
Machine-Checked Semantic Session Typing

Jonas Kastberg Hinrichsen
IT University of Copenhagen

Denmark

Daniël Louwrink
University of Amsterdam

The Netherlands

Robbert Krebbers
Radboud University and Delft University of Technology

The Netherlands

Jesper Bengtson
IT University of Copenhagen

Denmark

Abstract

Session typesÐa family of type systems for message-passing
concurrencyÐhave been subject to many extensions, where
each extension comes with a separate proof of type safety.
These extensions cannot be readily combined, and their
proofs of type safety are generally notmachine checked, mak-
ing their correctness less trustworthy. We overcome these
shortcomings with a semantic approach to binary asynchro-
nous affine session types, by developing a logical relations
model in Coq using the Iris program logic. We demonstrate
the power of our approach by combining various forms of
polymorphism and recursion, asynchronous subtyping, ref-
erences, and locks/mutexes. As an additional benefit of the
semantic approach, we demonstrate how to manually prove
typing judgements of racy, but safe, programs that cannot
be type checked using only the rules of the type system.

CCS Concepts: · Theory of computation→ Separation

logic; Program verification; Programming logic.

Keywords: Message passing, concurrency, session types, sep-
aration logic, semantic typing, Iris, Coq

ACM Reference Format:

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers,

and Jesper Bengtson. 2021. Machine-Checked Semantic Session

Typing. In Proceedings of the 10th ACM SIGPLAN International

Conference on Certified Programs and Proofs (CPP ’21), January 18ś

19, 2021, Virtual, Denmark. ACM, New York, NY, USA, 21 pages.

https://doi.org/10.1145/3437992.3439914

1 Introduction

Session types [26] guarantee that message-passing programs
comply with a protocol (session fidelity), and do not crash
(type safety). While session types are an active research area,

CPP ’21, January 18ś19, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8299-1/21/01.
https://doi.org/10.1145/3437992.3439914

we believe the following challenges have not received the
attention that they deserve:

1. There are many extensions of session types with e.g.,

polymorphism [18], asynchronous subtyping [37], and
sharing via locks [5].While type safety has been proven
for each extension in isolation, existing proofs can-
not be readily composed with each other, nor with
other substructural type systems like Affe, Alms, Lin-
ear Haskell, Plaid, Rust, Mezzo, Quill, or System F◦.

2. Session types use substructural types to enforce a strict
discipline of channel ownership. While conventional
session-type systems can type check many functions,
they inherently exclude some functions that do not
obey the ownership discipline, even if they are safe.

3. Only few session-type systems and their safety proofs
have been machine checked by a proof assistant, mak-
ing their correctness less trustworthy.

We address these challenges by eschewing the traditional
syntactic approach to type safety (using progress and preser-
vation) and instead embrace the semantic approach to type
safety [1ś3], using logical relations defined in terms of a
program logic [4, 14, 15].

The semantic approach addresses the challenges above as
(1) typing judgements are definitions in the program logic,
and typing rules are lemmas in the program logic (they are
not inductively defined), which means that extending the
system with new typing rules boils down to proving the
corresponding typing lemmas correct; (2) safe functions that
cannot be conventionally type checked can still be semanti-
cally type checked by manually proving a typing lemma (3)
all of our results have been mechanised in Coq using the Iris
framework for concurrent separation logic [29ś34] giving
us a high degree of trust that they are correct.
The syntactic approach to type safety requires global

proofs of progress (well-typed programs are either values or
can take a step) and preservation (steps taken by the program
do not change types), culminating in type safety (well-typed
programs do not get stuck). One key selling point of the
semantic approach to type safety is that it does not require
progress and preservation proofs, thereby allowing snippets
of safe code to be type checked without requiring well-typed
terms mid execution. Safety proofs are deferred to the pro-
gram logic, whose adequacy/soundness theorem states that

178

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1145/3437992.3439914
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3437992.3439914&domain=pdf&date_stamp=2021-01-20

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

proving a program correct for any postcondition implies that
the code will never get stuck.

A concrete example of a racy program that can be seman-
tically, but not conventionally, type checked is:

𝜆 𝑐. (recv 𝑐 | | recv 𝑐) : chan (?Z. ?Z. end) ⊸ (Z × Z)

Two values are requested over channel 𝑐 in parallel, and
returned as a tuple (using the operator | | for parallel com-
position, and the type chan (?Z. ?Z. end) for a channel that
expects to receive two integers). This program cannot be
type checked using conventional session-type systems as
channels are substructural/ownership types and cannot be
owned by multiple threads at the same time. Nevertheless,
this program is safe1Ðthe order in which the values are re-
ceived is irrelevant, as they have the same type.

The fact that this program cannot be type checked is not a
shortcoming of conventional session-type systems. Since the
correctness relies on a subtle argument (the recv is executed
exactly twice in parallel), it is unreasonable to expect having
syntactical typing rules that account for it. However, using
the semantic approach, we can prove the corresponding
typing lemma using the full power of the program logic.

An important prerequisite for proving typing lemmas such
as the above is to use an expressive program logic. The Iris
concurrent separation logic [29ś31, 33] has proved to be
sufficiently expressive to define semantic type systems for
e.g., Rust [27, 28] and Scala [22], due to its state-of-the-art
built-in support for e.g., resource ownership, recursion, poly-
morphism, and concurrency. In addition, we make use of the
Actris framework for message passing in Iris [23, 24]. Actris
includes the notion of dependent separation protocols, which
are like session types in structure, but were developed to
prove functional correctness of message-passing programs.
An additional advantage of Iris (and Actris) is that they

come with an existing mechanisation in Coq. This mecha-
nisation not only includes an adequacy/soundness theorem,
but also tactical support for separation logic proofs [32, 34].

Contributions and Outline. This paper presents an ex-
tensive machine-checked and semantic account of binary
(two-party) asynchronous (sends are non-blocking) affine
(resources may be discarded) session types. It makes the
following contributions:

• We define a semantic session-type system as a logical
relation in Iris using Actris’s notion of dependent sep-
aration protocols (ğ2). As an additional conceptional
contribution, this construction provides a concise con-
nection between session types and separation logic.
• We demonstrate the extensibility of our approach by
adding subtyping for term and session types, copyable
types, equi-recursive term and session types, polymor-
phic term and session types, and mutexes (ğ3).

1For simplicity, we assume recv to be atomic, or a lock is needed. Even

with a lock, conventional session-type systems cannot handle this program.

• We demonstrate the benefit of our type system being
semantic by integrating the manual verification of safe
but not conventionally type-checkable programs (ğ4).
• We provide insight on the benefits of a semantic type
system in regards to mechanisation efforts (ğ5). All of
our results are mechanised in the Coq proof assistant
and can be found in [25].

2 A Tour of Semantic Session Typing

We show how to build a semantic session-type system using
logical relations on top of an untyped concurrent language
with message passing (ğ2.1). We provide a brief overview of
Iris (ğ2.2), and then present a lightweight affine type system
(ğ 2.3) as the core upon which we built our session-type
system (ğ2.4). Our affine type system is inspired by RustBelt
[27, 28], but drops Rust-specific features like borrowing and
lifetimes to focus on session types.

2.1 Language

We use an untyped higher-order functional programming
language with concurrency, mutable references, and binary
asynchronous message passing, whose syntax is:

𝑣 ∈ Val ::= () | 𝑏 | 𝑖 | ℓ | 𝑐 | rec 𝑓 𝑥 = 𝑒 | . . .

𝑒 ∈ Expr ::= 𝑣 | 𝑥 | rec 𝑓 𝑥 = 𝑒 | 𝑒1 𝑒2 | 𝑒1 | | 𝑒2 |

ref 𝑒 | 𝑒1 ← 𝑒2 | !𝑒 |

new_chan () | send 𝑒1 𝑒2 | recv 𝑒 | . . .

We let 𝑏 ∈ B, 𝑖 ∈ Z, ℓ ∈ Loc, and 𝑐 ∈ Chan, where Loc and
Chan are countably infinite sets of identifiers. We omit the
standard operations on pairs, sums, etc.We write 𝜆 𝑥. 𝑒 for
rec _ 𝑥 = 𝑒 , and let 𝑥 = 𝑒1 in 𝑒2 for (𝜆 𝑥. 𝑒2) 𝑒1, and 𝑒1; 𝑒2 for
let _ = 𝑒1 in 𝑒2. Message passing is given an asynchronous
semantics: new_chan () returns a pair (𝑐1, 𝑐2) of channel end-
points that operate on buffers (®𝑣1, ®𝑣2) that are initially empty,
send 𝑐𝑖 𝑤 enqueues message 𝑤 in ®𝑣𝑖 , while recv 𝑐𝑖 blocks
until a message𝑤 is available in ®𝑣 (if 𝑖=2 then 1 else 2) , and then
dequeues and returns𝑤 . Mutable references ℓ are allocated
with ref 𝑒 , updated using 𝑒1 ← 𝑒2, and dereferenced with
!𝑒 . Parallel composition 𝑒1 | | 𝑒2 executes 𝑒1 and 𝑒2 in parallel
and returns the results as a tuple, once they have terminated.
The language also supports fork and compare-and-set.

