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Problem

Mechanising session types is hard

, especially for syntactic type systems

I Linearity requires explicit handling

I Binders impose non-trivial proof effort

I Extensions impose immodular proof effort
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Shortcomings of Syntactic Typing

In a syntactic type system

I Types defined as a closed inductive definition

I Rules defined as a closed inductive relation

I Soundness proven as progress and preservation using induction over the relation

Linearity requires explicit handling

I Explicit context splitting in rules

Binders impose non-trivial proof effort

I Manual capture-avoiding substitution/renaming

Extensions impose immodular proof effort

I Must reprove progress and preservation when adding types/rules
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Goal:
A “mechanisable” session type system
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Solution:
A semantic session type system!
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Solution - Semantic Typing!

A semantic type system is defined in terms of the language semantics:

I Types defined as predicates over values: Z , λw .w ∈ Z
I Judgement defined as safety-capturing evaluation: Γ � e : A

e does not get stuck and if e reduces to a value v , Av holds.

I Rules are proven as lemmas: � i : Z  i ∈ Z
I Soundness is a consequence of the judgement definition

Linearity and binders can be inherited from underlying logic

Extensions can be added modularly

I Adding types and rules does not inherently impose new proof effort on existing
types, rules and soundness

B , λw .w ∈ B � b : B
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Key Idea

Semantic Typing

using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

I Linearity and binders can be inherited from underlying logic

I Extensions can be added modularly

Iris [Iris project]

I Higher-Order: Recursion, Polymorphism

I Concurrent: Ghost state mechanisms to reason about concurrency

I Separation Logic: Implicit separation of linear ownership

I Mechanised in Coq (which has binder support)

Actris [ Hinrichsen et al., POPL’20 ]

I Dependent separation protocols (DSP): Session type-style logical protocols

I Mechanised in Coq
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Contributions

Semantic Session Type System

I Rich extensible type system for session types
I Term and session type equi-recursion
I Term and session type polymorphism
I Term and (asynchronous) session type subtyping
I Unique and shared reference types, Copyable types, Lock types

I Full mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

I Supports integrating safe yet untypeable programs

I Actris 2.0: Subprotocols

https://gitlab.mpi-sws.org/iris/actris
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Semantic Session Type System
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Language

Language: ML-like language extended with concurrency, state and message passing

e ∈ Expr ::= v | x | rec f (x) = e | e1(e2) | e1 || e2 | ref (e) | ! e | e1 ← e2 |
new chan () | send e1 e2 | recv e | . . .

Only allows substitution with closed terms

I To avoid substitution overhead

Evaluation is performed right-to-left

I To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

I Binary: Each channel have one pair of endpoints

I Asynchronous: send does not block, two buffers per endpoint pair

I Affine: No close expression, channels can be thrown away
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Semantic Term Types

Types as Iris predicates:

TypeF , Val→ iProp

Z , λw .w ∈ Z
A1 × A2 , λw . ∃w1,w2.w = (w1,w2) ∗ .(A1 w1) ∗ .(A2 w2)

A( B , λw . ∀v . .(Av) −∗ wp (w v) {B}

Judgement as Iris weakest precondition:

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v .Av ∗ (Γ′ � σ)}

Soundness: If ∅ � e : A �Γ then e does not get stuck

I Consequence of Iris’s adequacy of weakest precondition

wp e {v .Φ} dictates e does not get stuck and if e reduces to a value v then Φ v holds
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Semantic Term Types - Proofs

Rules:

Γ � i : Z

Γ2 � e1 : A1 �Γ3 Γ1 � e2 : A2 �Γ2

Γ1 � (e1, e2) : A1 × A2 �Γ3

If ∅ � e : A �Γ
then e does not get stuck

Proofs:
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But what about session types?
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Semantic Session Types - Definitions

Session types as a new type kind:

Type� , ?

!A. S , ?

?A. S , ?

end , ?

TypeF , Val→ iProp

chan S , λw . ?

Requires capturing:

I Linearity of channel endpoint ownership

I Delegation of linear types / channels

I Session fidelity of communicated messages
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Actris Dependent Separation Protocols

Session type-inspired protocols for functional correctness

Dependent separation protocols Syntactic session types

Example ? (x :Z) 〈x〉{x > 10}. ? 〈x + 10〉{True}. end ?Z. ?Z. end

Usage c � prot c : S
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Semantic Session Types - Definitions

Session types as dependent separation protocols:

Type� , iProto

!A.S , ! (v : Val) 〈v〉{.(Av)}. S
?A.S , ? (v : Val) 〈v〉{.(Av)}. S
end , end

TypeF , Val→ iProp

chan S , λw .w � S

Dependent separation protocols:

Example: ? (x :Z) 〈x〉{x > 10}. ? 〈x + 10〉{True}. end
Usage: c � prot



17

Semantic Session Types - Rules

Rules are proven as lemmas using the rules for dependent separation protocols

Γ � new chan () : chan S × chan S �Γ
Γ, (c : chan !A.S), (x :A) � send c x : 1 �Γ, (c : chan S)

Γ, (c : chan (?A.S)) � recv c : A �Γ, (c : chan S)



18

Semantic Session Types - Proofs

Rule:

Γ, (c : chan (?A. S)) � recv c : A �Γ, (c : chan S)

Proof:
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Extensions
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Overview of features

Iris and Actris gives immediate rise to many type features

Linear products Separation Conjunction (∗)
Function types Wand (−∗) and weakest precondition (wp e {Φ})
Session types Actris dependent separation protocols (iProto)

Unique references Points-to connective (` 7→ v)

Shared references Invariants ( P )

Copyable types Persistent modality (�)

Lock types Iris’s lock library

Session choice types Actris dependent separation protocols (iProto)

Recursion Guarded step-indexed recursion (.)

