mechanisms to reason about concurrency

I Separation Logic: Implicit separation of linear ownership

I Mechanised in Coq (which has binder support)

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols (DSP): Session type-style logical protocols

I Mechanised in Coq

7

Key Idea

Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Linearity and binders can be inherited from underlying logic

I Extensions can be added modularly

Iris [Iris project]

I Higher-Order: Recursion, Polymorphism

I Concurrent: Ghost state mechanisms to reason about concurrency

I Separation Logic: Implicit separation of linear ownership

I Mechanised in Coq (which has binder support)

Actris [Hinrichsen et al., POPL’20]

I Dependent separation protocols (DSP): Session type-style logical protocols

I Mechanised in Coq

8

Contributions

Semantic Session Type System

I Rich extensible type system for session types
I Term and session type equi-recursion
I Term and session type polymorphism
I Term and (asynchronous) session type subtyping
I Unique and shared reference types, Copyable types, Lock types

I Full mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

I Supports integrating safe yet untypeable programs

I Actris 2.0: Subprotocols

https://gitlab.mpi-sws.org/iris/actris

9

Semantic Session Type System

10

Language

Language: ML-like language extended with concurrency, state and message passing

e ∈ Expr ::= v | x | rec f (x) = e | e1(e2) | e1 || e2 | ref (e) | ! e | e1 ← e2 |
new chan () | send e1 e2 | recv e | . . .

Only allows substitution with closed terms

I To avoid substitution overhead

Evaluation is performed right-to-left

I To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

I Binary: Each channel have one pair of endpoints

I Asynchronous: send does not block, two buffers per endpoint pair

I Affine: No close expression, channels can be thrown away

10

Language

Language: ML-like language extended with concurrency, state and message passing

e ∈ Expr ::= v | x | rec f (x) = e | e1(e2) | e1 || e2 | ref (e) | ! e | e1 ← e2 |
new chan () | send e1 e2 | recv e | . . .

Only allows substitution with closed terms

I To avoid substitution overhead

Evaluation is performed right-to-left

I To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

I Binary: Each channel have one pair of endpoints

I Asynchronous: send does not block, two buffers per endpoint pair

I Affine: No close expression, channels can be thrown away

10

Language

Language: ML-like language extended with concurrency, state and message passing

e ∈ Expr ::= v | x | rec f (x) = e | e1(e2) | e1 || e2 | ref (e) | ! e | e1 ← e2 |
new chan () | send e1 e2 | recv e | . . .

Only allows substitution with closed terms

I To avoid substitution overhead

Evaluation is performed right-to-left

I To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

I Binary: Each channel have one pair of endpoints

I Asynchronous: send does not block, two buffers per endpoint pair

I Affine: No close expression, channels can be thrown away

10

Language

Language: ML-like language extended with concurrency, state and message passing

e ∈ Expr ::= v | x | rec f (x) = e | e1(e2) | e1 || e2 | ref (e) | ! e | e1 ← e2 |
new chan () | send e1 e2 | recv e | . . .

Only allows substitution with closed terms

I To avoid substitution overhead

Evaluation is performed right-to-left

I To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

I Binary: Each channel have one pair of endpoints

I Asynchronous: send does not block, two buffers per endpoint pair

I Affine: No close expression, channels can be thrown away

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z

A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

11

Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A(B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds

12

Semantic Term Types - Proofs

Rules:

Γ � i : Z

Γ2 � e1 : A1 �Γ3 Γ1 � e2 : A2 �Γ2

Γ1 � (e1, e2) : A1 × A2 �Γ3

If ∅ � e : A �Γ
then e does not get stuck

Proofs:

13

But what about session types?

14

Semantic Session Types - Definitions

Session types as a new type kind:

Type� , ?

!A. S , ?

?A. S , ?

end , ?

TypeF , Val→ iProp

chan S , λw . ?

Requires capturing:

I Linearity of channel endpoint ownership

I Delegation of linear types / channels

I Session fidelity of communicated messages

15

Actris Dependent Separation Protocols

Session type-inspired protocols for functional correctness

Dependent separation protocols Syntactic session types

Example ? (x :Z) 〈x〉{x > 10}. ? 〈x + 10〉{True}. end ?Z. ?Z. end

Usage c � prot c : S

16

Semantic Session Types - Definitions

Session types as dependent separation protocols:

Type� , iProto

!A.S , ! (v : Val) 〈v〉{.(Av)}. S
?A.S , ? (v : Val) 〈v〉{.(Av)}. S
end , end

TypeF , Val→ iProp

chan S , λw .w � S

Dependent separation protocols:

Example: ? (x :Z) 〈x〉{x > 10}. ? 〈x + 10〉{True}. end
Usage: c � prot

17

Semantic Session Types - Rules

Rules are proven as lemmas using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, (c : chan !A.S), (x :A) � send c x : 1 �Γ, (c : chan S)

Γ, (c : chan (?A.S)) � recv c : A �Γ, (c : chan S)

18

Semantic Session Types - Proofs

Rule:

Γ, (c : chan (?A. S)) � recv c : A �Γ, (c : chan S)

Proof:

19

Extensions

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)

Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})

Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

20

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants (P)

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto

21

Overview of features - Definitions

Unique references: refuniq A , λw . ∃v .w ∈ Loc ∗ (w 7→ v) ∗ .(Av)