2.2 Semantic Typing in Iris

The idea of semantic typing is to represent types as logical
relations, which are predicates that describe the values that
inhabit the type. Tomodel type systems with features like ref-
erences or session types, these predicates need to range over
program states. To avoid threading through program states
explicitly, we do not use ordinary set-theoretic predicates,
but use predicates in a program logic, and use the connec-
tives of the program logic to give concise definitions of types.
The program logic that we use is Iris, whose propositions

179

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

Term types:

Type⋆ ≜ Val→ iProp

any ≜ 𝜆𝑤. True

1 ≜ 𝜆𝑤. 𝑤 ∈ {()}

B ≜ 𝜆𝑤. 𝑤 ∈ B
Z ≜ 𝜆𝑤. 𝑤 ∈ Z

refuniq𝐴 ≜ 𝜆𝑤. ∃𝑣 . 𝑤 ∈ Loc ∗ (𝑤 ↦→ 𝑣) ∗ ⊲(𝐴𝑣)
𝐴1 ×𝐴2 ≜ 𝜆𝑤. ∃𝑣1, 𝑣2 . 𝑤 = (𝑣1, 𝑣2) ∗ ⊲(𝐴1 𝑣1) ∗ ⊲(𝐴2 𝑣2)
𝐴1 +𝐴2 ≜ 𝜆𝑤. ∃𝑣 . (𝑤 = inl 𝑣 ∗ ⊲(𝐴1 𝑣)) ∨ (𝑤 = inr 𝑣 ∗ ⊲(𝐴2 𝑣))
𝐴 ⊸ 𝐵 ≜ 𝜆𝑤. ∀𝑣 . ⊲(𝐴𝑣) −∗ wp (𝑤 𝑣) {𝐵}

chan 𝑆 ≜ 𝜆𝑤. 𝑤 ↣ 𝑆

Judgements:

Γ ⊨ 𝜎 ≜ ∗(𝑥,𝐴) ∈Γ . 𝐴(𝜎 (𝑥))
Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ ≜ ∀𝜎. (Γ ⊨ 𝜎) −∗ wp 𝑒 [𝜎] {𝑣 . 𝐴 𝑣 ∗ (Γ′ ⊨ 𝜎)}

Session types:

Type♦ ≜ iProto

end ≜ end

!𝐴. 𝑆 ≜ ! (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆
?𝐴. 𝑆 ≜ ? (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

⊕{ ®𝑆} ≜ ! (𝑙 : Z) ⟨𝑙⟩{𝑙 ∈ dom(®𝑆)}. ®𝑆 (𝑙)
&{ ®𝑆} ≜ ? (𝑙 : Z) ⟨𝑙⟩{𝑙 ∈ dom(®𝑆)}. ®𝑆 (𝑙)

Figure 1. Typing judgements and type formers of the semantic type system.

𝑃,𝑄 ∈ iProp implicitly range over an extensible notion of
resources, which includes the program state.
Iris is a higher-order separation logic, so it has the usual

logical connectives such as conjunction (𝑃 ∧𝑄), implication
(𝑃 ⇒ 𝑄), universal (∀𝑥 : 𝜏 . 𝑃) and existential (∃𝑥 : 𝜏 . 𝑃)
quantification, as well as the connectives of separation logic:

• The points-to connective (ℓ ↦→ 𝑣) asserts exclusive
resource ownership of a heap location ℓ ∈ Loc, stating
that it holds the value 𝑣 ∈ Val.
• The separating conjunction (𝑃 ∗𝑄) states that 𝑃 and 𝑄
holds for disjoint sets of resources.
• The separating implication (𝑃 −∗ 𝑄) states that by giv-
ing up ownership of the resources described by 𝑃 , we
obtain ownership of the resources described by𝑄 . Sep-
arating implication is used similarly to implication
since (𝑃 entails 𝑄 −∗ 𝑅) iff (𝑃 ∗𝑄 entails 𝑅).
• The weakest precondition (wp 𝑒 {𝛷}) states that given
a postcondition𝛷 : Val → iProp, the expression 𝑒 is
safe, and, if 𝑒 reduces to a value 𝑣 , then𝛷 𝑣 holds. We
write wp 𝑒 {𝑤. 𝑄} for wp 𝑒 {𝜆𝑤. 𝑄}.

As we see in ğ2.3 these connectives match up with the
type formers for unique references (ℓ ↦→ 𝑣), products (𝑃 ∗𝑄),
and affine functions (𝑃 −∗ 𝑄 and wp 𝑒 {𝛷}).
Iris’s notion of resources is not limited to heap locations,

but can be extended with custom resources. This feature is
used by Actris to extend Iris with support for reasoning about
functional correctness of message-passing programs (ğ2.4)
by means of the connective (𝑐 ↣ −) that asserts exclusive
resource ownership of the channel 𝑐 . Moreover, Iris has an
extensible mechanism of ghost resourses, which we use in
this paper to semantically type safe yet not conventionally
type-checkable programs (ğ4).

To define recursive types semantically (ğ3.3), Iris provides
the later modality (⊲ 𝑃) and the guarded fixpoint operator

(𝜇 𝑥 : 𝜏 . 𝑡), which enable guarded recursive definitions of
Iris propositions and terms. The guarded fixpoint operator
requires all recursive occurrences of the variable 𝑥 to occur
guarded in 𝑡 , where an occurrence is guarded if it appears
below a ⊲ modality. This ensures that 𝑡 is contractive in the

variable 𝑥 , which guarantees that a unique fixpoint exists.
Guarded fixpoints can be folded and unfolded using the
equality 𝜇 (𝑥 : 𝜏). 𝑡 = 𝑡 [(𝜇 (𝑥 : 𝜏). 𝑡)/𝑥].
The proposition ⊲ 𝑃 is strictly weaker than 𝑃 , since 𝑃 en-

tails ⊲ 𝑃 , while the reverse does not hold. The ⊲ modality can
be eliminated by taking a program step, which is formalised
by the Iris proof rule: (⊲ 𝑃) ∗ wp 𝑒 {𝛷} −∗ wp 𝑒 {𝑤. 𝑃 ∗𝛷𝑤}
if 𝑒 ∉ Val and 𝑤 ∉ 𝐹𝑉 (𝑃). This rule indicates that ⊲ 𝑃 can
also be read as ł𝑃 holds after one more step of computationž,
seeing as 𝑃 is obtained without ⊲ modality in the postcondi-
tion of the weakest precondition, denoting that at least one
step has been taken.
In this paper we will not further detail the semantics of

Iris, but refer the interested reader to Jung et al. [30] for an
extensive account of the Iris model and proof rules.

2.3 Term Types

The definitions of our semantic type system are shown in
Figure 1. Types Type𝑘 are indexed by kinds;⋆ for term types,
and ♦ for session types. Meta-variables𝐴, 𝐵 ∈ Type⋆ are used
for term types, 𝑆 ∈ Type♦ for session types, and 𝐾 ∈ Type𝑘
for types of any kind. Term types Type⋆ are defined as Iris
predicates over values, and session types Type♦ are defined
as dependent separation protocols of Actris (ğ2.4).

Type Formers. The ground types (the unit type 1, Boolean
type B, and integer type Z) are defined through member-
ship of the corresponding set ({()}, B, and Z, respectively).
The type former refuniq𝐴 for uniquely-owned references,
𝐴1 ×𝐴2 for products, and 𝐴 ⊸ 𝐵 for affine functions nicely
demonstrate the advantage of separation logicÐsince types
are Iris predicates, they implicitly describe which resources
are owned. The points-to connective (𝑤 ↦→ 𝑣) is used to
describe that refuniq𝐴 consists of the locations 𝑤 ∈ Loc

that hold a value 𝑣 ∈ Val for which the resources 𝐴𝑣 are
owned. The separating conjunction (∗) is used to describe
that 𝐴1 ×𝐴2 consists of tuples (𝑤1,𝑤2), where the resources
𝐴1𝑤1 and 𝐴2𝑤2 are owned separately. The separating im-
plication (−∗) and weakest precondition are used to describe
that the affine function type𝐴 ⊸ 𝐵 consists of values𝑤 that

180

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

when applied to an argument 𝑣 consume the resources 𝐴𝑣 ,
and in return, produce the resources 𝐵 for the result of𝑤 𝑣 .
Note that the weakest precondition wp (𝑤 𝑣) {𝐵} is used so
we can talk about the result of𝑤 𝑣 . We could not use 𝐵 (𝑤 𝑣)
since the term𝑤 𝑣 is not a value.

We use Iris’s later modality (⊲) to ensure that type formers
are contractive, which is needed to model equi-recursive
types using Iris’s guarded fixpoint operator in ğ3.3.

Typing Judgement. As is common in substructural type
systems with operations that perform strong updates, we
use a typing judgement Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ (defined in Figure 1)
with a pre- and post-context Γ, Γ′ ∈ List(String × Type⋆).
These contexts describe the types of variables before and
after execution of the expression 𝑒 .
As is standard in logical relations, we use closing sub-

stitutions to give a semantics to typing contexts. Closing

substitutions 𝜎 ∈ String
fin
−⇀ Val are finite partial functions

that map the free variables of an expression to corresponding
values. Closing substitutions come with a judgement Γ ⊨ 𝜎 ,
which expresses that the closing substitution 𝜎 is well-typed
in the context Γ. The definition of this judgement employs
the iterated separation conjunction∗(𝑥,𝐴) ∈Γ to ensure that
for each variable typing (𝑥,𝐴) in Γ, there is a corresponding
value in the closing substitution 𝜎 (𝑥) for which the resources
𝐴(𝜎 (𝑥)) are owned separately.

The typing judgement Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ is defined in terms
of Iris’s weakest precondition. That is, given a closing sub-
stitution 𝜎 and resources Γ ⊨ 𝜎 for the pre-context Γ, the
weakest precondition holds for 𝑒 (under substitution with 𝜎),
with the postcondition stating that the resources 𝐴𝑣 for the
resulting value 𝑣 are owned separately from the resources
Γ
′ ⊨ 𝜎 for the post-context Γ′.