Term polymorphism Higher-order impredicative quantifiers

Session polymorphism Higher-order impredicative protocols binders

Term subtyping Predicates closed under wand (∀v .A1 v −∗ A2 v)

Session subtyping Actris 2.0 subprotocols (v)

Subprotocols: prot1 v prot2
I Generalisation of asynchronous subtyping for functional correctness
I Makes asynchronous semantics explicit by swap rule

I ? 〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ? 〈v1〉{P1}. prot
I ?A1. !A2.S <: !A2. ?A1.S

I Non-trivial extension due to dependent binders and step-indexing
I Required updates to the model of iProto
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Overview of features - Definitions

Unique references: refuniq A , λw . ∃v .w ∈ Loc ∗ (w 7→ v) ∗ .(Av)

Shared references: refshr A , λw . (w ∈ Loc) ∗ ∃v . (w 7→ v) ∗�(Av)

Copyable types: copyA , λw . �(Aw)

Lock types: mutexA , λw . ∃lk, `. (w = (lk, `)) ∗ isLock lk (∃v . (` 7→ u) ∗ .(Av))

mutexA , λw . ∃lk, `. (w = (lk, `)) ∗ isLock lk (∃v . (` 7→ u) ∗ .(Av)) ∗ (` 7→ −)

Session choice: ⊕{~S} , ! (l : Z) 〈l〉{.(l ∈ dom(~S))}. ~S(l)

&{~S} , ? (l : Z) 〈l〉{.(l ∈ dom(~S))}. ~S(l)

Recursion: µ (X : k).K , µ (X : Typek).K (K must be contractive in X )

Polymorphism: ∀(X : k).A , λw . ∀(X : Typek).wp w () {A}
∃(X : k).A , λw . ∃(X : Typek). .(Aw)

!~X :~k A. S , ! (~X : ~Typek)(v : Val) 〈v〉{.(Av)}. S
?~X :~k A.S , ? (~X : ~Typek)(v : Val) 〈v〉{.(Av)}.S

Term subtyping: A <: B , ∀v .A v −∗ B v

Session subtyping: S1 <: S2 , S1 v S2
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Typing the Untypeable
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An Untypeable Program

Consider the following program:

� λ c . (recv c || recv c) : chan (?Z. ?Z. end)( (Z× Z)

Is it typeable? No It violates the ownership discipline
Is it safe? Yes Order of receives does not matter
Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk
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The rule is just another lemma proven by unfolding all type-level definitions

(c � ? (v1 : Val) 〈v1〉{.(v1 ∈ Z)}. ? (v2 : Val) 〈v2〉{.(v2 ∈ Z)}. end) −∗
wp (recv c || recv c) {v . ∃v1, v2. (v = (v1, v2)) ∗ .(v1 ∈ Z) ∗ .(v2 ∈ Z)}

And then using Iris’s ghost state machinery!Beyond the scope of this talk
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Concluding Remarks
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Concluding Remarks

Semantic typing and separation logic is a good fit for mechanising session types

I Linearity is implicit from separation logic

I Binders can be inherited from underlying logic

Using a strong logic gives immediate rise to advanced features

I Iris: Polymorphism, recursion, locks and more

I Actris: Session types, session polymorphism, session subtyping

Sources:

I Paper (https://iris-project.org/pdfs/2020-actris2-submission.pdf)

I Mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

https://iris-project.org/pdfs/2020-actris2-submission.pdf
https://gitlab.mpi-sws.org/iris/actris
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Questions?
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Subtyping
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Semantic Asynchronous Session Subtyping

Conventional subtyping:

S1 <: S2

chan S1 <: chan S2

A2<:A1 S1<:S2

!A1.S1 <: !A2.S2

A1<: A2 S1<:S2

?A1.S1 <: ?A2.S2

Asynchronous Subtyping:

?A1. !A2.S <: !A2. ?A1.S

Polymorphism subtyping:

!(~X :~k) A.S <: !A[ ~K/~X ].S [ ~K/~X ]

?A[ ~K/~X ].S [ ~K/~X ] <: ?(~X :~k) A.S

S1 <: !A.S2

S1 <: !(~X :~k)A.S2

?A.S1 <: S2

?(~X :~k)A.S1 <: S2
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Semantic Asynchronous Session Subtyping - Example

Goal:

µ (rec : �). !(X ,Y :F) (X ( Y ). !X . ?Y . rec <: µ (rec : �). !(X1,X2:F) (X1 ( B). !X1. !(X2 ( Z). !X2. ?B. ?Z. rec

Derivation:

µ (rec : �). !(X ,Y :F) (X ( Y ). !X . ?Y . rec

<: µ (rec : �). !(X1,Y1:F) (X1 ( Y1). !X1. ?Y1. !(X2,Y2:F) (X2 ( Y2). !X2. ?Y2. rec (LÖB)

<: µ (rec : �). !(X1,X2:F) (X1 ( B). !X1. ?B. !(X2 ( Z). !X2. ?Z. rec (S-ELIM,S-INTRO)

<: µ (rec : �). !(X1,X2:F) (X1 ( B). !X1. !(X2 ( Z). ?B. !X2. ?Z. rec (SWAP)

<: µ (rec : �). !(X1,X2:F) (X1 ( B). !X1. !(X2 ( Z). !X2. ?B. ?Z. rec (SWAP)

Rules:

s-elim
S1 <: !A. S2

S1 <: !
(~X :~k)

A. S2

s-intro
!
(~X :~k)

A. S <: !A[ ~K/~X ].S[ ~K/~X ]
swap
?A1. !A2.S <: !A2. ?A1. S
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