Shared references: refshr A , λw . (w ∈ Loc) ∗ ∃v . (w 7→ v) ∗�(Av)

Copyable types: copyA , λw . �(Aw)

Lock types: mutexA , λw . ∃lk, `. (w = (lk, `)) ∗ isLock lk (∃v . (` 7→ u) ∗ .(Av))

mutexA , λw . ∃lk, `. (w = (lk, `)) ∗ isLock lk (∃v . (` 7→ u) ∗ .(Av)) ∗ (` 7→ −)

Session choice: ⊕{~S} , ! (l : Z) 〈l〉{.(l ∈ dom(~S))}. ~S(l)

&{~S} , ? (l : Z) 〈l〉{.(l ∈ dom(~S))}. ~S(l)

Recursion: µ (X : k).K , µ (X : Typek).K (K must be contractive in X)

Polymorphism: ∀(X : k).A , λw . ∀(X : Typek).wp w () {A}
∃(X : k).A , λw . ∃(X : Typek). .(Aw)

!~X :~k A. S , ! (~X : ~Typek)(v : Val) 〈v〉{.(Av)}. S
?~X :~k A.S , ? (~X : ~Typek)(v : Val) 〈v〉{.(Av)}.S

Term subtyping: A <: B , ∀v .A v −∗ B v

Session subtyping: S1 <: S2 , S1 v S2

22

Typing the Untypeable

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable?

No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No

It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline

Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe?

Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes

Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter

Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really?

Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well...

It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma

proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!

Beyond the scope of this talk

23

An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk

24

Concluding Remarks

25

Concluding Remarks

Semantic typing and separation logic is a good fit for mechanising session types

I Linearity is implicit from separation logic

I Binders can be inherited from underlying logic

Using a strong logic gives immediate rise to advanced features

I Iris: Polymorphism, recursion, locks and more

I Actris: Session types, session polymorphism, session subtyping

Sources:

I Paper (https://iris-project.org/pdfs/2020-actris2-submission.pdf)

I Mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

https://iris-project.org/pdfs/2020-actris2-submission.pdf
https://gitlab.mpi-sws.org/iris/actris

26

Questions?

27

Subtyping

28

Semantic Asynchronous Session Subtyping

Conventional subtyping:

S1 <: S2

chan S1 <: chan S2

A2<:A1 S1<:S2

!A1.S1 <: !A2.S2

A1<: A2 S1<:S2

?A1.S1 <: ?A2.S2

Asynchronous Subtyping:

?A1. !A2.S <: !A2. ?A1.S

Polymorphism subtyping:

!(~X :~k) A.S <: !A[~K/~X].S [~K/~X]

?A[~K/~X].S [~K/~X] <: ?(~X :~k) A.S

S1 <: !A.S2

S1 <: !(~X :~k)A.S2

?A.S1 <: S2

?(~X :~k)A.S1 <: S2

28

Semantic Asynchronous Session Subtyping

Conventional subtyping:

S1 <: S2

chan S1 <: chan S2

A2<:A1 S1<:S2

!A1.S1 <: !A2.S2

A1<: A2 S1<:S2

?A1.S1 <: ?A2.S2

Asynchronous Subtyping:

?A1. !A2.S <: !A2. ?A1.S

Polymorphism subtyping:

!(~X :~k) A.S <: !A[~K/~X].S [~K/~X]

?A[~K/~X].S [~K/~X] <: ?(~X :~k) A.S

S1 <: !A.S2

S1 <: !(~X :~k)A.S2

?A.S1 <: S2

?(~X :~k)A.S1 <: S2

28

Semantic Asynchronous Session Subtyping

Conventional subtyping:

S1 <: S2

chan S1 <: chan S2

A2<:A1 S1<:S2

!A1.S1 <: !A2.S2

A1<: A2 S1<:S2

?A1.S1 <: ?A2.S2

Asynchronous Subtyping:

?A1. !A2.S <: !A2. ?A1.S

Polymorphism subtyping:

!(~X :~k) A.S <: !A[~K/~X].S [~K/~X]

?A[~K/~X].S [~K/~X] <: ?(~X :~k) A.S

S1 <: !A.S2

S1 <: !(~X :~k)A.S2

?A.S1 <: S2

?(~X :~k)A.S1 <: S2

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM,S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:

s-elim
S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]
swap
?A1. !A2.S <: !A2. ?A1. S

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM, S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:

s-elim
S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]
swap
?A1. !A2.S <: !A2. ?A1. S

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM, S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:

s-elim
S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]
swap
?A1. !A2.S <: !A2. ?A1. S

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM, S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:
s-elim

S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]

swap
?A1. !A2. S <: !A2. ?A1. S

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM, S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:
s-elim

S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]
swap
?A1. !A2. S <: !A2. ?A1. S

29

Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X (Y). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 (Y1). !X1. ?Y1. !(X2,Y2:F) (X2 (Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. ?B. !(X2 (Z). !X2. ?Z. rec (S-ELIM, S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 (B). !X1. !(X2 (Z). !X2. ?B. ?Z. rec (SWAP)

Rules:
s-elim

S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[~K/~X].S[~K/~X]
swap
?A1. !A2. S <: !A2. ?A1. S