Typing Rules. Now that the type formers and the typing
judgement are in place, we state the conventional typing
rules as lemmas. We prove these lemmas by unfolding the
definition of the semantic typing judgement Γ ⊨ 𝑒 : 𝐴 ⊨Γ′,
and proving the corresponding proposition in Iris using the
rules for weakest preconditions. A selection of typing rules,
along with Iris’s weakest precondition rules used to prove
them, is presented in Figure 2.
The typing rule for integer literals follows immediately

from wp-val, which states that the weakest precondition of
a value 𝑣 holds if the postcondition 𝛷 𝑣 holds. The typing
rule for variables also uses wp-val. Since the pre-context is
Γ, (𝑥 :𝐴), we can assume ownership of 𝐴𝑣 for some value 𝑣 ,
and should prove a weakest precondition for 𝑣 . After using
wp-val, we prove the postcondition by giving up 𝐴𝑣 . Note
that the post-context is Γ, (𝑥 : any) as ownership of 𝐴 has
beenmoved out. For substructural type systems this is crucial
as in expressions such as let 𝑥 = 𝑦 in 𝑒 , it is generally not
allowed to use𝑦 in 𝑒 as ownership of the type of𝑦 has moved
to 𝑥 . This is formalised by giving the variable 𝑦 type any in

𝑒 . The typing rules for load, let, and parallel composition
are proved using the Iris rules wp-load, wp-let, and wp-par.
The rule for parallel composition moreover relies on the
property (Γ1 · Γ2 ⊨ 𝜎) iff (Γ1 ⊨ 𝜎) ∗ (Γ2 ⊨ 𝜎), which allows
us to subdivide and recombine ownership of the pre- and
post-contexts between both operands.

Type Safety. Type safety means: if [] ⊨ 𝑒 : 𝐴 ⊨Γ, then 𝑒 is
safe, i.e., 𝑒 will not get stuck w.r.t. the language’s operational
semantics. For syntactic type systems, type safety is usually
proven via the progress and preservation theorems. For our
semantic type system, we get type safety from Iris’s ade-
quacy theorem, which states that a closed proof of a weakest
precondition implies safety [30, 33]. Note that our type sys-
tem is affine (resources are not explicitly deallocated), and
thus the post-context Γ in the type safety statement need
not be empty. We use an affine type system as that allows
more practical safe programs to be typeable.

2.4 Session Types

We extend our core type system with the basic session-type
formers for sending a message !𝐴. 𝑆 , receiving a message

?𝐴. 𝑆 , the choice primitives for selection ⊕{ ®𝑆} and branching

&{ ®𝑆}, and the terminator end. We let ®𝑆 : Z
fin
−⇀ Type♦ be finite

partial functions from labels to session types, and often write
®𝑆 = 𝑙1 : 𝑆1, . . . 𝑙𝑛 : 𝑆𝑛 . The term type chan 𝑆 dictates that a
term is a channel that follows the session type 𝑆 .
Session types are defined in terms of Actris’s dependent

separation protocols [24], which are similar to session types in
structure, but can express functional properties of the trans-
ferred data. Dependent separation protocols prot ∈ iProto

are streams of ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot and ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot con-
structors that are either infinite or finite. Here, 𝑣 is the value
that is being sent or received, 𝑃 is an Iris proposition denoting
the ownership of the resources being transferred as part of
the message, and the logical variables ®𝑥 : ®𝜏 bind into 𝑣 , 𝑃 , and
prot to constrain the message 𝑣 and the tail protocol prot. Fi-
nite protocols are ultimately terminated by an end construc-
tor. As an example, the dependent separation protocol ! (ℓ :
Loc) (𝑖 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑖 ∗ 10 ≤ 𝑖}. ? ⟨()⟩{ℓ ↦→ (𝑖 + 1)}. end ex-
presses that an integer reference whose value is at least 10 is
sent, after which the recipient increments it by one and sends
back a unit token () along with the reference ownership.

Actris’s connective 𝑐 ↣ prot denotes ownership of a chan-
nel 𝑐 with a dependent separation protocol prot. The Actris
proof rules are shown in Figure 3. The rule for new_chan ()
allows ascribing any protocol to a new channel, obtaining
ownership of 𝑐 ↣ prot and 𝑐 ′ ↣ prot for the respective
endpoints. Here, prot is the dual of prot, in which any re-
ceive (?) is turned into a send (!), and vice versa. The rule for
send 𝑐 𝑤 requires the head of the protocol to be a send (!),
and the value𝑤 that is sent to match up with the ascribed
value. Concretely, to send a message 𝑤 , one needs to give
up ownership of 𝑐 ↣ ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot, pick an appropriate

181

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

Selection of Iris’s proof rules for weakest preconditions:

𝛷 𝑣 −∗ wp 𝑣 {𝛷} (wp-val)

ℓ ↦→ 𝑣 −∗ wp !ℓ {𝑤. (𝑣 = 𝑤) ∗ (ℓ ↦→ 𝑣)} (wp-load)

wp 𝑒1
{
𝑣 .wp 𝑒2 [𝑣/𝑥] {𝛷}

}
−∗ wp (let 𝑥 = 𝑒1 in 𝑒2) {𝛷} (wp-let)

wp 𝑒1 {𝛷1} ∗ wp 𝑒2 {𝛷2} −∗ wp (𝑒1 | | 𝑒2) {𝑣 . ∃𝑣1, 𝑣2. (𝑣 = (𝑣1, 𝑣2)) ∗𝛷1 𝑣1 ∗𝛷2 𝑣2} (wp-par)

Selection of semantic typing rules:

Γ ⊨ 𝑖 : Z ⊨Γ Γ, (𝑥 :𝐴) ⊨ 𝑥 : 𝐴 ⊨Γ, (𝑥 : any) Γ, (𝑥 : refuniq𝐴) ⊨ !𝑥 : 𝐴 ⊨Γ, (𝑥 : refuniq any)

Γ1 ⊨ 𝑒1 : 𝐴 ⊨Γ2 Γ2, (𝑥 :𝐴) ⊨ 𝑒2 : 𝐵 ⊨Γ3

Γ1 ⊨ (let 𝑥 = 𝑒1 in 𝑒2) : 𝐵 ⊨Γ3 \ 𝑥

Γ1 ⊨ 𝑒1 : 𝐴1 ⊨Γ
′
1 Γ2 ⊨ 𝑒2 : 𝐴2 ⊨Γ

′
2

Γ1 · Γ2 ⊨ 𝑒1 | | 𝑒2 : 𝐴1 ×𝐴2 ⊨Γ
′
1 · Γ

′
2

Figure 2. A selection of Iris’s proof rules and semantic typing rules.

Actris’s proof rules for dependent separation protocols:

wp new_chan ()
{
𝑣 . ∃𝑐, 𝑐 ′. (𝑣 = (𝑐, 𝑐 ′)) ∗ 𝑐 ↣ prot ∗ 𝑐 ′↣ prot

}
(wp-newchan)

𝑐 ↣ ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ∗ 𝑃 [®𝑡/®𝑥] −∗ wp send 𝑐 (𝑣 [®𝑡/®𝑥])
{
𝑐 ↣ prot [®𝑡/®𝑥]

}
(wp-send)

𝑐 ↣ ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot −∗ wp recv 𝑐 {𝑤. ∃®𝑦. (𝑤 = 𝑣 [®𝑦/®𝑥]) ∗ 𝑐 ↣ prot [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥]} (wp-recv)

Semantic typing rules for channels:

Γ ⊨ new_chan () : chan 𝑆 × chan 𝑆 ⊨Γ

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′, (𝑥 : chan (!𝐴. 𝑆))

Γ ⊨ send 𝑥 𝑒 : 1 ⊨Γ′, (𝑥 : chan 𝑆)
Γ, (𝑥 : chan (?𝐴. 𝑆)) ⊨ recv 𝑥 : 𝐴 ⊨Γ, (𝑥 : chan 𝑆)

1 ≤ 𝑖 ≤ 𝑛

Γ, (𝑥 : chan (⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛})) ⊨ select 𝑥 𝑙𝑖 : 1 ⊨Γ, (𝑥 : chan 𝑆𝑖)

Γ, (𝑥 : chan 𝑆1) ⊨ 𝑒1 : 𝐴 ⊨Γ′ · · · Γ, (𝑥 : chan 𝑆𝑛) ⊨ 𝑒𝑛 : 𝐴 ⊨Γ′

Γ, (𝑥 : chan (&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛})) ⊨ branch 𝑥 with 𝑙1 ⇒ 𝑒1 | . . . | 𝑙𝑛 ⇒ 𝑒𝑛 : 𝐴 ⊨Γ′

Figure 3. Actris’s proof rules for dependent separation protocols and semantic typing rules for channels.

instantiation ®𝑡 for the variables ®𝑥 : ®𝜏 so that 𝑤 = 𝑣 [®𝑡/®𝑥],
and give up ownership of the associated resources 𝑃 [®𝑡/®𝑥].
Subsequently, one gets back ownership of the protocol tail
𝑐 ↣ prot [®𝑡/®𝑥]. The rule for recv 𝑐 is essentially dual to
the rule for send 𝑐 𝑤 . One needs to give up ownership of
𝑐 ↣ ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot, and in return acquires the resources
𝑃 [®𝑦/®𝑥], the return value 𝑤 where 𝑤 = 𝑣 [®𝑦/®𝑥], and finally
the ownership of the protocol tail prot [®𝑦/®𝑥], where ®𝑦 are
instances of the variables of the protocol.

Semantics of Session Types. The definitions of session
types are shown in Figure 1. Since session types (Type♦) are
defined as dependent separation protocols iProto, the chan-
nel type chan 𝑆 is defined in terms of Actris’s connective for
channel ownership𝑤 ↣ 𝑆 . The definition of the terminator
(end), send (!), and receive (?) follow from their dependent
separation protocol counterparts. For example !𝐴. 𝑆 is de-
fined as ! (𝑣 : Val) ⟨𝑣⟩{𝐴 𝑣}. 𝑆 . It says that a value 𝑣 is sent
along with ownership of 𝐴 𝑣 .

While the choice types ⊕{ ®𝑆} and &{ ®𝑆} do not have a direct
counterpart in Actris, they can be encoded. For example,

⊕{ ®𝑆} is defined as ! (𝑙 : Z) ⟨𝑙⟩{𝑙 ∈ dom(®𝑆)}. ®𝑆 (𝑙). It expresses
that a valid label 𝑙 ∈ dom(®𝑆) (modelled as an integer) is
sent. This definition makes use of the fact that dependent

separation protocols are dependent, as the protocol tail ®𝑆 (𝑙)
depends on the label 𝑙 that is sent.

Duality. The duality 𝑆 of session types 𝑆 is inherited from
Actris. We thus obtain the usual duality laws (on the left)
from the Actris duality laws (on the right):

end = end end = end

!𝐴. 𝑆 = ?𝐴. 𝑆 ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot

?𝐴. 𝑆 = !𝐴. 𝑆 ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot

Similarly, our semantic definition of the branch (&) and select
(⊕) operators in terms of Actris’s send (!) and receive (?)
protocols, enables us to use the Actris duality laws to prove

182

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

that the dual of a select is a branch, and vice versa:

⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} = &{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}

&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} = ⊕ {𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}

SessionTypingRules. The session typing rules are shown
in Figure 3. Since the channel operations perform strong up-
dates, the typing rules require channels to be variables so
they can update the context. Given the close similarity be-
tween Actris and session typing, the typing rules follow from
the Actris rules up to minor separation logic reasoning.
The rules for select and branch demonstrate the exten-

sibility of our approach. Our language does not have these
operations as primitives, but they can be defined as macros:

select 𝑥 𝑙 ≜ send 𝑥 𝑙

branch 𝑥 with

𝑙1 ⇒ 𝑒1 | . . . |
𝑙𝑛 ⇒ 𝑒𝑛

≜ let 𝑖 = recv 𝑥 in

if 𝑖 = 𝑙1 then 𝑒1 else · · ·
if 𝑖 = 𝑙𝑛 then 𝑒𝑛 else () ()

The typing rule for select follows immediatately from the
proof rule for send. Similarly, the typing rule for branch fol-
lows from the proof rule for recv, but additionaly requires
some reasoning in Iris about the sequence of if-expressions.
Note that the stuck expression () () is used in case no match-
ing branch for the label 𝑙𝑖 has been found. While this stuck
expression is obviously not safe, it is never executed because

of the condition 𝑙 ∈ dom(®𝑆) in the semantic definition of the
select (⊕) and branch (&) operators.

Type Safety. Since the extension with session types did
not change the definition of the semantic typing judgement,
but merely added new type formers and typing rules, the type
safety result from ğ2.3 remains applicable without change.

3 Extending the Type System

We demonstrate the extensibility of our approach to session
types by adding term- and session-level subtyping (ğ3.1 and
ğ3.7), copyable types (ğ 3.2), term- and session-level equi-
recursive types (ğ3.3), term- and session-level polymorphism
(ğ 3.4 and ğ3.5), and locks/mutexes (ğ 3.6). While we only
present a small representative selection of rules associated
with each extension, all rules can be found in Appendix A.

3.1 Term-Level Subtyping

Subtyping𝐴 <: 𝐵 indicates that anymember of type𝐴 is also
a member of type 𝐵. In a semantic type system, subtyping is
defined in terms of the separating implication:

𝐴 <: 𝐵 ≜ ∀𝑣 . 𝐴 𝑣 −∗ 𝐵 𝑣

Γ <:ctx Γ
′ ≜ ∀𝜎. (Γ ⊨ 𝜎) −∗ (Γ′ ⊨ 𝜎)

The definition states that 𝐴 is a subtype of 𝐵 if for any value
𝑣 , we can give up resources 𝐴 𝑣 to obtain resources 𝐵 𝑣 . The
context subtyping relation Γ <:ctx Γ

′ is defined similarly. It
is essentially the pointwise lifting of the subtyping relation,

applied to each type in the contexts Γ and Γ
′. It expresses

that when we hold resources Γ ⊨ 𝜎 for the context Γ, then
we can give those up to obtain the resources Γ′ ⊨ 𝜎 for Γ′.

With these definitions at hand, we prove the usual sub-
sumption rule as a lemma:

Γ1 <:ctx Γ
′
1 Γ

′
1 ⊨ 𝑒 : 𝐴 ⊨Γ′2 𝐴 <: 𝐵 Γ

′
2 <:ctx Γ2

Γ1 ⊨ 𝑒 : 𝐵 ⊨Γ2

The proof of the above lemma makes use of the Iris proof
rule (∀𝑣 . 𝛷1 𝑣 −∗ 𝛷2 𝑣) −∗ wp 𝑒 {𝛷1} −∗ wp 𝑒 {𝛷2}, which
states that separating implications can be applied in the
postconditions of weakest preconditions.

In addition to the subsumption rule, we prove the conven-
tional subtyping rules as lemmas. For example:

𝐴 <: 𝐴
𝐴 <: 𝐵 𝐵 <: 𝐶

𝐴 <: 𝐶
𝐴 <: any

𝐶 <: 𝐴 𝐵 <: 𝐷

𝐴 ⊸ 𝐵 <: 𝐶 ⊸ 𝐷

𝐴 <: 𝐶 𝐵 <: 𝐷

𝐴 × 𝐵 <: 𝐶 × 𝐷

These lemmas are proved by unfolding the definition of the
subtyping relation, and involve some trivial reasoning using
separating implication in Iris. We will see more interesting
subtyping rules in ğ3.2 and ğ3.7.

3.2 Copyable Types

Session-type systems are substructural, in the sense that
some types are inhabited by values that can be used at most
once. This becomes evident in the variable and load rules
from ğ2.3, which move out ownership by turning the ele-
ment type into the any type. While moving out ownership is
necessary for soundness in general, this is too restrictive for
types that do not assert ownership of any resources, such as
B, Z, or Z ∗ B. These types need not be moved out as their
inhabitants can be used multiple times. We therefore extend
the type system with a notion of copyable types. Concretely,
we define a type former copy and a property copyable:

copy𝐴 ≜ 𝜆𝑤. □(𝐴𝑤)

copyable𝐴 ≜ 𝐴 <: copy𝐴

The type copy𝐴 describes the values of type 𝐴 that can be
freely duplicated (used an arbitrary number of times). We
thus have 𝐴 <: copy𝐴 for ground types 𝐴 ∈ {1,B,Z}, but
not for types like 𝐴 ∈

{
refuniq 𝐵, chan 𝑆

}
that assert owner-

ship. Conversely, we have copy𝐴 <: 𝐴 for any type 𝐴, i.e.,
copy𝐴 is always a subtype of 𝐴. A type is copyable (written
copyable𝐴) if all of its values can be freely duplicated, i.e.,
when 𝐴 is a subtype of copy𝐴. Ground types (1, B, Z) are
copyable, and copyability is closed under products and sums.

An example of a typewhere some, but not all, values can be
duplicated is the type 𝐴 ⊸ 𝐵 of affine functions: a function
can only be duplicated if it has not captured ownership of
exclusive resources from the context (through a free variable

183

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

that has a non-copyable type). Hence, we define 𝐴 → 𝐵 ≜

copy (𝐴 ⊸ 𝐵) as the type of unrestricted functions, that can
be applied any number of times.
The type former copy is defined using the persistence

modality (□) of Iris, where □ 𝑃 means that the proposition 𝑃
holds without ownership of (exclusively-owned) resources.
Propositions that do not assert ownership of (exclusively-
owned) resources are called persistent. In particular, □ 𝑃 is
always persistent, allowing the proposition 𝑃 to be freely du-
plicated using the rule □ 𝑃 −∗ (□ 𝑃 ∗𝑃). This allows copyable
types occurring in the context to be duplicated:

(𝑥 :𝐴) <:ctx (𝑥 :𝐴), (𝑥 :𝐴) if copyable𝐴

Our approach of using Iris’s notion of persistence to model
copyability of types is similar to the approach used in Rust-
Belt [27, 28] to model the substructural features of Rust.
However, copyability in RustBelt is defined directly in Iris,
and not reflected into the type system by means of a copy
type former and a subtyping rule.

3.3 Equi-Recursive Term and Session Types

We extend our type system with equi-recursive types us-
ing Iris’s fixpoint operator. Recall from ğ2.2 that Iris’s fix-
point operator requires that recursive definitions are con-
tractive, meaning that recursive occurrences appear below a
later modality (⊲). A recursive occurrence is also considered
guarded when it appears in:

• The postcondition𝛷 of an Iris weakest precondition
wp 𝑒 {𝛷} with 𝑒 ∉ Val.
• The tail prot of the dependent separation protocols
! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot and ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot.
• The protocol prot of the Actris connective 𝑐 ↣ prot

for channel ownership.

These occurences are guarded because the corresponding
constructs contain ⊲ modalities internally.

We lift the guarded recursion operator of Iris into a kinded
operator for equi-recursion in the type system:

𝜇 (𝑋 : 𝑘). 𝐾 ≜ 𝜇 (𝑋 : Type𝑘). 𝐾 (𝐾 is contractive in 𝑋)

From Iris’s proof rule for fixpoints, we get that this is indeed
a fixpoint, i.e., we have 𝜇 (𝑋 : 𝑘). 𝐾 = 𝐾 [𝜇 (𝑋 : 𝑘). 𝐾/𝑋].

We put later modalities in the definitions of type formers
to ensure that they are contractive in all arguments. This
allows construction of recursive term and session types, in-
cluding examples from the session type literature [21], such
as 𝜇 (𝑋 : ♦). !(chan 𝑋). 𝑋 , where the recursion variable 𝑋
occurs in the type of messages.

It is worth noting that most existing logical relation devel-
opments in Iris model iso-recursive types. Hence, instead of
putting ⊲ modalities in the definitions of type formers, they
put a ⊲ modality in the definition of the recursion operator.
This avoids the contractive side-condition, but requires ex-
plicit fold and unfold operations in the language (to take an
operational step to remove the ⊲ modality).

3.4 Polymorphism in Term Types

We extend the type system with kinded parametric poly-
morphism, by introducing universal types ∀(𝑋 : 𝑘). 𝐴 and
existential types ∃(𝑋 : 𝑘). 𝐴, which are polymorphic in a
variable 𝑋 of kind 𝑘 . The kind 𝑘 indicates whether the type
is polymorphic over term types (kind⋆) or session types
(kind ♦). Using polymorphism in term types, we can write
types such as ∀(𝑋 :⋆). 𝑋 → 𝑋 (for describing the polymor-
phic identity function). Using polymorphism in session types,
we can write types such as ∀(𝑋 : ♦). chan (!Z.𝑋) ⊸ chan 𝑋

(for describing a function that reads an integer from a chan-
nel with an arbitrary tail 𝑋). Universal and existential types
are defined as follows:

∀(𝑋 : 𝑘). 𝐴 ≜ 𝜆𝑤. ∀(𝑋 : Type𝑘). wp (𝑤 ()) {𝐴}

∃(𝑋 : 𝑘). 𝐴 ≜ 𝜆𝑤. ∃(𝑋 : Type𝑘). ⊲(𝐴𝑤)

As is custom for logical relations in Iris, these types are de-
fined in the style of parametricityÐthey use Iris-level univer-
sal and existential quantifiers over semantic types 𝑋 : Type𝑘 .
This is possible because Iris supports higher-order impred-
icative quantification (i.e., quantification over Iris predicates
and Actris protocols).
Note that universal types are inhabited by values𝑤 that

produce a value of the instantiated type 𝐴 when applied to
the unit value (), as indicated by the weakest precondition
in the definition. In other words, the inhabitants of universal
types are thunks. This is since we consider a type systemwith
explicit type abstraction and type instantiation constructs.
Since the base language is untyped, we use term-level ab-
stractions to indicate type abstraction and instantiation: type
abstraction is written 𝜆 _. 𝑒 and type instantiation is written
𝑤 () when𝑤 is a type abstraction. By using explicit thunks,
we avoid having to impose anML-like value restriction [50] to
ensure type safety in the presence of imperative side-effects.
The typing rules for term-level polymorphism are standard
and can be found in Appendix A.

3.5 Polymorphism in Session Types

A more interesting extension is polymorphism in session
types [18]. An example is the following type, which describes
the interaction with a polymorphic computation service:

compute_type ≜ 𝜇 (rec : ♦).
⊕{cont : !(𝑋 :⋆) (1 ⊸ 𝑋). ?𝑋 . rec, stop : end}

The service can be used by sending computation requests
1 ⊸ 𝑋 , and then awaiting their results𝑋 . Different types can
be picked for the type variable 𝑋 at each recursive iteration.

To extend our type system with polymorphism in session
types, we redefine the send and receive session types to

include binders ®𝑋 for type variables:

! ®𝑋 :®𝑘
𝐴. 𝑆 ≜ ! (®𝑋 : ®Type𝑘) (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

? ®𝑋 :®𝑘
𝐴. 𝑆 ≜ ? (®𝑋 : ®Type𝑘) (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

184

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

Iris’s proof rules for locks:

isLock lk 𝑅 −∗ □(isLock lk 𝑅)

𝑅 −∗ wp newlock () {lk. isLock lk 𝑅}

isLock lk 𝑅 −∗ wp acquire lk {𝑅}

isLock lk 𝑅 ∗ 𝑅 −∗ wp release lk {True}

Semantic typing rules for mutexes:

copyable (mutex𝐴) Γ ⊨ newmutex : 𝐴→ mutex𝐴 ⊨Γ

Γ, (𝑥 : mutex𝐴) ⊨ acquiremutex 𝑥 : 𝐴 ⊨Γ, (𝑥 : mutex𝐴)

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′, (𝑥 : mutex𝐴)

Γ ⊨ releasemutex 𝑥 𝑒 : 1 ⊨Γ′, (𝑥 : mutex𝐴)

Figure 4. Iris’s proof rules for locks and semantic typing rules for mutexes.

The binders ®𝑋 are kinded so that we can quantify over both
term types and session types.
This definition relies on the fact that binders ®𝑥 : ®𝜏 in Ac-

tris’s dependent separation protocols ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot and
? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot are higher-order and impredicative (i.e.,
they allow quantification over Iris predicates and Actris pro-
tocols). The typing rules are extended to allow instantiation
of binders when sending a message, and elimination of type
variables when receiving a message. Concretely, the rule
for channel creation remains unchanged, while the rules for
send and receive become:

Γ ⊨ 𝑒 : 𝐴[®𝐾/ ®𝑋] ⊨Γ′, (𝑥 : chan (! ®𝑋 :®𝑘
𝐴. 𝑆))

Γ ⊨ send 𝑥 𝑒 : 1 ⊨Γ′, (𝑥 : chan 𝑆 [®𝐾/ ®𝑋])

Γ, (𝑥 : chan 𝑆), (𝑦 :𝐴) ⊨ 𝑒 : 𝐵 ⊨Γ′ ®𝑋 ∉ 𝐹𝑉 (Γ, Γ′, 𝐵)

Γ, (𝑥 : chan (? ®𝑋 :®𝑘
𝐴. 𝑆)) ⊨ let𝑦 = recv 𝑥 in 𝑒 : 𝐵 ⊨Γ′ \ {𝑦}

The second rule requires the result 𝑦 of recv to be let-bound

to ensure that the type variables ®𝑋 cannot escape into the
context Γ′ or the type 𝐵.
With this rule, we can type check the following function

that follows the computation service type compute_type:

compute_service ≜ rec go 𝑐 =

branch 𝑐 with

cont ⇒ let 𝑓 = recv 𝑐 in send (𝑓 ()) ; go 𝑐
| stop⇒ ()
end

We can prove the typing judgement Γ ⊨ compute_service :
chan compute_type → () ⊨Γ using only the typing rules
of our semantic type system. In ğ4.2 we consider a client
that uses this service, which cannot itself be type checked
using our typing rules but rather requires a manual proof of
its typing judgement.

3.6 Locks and Mutexes

The substructural nature of channels (of type chan 𝑆) ensure
that they can be used by at most one thread at the same time.
Balzer and Pfenning [5] proposed a more liberal extension
of session types that allows channels to be shared between
multiple threads via locks. We show that we can achieve a
similar kind of sharing by extending our type system with a

type former mutex𝐴 of mutexes (i.e., lock-protected values
of type 𝐴) inspired by Rust’s Mutex library. For example,
mutexes make it possible to share the channel to the com-
putation service compute_type from ğ3.5 between multiple
clientsÐthey can acquire the mutex (mutex compute_type),
send any number of computation requests, retrieve the cor-
responding results, and then release the mutex.
The mutex type former is copyable, and comes with op-

erations newmutex to allocate a mutex, acquiremutex to
acquire a mutex by blocking until no other thread holds it,
and releasemutex to release the mutex. The typing rules
are shown in Figure 4 and include the type former mutex,
which signifies that the mutex is acquired.

To extend our type system with mutexes we make use of
the locks library that is available in Iris. This library consists
of operations newlock, acquire, and release, which are
similar to the mutex operations, but do not protect a value.
Themutex operations are defined in terms of locks as follows:

newmutex ≜ 𝜆𝑦. (newlock (), ref 𝑦)

acquiremutex ≜ 𝜆 𝑥. acquire (fst 𝑥); ! (snd 𝑥)

releasemutex ≜ 𝜆 𝑥 𝑦. (snd 𝑥) ← 𝑦; release (fst 𝑥)

That is, newmutex creates a lock alongside a boxed value. The
value can then be acquired with acquiremutex, which first
acquires the lock. Finally, releasemutex moves the value
back into the box, and releases the lock.
The Iris rules for locks are shown in Figure 4 and make

use of the representation predicate isLock lk 𝑅, which ex-
presses that a lock lk guards the resources 𝑅. When creating
a new lock one has to give up ownership of 𝑅, and in turn,
obtains the representation predicate isLock lk 𝑅. The repre-
sentation is persistent, so it can be freely duplicated. When
entering a critical section using acquire lk, a thread gets
exclusive ownership of 𝑅, which has to be given up when
releasing the lock using release lk. Using the lock repre-
sentation predicate, we define type formers for mutexes:

mutex𝐴 ≜ 𝜆𝑤. ∃lk, ℓ . (𝑤 = (lk, ℓ)) ∗
isLock lk (∃𝑣 . (ℓ ↦→ 𝑣) ∗ ⊲(𝐴𝑣))

mutex𝐴 ≜ 𝜆𝑤. ∃lk, ℓ . (𝑤 = (lk, ℓ)) ∗ (ℓ ↦→ −) ∗
isLock lk (∃𝑣 . (ℓ ↦→ 𝑣) ∗ ⊲(𝐴𝑣))

The mutex type former states that its values are pairs of
locks and boxed values. The mutex type former additionally

185

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

Actris’s proof rules for subprotocols:
(
∀®𝑥 : ®𝜏 . 𝑃 −∗

(
prot1 ⊑ ! ⟨𝑣⟩{True}. prot2

))
−∗ (prot1 ⊑ ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot2) if each 𝜏 ∈ ®𝜏 is inhabited (⊑-send-out)

(
∀®𝑥 : ®𝜏 . 𝑃 −∗

(
? ⟨𝑣⟩{True}. prot1 ⊑ prot2

))
−∗ (? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot1 ⊑ prot2) if each 𝜏 ∈ ®𝜏 is inhabited (⊑-recv-out)

𝑃 [®𝑡/®𝑥] −∗ (! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ⊑ ! ⟨𝑣 [®𝑡/®𝑥]⟩{True}. prot [®𝑡/®𝑥]) (⊑-send-in)

𝑃 [®𝑡/®𝑥] −∗ (? ⟨𝑣 [®𝑡/®𝑥]⟩{True}. prot [®𝑡/®𝑥] ⊑ ? ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot) (⊑-recv-in)

? ⟨𝑣1⟩{𝑃1}. ! ⟨𝑣2⟩{𝑃2}. prot ⊑ ! ⟨𝑣2⟩{𝑃2}. ? ⟨𝑣1⟩{𝑃1}. prot (⊑-swap)

⊲(prot1 ⊑ prot2) −∗ (! ⟨𝑣⟩{𝑃 }. prot1 ⊑ ! ⟨𝑣⟩{𝑃 }. prot2) (⊑-send-mono)

⊲(prot1 ⊑ prot2) −∗ (? ⟨𝑣⟩{𝑃 }. prot1 ⊑ ? ⟨𝑣⟩{𝑃 }. prot2) (⊑-recv-mono)

(prot1 ⊑ prot2) −∗ (𝑐 ↣ prot1) −∗ (𝑐 ↣ prot2) (⊑-chan-mono)

Semantic subtyping rules for session polymorphism:

𝑆1 <: !𝐴. 𝑆2

𝑆1 <: !(®𝑋 :®𝑘)
𝐴. 𝑆2

?𝐴. 𝑆1 <: 𝑆2

?
(®𝑋 :®𝑘)

𝐴. 𝑆1 <: 𝑆2
!
(®𝑋 :®𝑘)

𝐴. 𝑆 <: !𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋] ?𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋] <: ?
(®𝑋 :®𝑘)

𝐴. 𝑆

Figure 5. A selection of the Actris’s proof rules for subprotocols and semantic session subtyping rules.

asserts ownership of the reference, implying that the lock
has been acquired. The typing rules for mutexes as shown
in Figure 4 are proven as lemmas.

3.7 Session-Level Subtyping

Session-level subtyping 𝑆 <: 𝑇 , originally presented by Gay
and Hole [20], relates session subtypes 𝑆 with session super-
types 𝑇 , that can be used in place of the subtype, captured
by monotonicity with the subtyping of the channel type:

𝑆 <: 𝑇

chan 𝑆 <: chan 𝑇

Subtyping in session types allows sending supertypes and
receiving subtypes, as well as increasing and reducing the
range of choices for branchings and selections, respectively:

𝐴2 <: 𝐴1 𝑆1 <: 𝑆2

!𝐴1. 𝑆1 <: !𝐴2. 𝑆2

𝐴1 <: 𝐴2 𝑆1 <: 𝑆2

?𝐴1 . 𝑆1 <: ?𝐴2. 𝑆2

®𝑆2 ⊆ ®𝑆1

⊕{ ®𝑆1} <: ⊕{ ®𝑆2}

®𝑆1 ⊆ ®𝑆2

&{ ®𝑆1} <: &{ ®𝑆2}

This is essential for program reuse, e.g., any program that
handles more choices than indicated by a branch type should
be able to accept a channel with that branch type.

In asynchronous session types, one can further extend sub-
typing with a łswappingž rule ?𝐴1. !𝐴2 . 𝑆 <: !𝐴2. ?𝐴1. 𝑆 that
allows performing sends (!) ahead of receives (?), and similar
rules that allow performing selects (⊕) ahead of receives
(?), sends (!) ahead of branches (&), and selects (⊕) ahead of
branches (&) [37]2. For example, using swapping, a client of
the computation service from ğ3.5, with type compute_type

2Discrepancies in the direction between the swapping rules of Mostrous

et al. [37] and us will be discussed in ğ6.

can swap the selects and sends ahead of receives, to send
multiple computation requests at once, and only then await
the computed results.
To extend our semantic session types with session sub-

typing, we make use of Actris’s notion of subprotocols [23],
for which the rules are shown in Figure 5. The first four
rules mimic the behaviour of session subtyping in how it is
possible to send more and receive less, while accounting for
the protocol-level binders of dependent separation protocols.
In particular, we can (1) move out binders and propositions
of right-hand side sending protocols (⊑-send-out) and (2)
left-hand side receiving protocols (⊑-recv-out), and (3) move
in binders and propositions of right-hand side sending pro-
tocols (⊑-send-in) and (4) left-hand side receiving protocols
(⊑-recv-in). Rule ⊑-swap accounts for the swapping of sends
and receives that are independent of each other, as guaran-
teed by the omission of binders in the rule. If binders are
present, the first four rules should be used first. Rules ⊑-send-
mono and ⊑-recv-mono account for the monotonicity of the
subprotocol relation in the tails, and rule ⊑-chan-mono states
that Actris’s connective for channel ownership is closed
under the subprotocol relation. The subprotocol relation is
reflexive and transitive.

With Actris’s subprotocol relation at hand, we define the
semantic subtyping relation for session types as follows:

𝑆 <: 𝑇 ≜ 𝑆 ⊑ 𝑇

We then prove the conventional subtyping rules for asyn-
chronous session types as lemmas using the rules in Figure 5
for Actris’s subprotocol relation. These subtyping rules in-
clude, but are not limited to, contra- and covariance of the
type 𝐴 of the send !𝐴. 𝑆 and receive ?𝐴. 𝑆 session types re-
spectively, the various forms of swapping as described in
the beginning of this section, and the rules for reducing and

186

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

increasing the range of choices for selecting and branching
protocols as also shown in the beginning of this section.

As a new feature, which up to our knowledge is not present
in existing session type systems, we prove the subtyping
rules for polymorphic session types as shown in Figure 5. For
sending session types, we can instantiate the polymorphic
types of subtypes, and generalise over the polymorphic types
for supertypes. Conversely, for receiving session types, we
can instantiate the polymorphic types of supertypes, and
generalise over the polymorphic types for subtypes.
Subtyping for polymorphic session types is useful to de-

scribe the interaction between generic services and concrete
clients. For example, consider a mapping service to which
one can send a function 𝐴 ⊸ 𝐵, a value 𝐴, and get back the
mapped result 𝐵. The most generic session type for interact-
ing with such a service would be the following:

!(𝑋,𝑌 :⋆) (𝑋 ⊸ 𝑌). !𝑋 . ?𝑌 . end

Now assume that we have type checked a concrete client
with the following session type:

!(Z ⊸ B) . !Z. ?B. end

While this concrete session type is not compatible with the
one expected by the service, we can use the subtyping rela-
tion to weaken the generic type into the concrete one:

!(𝑋,𝑌 :⋆) (𝑋 ⊸ 𝑌). !𝑋 . ?𝑌 . end ⊑ !(Z ⊸ B). !Z. ?B. end

The judgement follows from !
(®𝑋 :®𝑘)

𝐴. 𝑆 <: !𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋].

Conversely, one could allocate the types from the perspective
of the concrete client, and then weaken the service type into
the generic type, by generalising over the received types:

?(Z ⊸ B). ?Z. !B. end ⊑ ?(𝑋,𝑌 :⋆) (𝑋 ⊸ 𝑌). ?𝑋 . !𝑌 . end

This subtyping judgement follows from the rule for receive

?𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋] <: ?
(®𝑋 :®𝑘)

𝐴. 𝑆 .

4 Manual Typing Proofs

We demonstrate how safe programs that are not typeable
using the existing typing rules can be assigned a typing
judgement via a manual proof in Iris/Actris. We call such
proofs manual typing proofs. As advocated by Jung et al.
[27, 28], such proofs are useful since typing judgements,
regardless of whether they have been derived manually or
by using our typing rules, are interchangeable. While Jung
et al. use such proofs to verify low-level concurrent libraries,
we use them to verify binary message-passing programs
where the user of one endpoint is verified using existing
typing rules, and the other via a manual typing proof.

We first provide an intuition for the manual typing proof
approach by proving the typing judgement of the parallel re-
ceiving program from the introduction (ğ4.1), and then show
a more realistic example by proving the typing judgement
of a parallel client of the computation service from ğ3.5 that
uses a producer/consumer pattern (ğ4.2).

4.1 Receiving in Parallel

Consider the example from the introduction (where the locks
have been made explicit):

threadprog ≜ 𝜆 𝑐 lk. acquire lk;
let 𝑥 = recv 𝑐 in

release lk;
𝑥

lockprog ≜ 𝜆 𝑐. let lk = newlock () in
(threadprog 𝑐 lk | | threadprog 𝑐 lk)

We want to prove:

Γ ⊨ lockprog : chan (?Z. ?Z. end) ⊸ (Z × Z) ⊨Γ

This typing judgement is not derivable from the typing rules
we presented so far, even with mutexes instead of plain locks,
as the channel type changes each time the lock/mutex is
acquired and released. However, we can unfold the definition
of the semantic typing judgement and types, which gives us
the following proof obligation in Iris/Actris:

(𝑐 ↣ ? (𝑣1 : Val) ⟨𝑣1⟩{𝑣1 ∈ Z}.
? (𝑣2 : Val) ⟨𝑣2⟩{𝑣2 ∈ Z}. end) −∗

wp lockprog 𝑐

{
𝑣 . ∃𝑣1, 𝑣2 .

(𝑣 = (𝑣1, 𝑣2)) ∗
⊲(𝑣1 ∈ Z) ∗ ⊲(𝑣2 ∈ Z)

}

The proof of above obligation is carried out using Iris’s sup-

port for fractional permissions 𝑞
𝛾
where 𝑞 ∈ (0, 1]Q and

𝛾 is an identifier. The permission reflects how much of the
channel protocol its owner is allowed to resolve, enforced
by the following lock invariant:

chaninv ≜

(𝑐 ↣ ? (𝑣1 : Val) ⟨𝑣1⟩{𝑣1 ∈ Z}.
? (𝑣2 : Val) ⟨𝑣2⟩{𝑣2 ∈ Z}. end) ∨ (𝑖)

(𝑐 ↣ ? (𝑣2 : Val) ⟨𝑣2⟩{𝑣2 ∈ Z}. end ∗ 1/2
𝛾
) ∨ (𝑖𝑖)

(𝑐 ↣ end ∗ 1
𝛾
) (𝑖𝑖𝑖)

The invariant describes that the channel is in one of three
states: (i) no values have been received yet, (ii) one value has
been received, or (iii) all values have been received. State (ii)
and (iii) assert that the invariant (not the thread) has half
and full ownership of the fractional permission respectively.
The proof is carried out by allocating a full fractional

permission 1
𝛾
(with a fresh identifier 𝛾), after which the

lock predicate isLock lk chaninv is allocated by giving
up ownership of the channel 𝑐 , where chaninv is initially
in state (i). The fractional permission is then split into two

halves 1/2
𝛾
, which are each delegated to a thread, along

with the persistent lock predicate isLock lk chaninv. Both
threads have the same proof obligation:

(isLock lk chaninv ∗ 1/2
𝛾
) −∗

wp threadprog 𝑐 lk {𝑣 . 𝑣 ∈ Z}

First, the lock invariant is obtained by acquiring the lock.
The channel can then either be in state (i) or (ii), as having

187

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

compute_client ≜ 𝜆 l 𝑐.
let 𝑛 = llength l in

let cntr = ref 0 in
let l′ = lnil () in
let lk = newlock () in
(send_all l cntr lk 𝑐 | |
recv_all l′ 𝑛 cntr lk 𝑐);
l′

send_all ≜
rec go l cntr lk 𝑐 =

if lisnil l then

acquire lk;
select 𝑐 stop;

release lk

else

acquire lk;
select 𝑐 cont;
send 𝑐 (lpop l);
cntr ← !cntr + 1

release lk;
go l cntr lk 𝑐

recv_all ≜
rec go l 𝑛 cntr lk 𝑐 =

if 𝑛 = 0 then () else
acquire lk;
if !cntr = 0 then
release lk;
go l 𝑛 cntr lk 𝑐

else

let 𝑥 = recv 𝑐 in

cntr ← !cntr − 1;
release lk;
go l (𝑛 − 1) cntr lk 𝑐;
lcons 𝑥 l

Figure 6. A producer-consumer client for the computation service. (The operations on lists llength, lnil, lisnil, and lpop,
are standard and their code have thus been elided).

half of the fractional permission excludes the possibility of
the full fraction being in the lock (and thereby state (iii)).
If the invariant is in state (i), the thread takes a step of

the protocol and surrenders its fractional permission 1/2
𝛾

leaving the invariant in state (ii); if the invariant is in state
(ii) a similar step is taken leaving the invariant with the full

fractional permission 1
𝛾
in state (iii).

4.2 A Parallel Computation Client

In ğ3.5 we considered the session type compute_type for a
client of a polymorphic recursive computation service. We
now consider a client compute_client, shown in Figure 6,
which interacts with the service by sending a list of compu-
tation requests and receiving their results in parallel, similar
to the producer-consumer pattern.3 We want to prove:

Γ ⊨ compute_client : list (1 ⊸ 𝐴) ⊸
chan compute_type ⊸ list 𝐴 ⊨Γ

where list 𝐴 ≜ 𝜇 rec. refuniq (1 + (𝐴 × rec)).
The client compute_client operates on a channel enpoint

𝑐 , where the computation service has the other endpoint.
The client creates a shared counter cntr to keep track of the
number of requests that are being processed, a linked list l′

for the results, and a lock lk. It runs the producer send_all
and consumer recv_all in parallel, which both race for
the lock lk to access the channel 𝑐 and counter cntr . The
producer processes the input list l one-by-one by sending
each computation in l on the channel 𝑐 , and increasing the
shared counter cntr thereafter. The consumer recv_all adds
the results one-by-one to the list l′ by receiving them on the
channel 𝑐 , and decreasing the shared counter cntr thereafter.
When both the producer and consumer terminate, the client
returns the list l′ that then contains the results.

3For simplicity, our producer and consumer just iterate through a list,

whereas in reality they would perform some computations so there is a

point in having the producer and consumer operate in parallel.

The type system cannot type check compute_client, as
(1) its safety depends on the length of the list, which is not
available from the type, and (2) the channel 𝑐 is shared and
the type changes between each concurrent access. To prove
that compute_client is semantically typed, we unfold its
typing judgement, and resolve each step of the program in
sequence, by applying the related weakest precondition rules.
We first use the weakest precondition rule for llength:

list 𝐵 l −∗ wp llength l
{
𝑛. 𝑛 = |®𝑣 | ∗ l

list

↦→𝐵 ®𝑣
}

This rule converts the type predicate list 𝐵 of the linked
list l into the separation-logic list representation predicate

l
list

↦→𝐵 ®𝑣 , which additionally makes the contents ®𝑣 of the
linked list l explicit. This predicate is defined as follows:

l
list

↦→𝐵 ®𝑣 ≜





ℓ ↦→ inl () if ®𝑣 = []

∃ℓ2. ℓ ↦→ inr (𝑣1, ℓ2) ∗

𝐴 𝑣1 ∗ ℓ2
list

↦→𝐵 ®𝑣2

if ®𝑣 = [𝑣1] · ®𝑣2

The remainder of the proof is similar to the proof of the par-
allel receive in ğ4.1Ðwe establish a lock invariant chaninv
to share the counter cntr and the channel 𝑐 between the pro-

ducer and consumer, and use a fractional permission 𝑞
𝛾
to

determine the state of the shared channel 𝑐:

chaninv ≜ ∃𝑛. cntr ↦→ 𝑛 ∗
(𝑐 ↣ ((?𝐴)𝑛 · compute_type) ∨ (𝑖)

(𝑐 ↣ ((?𝐴)𝑛 · end) ∗ 1
𝛾
)) (𝑖𝑖)

The lock invariant states that the session type of the channel
starts with a sequence of receive actions (?𝐴)𝑛 , where 𝑛 is
the value of the shared counter cntr . Here, the notation 𝑆𝑛

denotes 𝑆 appended to itself 𝑛 times (the append operation ·
is inherited from Actris). The invariant expresses that either
(i) the channel is still open, which permits unfolding the
recursive definition to send additional requests, or (ii) the
channel terminates with end, after the 𝑛 receive steps have

188

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

been resolved. State (ii) requires the full fractional permission

1
𝛾
, which must be released before closing the channel.

The proof is carried out by allocating the fractional permis-

sion 1
𝛾
(with a fresh identifier 𝛾), after which the weakest

precondition rules for parallel composition (see Figure 2),
the producer send_all, and consumer recv_all are used:

isLock lk chaninv ∗ 1
𝛾
∗ l

list

↦→(1⊸𝐴) ®𝑣 −∗

wp send_all l cntr lk 𝑐
{
l

list

↦→(1⊸𝐴) []
}

isLock lk chaninv ∗ l
list

↦→𝐴 [] −∗

wp recv_all l 𝑛 cntr lk 𝑐
{
∃ ®𝑤. | ®𝑤 | = 𝑛 ∗ l

list

↦→𝐴 ®𝑤
}

The proof of send_all proceeds as follows. Owning 1
𝛾

means the lock invariant is in state (i). Therefore, after un-
folding the recursive tail and instantiating the polymorphic
binder in the type of 𝑐 , we have:

𝑐 ↣ (?𝐴)𝑛 · ⊕

{
cont : !(1 ⊸ 𝐴). ?𝐴. compute_type
stop : end

}

The select and send actions can then be swapped ahead of
the receives, which results in:

𝑐 ↣ ⊕

{
cont : !(1 ⊸ 𝐴). (?𝐴)𝑛+1 · compute_type
stop : (?𝐴)𝑛 · end

}

If the list is non-empty, we resolve a computation step (by
selecting the cont branch and sending a computation with
type 1 ⊸ 𝐴) resulting in 𝑐 ↣ (?𝐴)𝑛+1 ·compute_type. After
incrementing the shared counter cntr , we reestablish the lock
invariant in state (i). If the list is empty, we close the channel
(by selecting the stop branch), resulting in 𝑐 ↣ (?𝐴)𝑛 · end.
We reestablish the lock invariant in state (ii) by giving up

the fractional permission 1
𝛾
.

The proof of recv_all proceeds as follows. We only per-
form a receive operation when the shared counter cntr is
positive, which means we have 𝑐 ↣ ?𝐴. (?𝐴)𝑛−1 · 𝑆 . Here,
𝑆 is compute_type or end, depending on whether the lock
invariant is in state (i) or (ii), respectively. After the receive
operation we have 𝑐 ↣ (?𝐴)𝑛−1 · 𝑆 , so after decrementing
the shared counter cntr we can reestablish the lock invariant.
To finalise the proof of the client compute_client, we

weaken l
list

↦→𝐴 ®𝑤 returned by recv_all to list 𝐴 l by for-
getting about the contents ®𝑤 of the linked list l.

5 Mechanisation in Coq

In this paper, we have used what is often called the łfounda-
tional approachž to semantic type safety [1ś3]. That means
that contrary to conventional logical relation developments,
types are not defined syntactically, and then given a semantic
interpretation. Instead, types are defined as combinators in
terms of their semantic interpretation. This approach gives
rise to an łopenž system that can easily be extended with
new type formers, and is thus particularly suitable for mech-
anisation in a proof assistant like Coq. Furthermore, as we

will show in this section, the foundational approach makes
it possible to reuse Coq’s variables to model type-level bind-
ing, avoiding boilerplate that would be necessary with a
first-order representation of variable binding.

Our mechanisation is built on top of the mechanisation of
Iris and Actris in Coq, which provides a number of notewor-
thy advantages. First, we can reuse their libraries for various
programming constructs, such as locks (from Iris) and chan-
nels (from Actris). Second, we avoid reasoning about explicit
resources in Coq by making use of the MoSeL framework
(formerly, Iris Proof Mode), which provides tactics tailored
for reasoning about the connectives of separation logic, and
thereby hides unnecessary details related to the embedding
of separation logic in Coq [32, 34].

Typing Judgments. Term and session types are repre-
sented as a dependent type indexed by a kind:4

Inductive kind := tty_kind | sty_kind. (* ⋆ or ♦ *)

Inductive lty Σ : kind → Type :=

| Ltty : (val → iProp Σ) → lty Σ tty_kind

| Lsty : iProto Σ → lty Σ sty_kind.

Notation ltty Σ := (lty Σ tty_kind).

Notation lsty Σ := (lty Σ sty_kind).

Typing contexts are represented as association lists:

Inductive ctx_item Σ := CtxItem {

ctx_item_name : string;

ctx_item_type : ltty Σ }.

Notation ctx Σ := (list (ctx_item Σ)).

The semantic term typing judgement is defined as:

(* ltty_car: ltty Σ → (val → iProp Σ) is the

inverse of Ltty *)

Definition ltyped (Γ1 Γ2 : ctx Σ)

(e : expr) (A : ltty Σ) : iProp Σ :=

■ ∀ vs, ctx_ltyped vs Γ1 -∗

WP subst_map vs e {{ v,

ltty_car A v ∗ ctx_ltyped vs Γ2 }}.

Notation "Γ1 ⊨ e : A ⊨Γ2" :=

(ltyped Γ1 Γ2 e A) : bi_scope.

Notation "Γ1 ⊨ e : A ⊨Γ2" :=

(⊢ ltyped Γ1 Γ2 e A) : type_scope.

The typing judgement is defined for the deeply-embedded
expressions expr of the (untyped) language HeapLang, which
is the default language shipped with Iris, and is extended by
the Actris framework with connectives for message passing.
HeapLang use strings for variables, and hence our typing
contexts ctx do that too. Compared to e.g., De Bruijn indices
or locally nameless, the use of strings makes it possible to
write programs in a human-readable way.5

4As is common in Iris, all definitions are parameterised by a Σ, which

describes the resources that are available. For the purpose of this paper, this

technicality can be ignored.
5Since HeapLang’s operational semantics is defined on closed terms, the use

of strings does not cause issues with variable capture. See also [41, Section

STLC] for a discussion on the use of strings for variables.

189

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

The typing judgement is identical to the definition in ğ2.3,
but is defined as an internal notion in Iris, i.e., it is an Iris
proposition iProp instead of a Coq proposition Prop. This pro-
vides some additional flexibility in manual typing proofs. For
example, it makes it possible to prove typing judgements
using Löb induction, without having to unfold their defini-
tion. To ensure that the typing judgement can be used as an
ordinary proposition of higher-logic in Iris, it contains the
plainly modality (■), which ensures that it does not capture
any separation logic resources.6 We define two notations
so that the typing judgement can be used internally and ex-
ternally. The second notation uses the validity predicate of
Iris (⊢), which turns an iProp into a Prop.

Typing Lemmas. As an example of how a semantic typ-
ing rule looks like in Coq, consider the lemma corresponding
to the typing rule for let-expressions:

Lemma ltyped_let Γ1 Γ2 Γ3 x e1 e2 A1 A2 :

(Γ1 ⊨ e1 : A1 ⊨Γ2) -∗

(ctx_cons x A1 Γ2 ⊨ e2: A2 ⊨Γ3) -∗

(Γ1 ⊨ (let: x := e1 in e2) : A2 ⊨

ctx_filter_eq x Γ2 ++ ctx_filter_ne x Γ3).

The typing rule of let shows the handling of shadowing of
variables: ctx_cons x A1 Γ2 removes all bindings of x from Γ2

before adding the new binding, and ctx_filter_eq x Γ2makes
sure that potentially overshadowed variables are preserved.
Dealing with shadowing in the proof is trivial due to some
general-purpose lemmas for Γ ⊨ 𝜎 (ctx_ltyped Γ vs in Coq).
The proof of the typing rule is 9 lines of Coq code.

The term type for kinded universal types is defined as:

Definition lty_forall {k}

(C : lty Σ k → ltty Σ) : ltty Σ :=

Ltty (𝜆 w, ∀ X, WP w #() {{ ltty_car (C X) }}).

Notation "∀ X, C" := (lty_forall (𝜆 X, C)): lty_scope.

Lemma ltyped_tlam Γ1 Γ2 Γ' e k (C : lty Σ k → ltty Σ) :

(∀ K, Γ1 ⊨ e: C K ⊨[]) -∗

(Γ1 ++ Γ2 ⊨ (𝜆: <>, e) : (∀ X, C X) ⊨Γ2).

Lemma ltyped_tapp Γ Γ2 e k (C : lty Σ k → ltty Σ) K :

(Γ ⊨ e : (∀ X, C X) ⊨Γ2) -∗

(Γ ⊨ e #() : C K ⊨Γ2).

The universal type shows how the semantic approach allows
binders to be modelled using Coq’s binders. The argument
C of lty_forall is a Coq function, and thus the binding in
the notation ∀X, C is simply achieved using a Coq lambda
abstraction 𝜆 X, C. This approach gives the same feeling of
working with higher-order abstract syntax [40], albeit being
semantical instead of syntactical. The typing rule for type
abstraction similarly uses Coq’s binders, where the ∀ K in
the premise implicitly ensures that K is fresh. The proof of
the two typing rules are 4 and 3 lines of code, respectively.
The session type for selection (⊕) and branching (&) is:

6The plainly modality (■) is like the persistent modality (□), but additionally

makes sure no persistent resources are captured.

Inductive action := Send | Recv.

Definition lty_choice (a : action)

(Ss : gmap Z (lsty Σ)) : lsty Σ :=

Lsty (<a@(i: Z)> MSG #x {{ ⌜is_Some (Ss !! i)⌝ }};

lsty_car (Ss !!! i)).

Notation lty_select := (lty_choice Send).

Lemma ltyped_select Γ x i S Ss :

Γ !! x = Some (chan (lty_select Ss)) →

Ss !! i = Some S →

Γ ⊨ select x #i : () ⊨env_cons x (chan S) Γ.

Since ⊕ and & are dual, this definition (as well as in many
other dual definitions, lemmas, and proofs) are factorised
using the inductive type action. The syntax <a@(®𝑥 : ®𝜏)> MSG 𝑣

{{ 𝑃 }}; prot expands to Actris’s ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot or ? ®𝑥 :
®𝜏 ⟨𝑣⟩{𝑃 }. prot depending on the action a. The definition uses
the finite map library gmap of std++ [45], to represent the
choices Ss. The notation Ss !!! i is the lookup function on
maps, whose result is only well-defined if i is in the map Ss,
as required by is_Some (Ss !! i). The notation ⌜_⌝ embeds
a Coq Prop into Iris. The typing rule for select requires the
label i to be in the map Ss, and updates the channel S based
on the label. The proof makes use of Actris’s proof rules, and
is 6 lines of code.

Type Safety. The type safety lemma is stated as follows:

Lemma ltyped_safety e 𝜎 es 𝜎' e' :

(∃ A, [] ⊨ e : A ⊨[]) →

rtc erased_step ([e], 𝜎) (es, 𝜎') → e' ∈ es →

is_Some (to_val e') ∨ reducible e' 𝜎'.

This lemma states that if we have a typing judgment for
a closed expression e, and we start execution of the single
thread e to obtain a list of resulting threads es after any num-
ber of execution steps (modeled using the reflexive-transitive
closure, rtc, of HeapLang’s small-step reduction relation),
then any thread e' in es is either a value or can take a step.

6 Related Work

Session Types. Seminal work on subtyping for binary re-
cursive session types for a synchronous pi-calculus was done
by Gay and Hole [20]. Mostrous et al. [37] expand on this
work by adding support for multi-party asynchronous re-
cursive session types, and later for higher-order process
calculi [36]. These two works present the session subtyp-
ing relation with inverted orientations, inverting the sub-
and supertypes, which has been discussed by Gay [19]. Our
semantic session subtyping relation uses the same orienta-
tion as Gay and Hole. Mostrous et al. [37] also present an
output-input swapping rule, which inspired our swapping
rule in ğ3.7, even though their type system is multi-party, as
the idea is compatible with both session type variants. They
additionally claim that their subtyping is decidable, it was
later proven to not be the case by Bravetti et al. [7], precisely
because of the swapping rule.

190

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

Gay [18] introduced bounded polymorphic session types
where branches contain type variables for term types with
upper and lower bounds. This work neither supports re-
cursive types, session subtyping, nor delegation, but Gay
hypothesised that recursion could be done. Dardha et al.
[13] expanded on this work by adding subtyping and del-
egation, while still only conjecturing that recursion was a
possible extension. Caires et al. [8] devised a polymorphic
session type system for the synchronous pi-calculus with
existential and universal quantifiers at the type-level, but not
at the session-level. However, like Gay’s work, their system
supports neither recursive types nor subtyping.
Thiemann and Vasconcelos [47] introduced label depen-

dent session types, where tails can depend on the communi-
cated message, which allows for encoding choice using send
and receive. This is similar to the encoding of our semantic
choice types in terms of Actris’s dependent send and receive.
While their work does not have asynchronous subtyping
or polymorphism, it supports recursive types over natural
numbers, with a recurser for type checking of such types.
Balzer and Pfenning [5] and Balzer et al. [6] proposed

a session-type system that allows sharing of channels via
locks. Their system contains unrestricted types that can be
shared, linear types that cannot, and modalities to move
between the two through the use of locks. Our mutex type
works similarly with copyable types, but our system is more
general, as the copyable types tie into Iris’s general-purpose
mechanisms for sharing. We can also impose mutexes on
only one endpoint of a channel, while they require mutual
locking on both ends, and integrate manual typing proofs
of racy programs. They provide proofs for subject reduction
and type preservation, not just to obtain type safety, but also
to obtain deadlock freedom, which we do not consider.

Logical Relations. Logical relations have been studied
extensively in the context of Iris, for type safety of type
systems [22, 27, 34], program refinement [16, 34, 35, 44, 48],
robust safety [43], and non-interference [17]. Themost imme-
diately related work in this area is the RustBelt project [27],
which uses logical relations to prove type safety and datarace-
freedom of a large subset of Rust and its standard libraries,
focusing on Rust’s lifetime and borrowing mechanism. Rust-
Belt employs the foundational approach to logical relations
in its Coq development, from which we have drawn much
inspiration. Giarrusso et al. [22] used logical relations in Iris
to prove type safety of a version of Scala’s core calculus
DOT, which has a rich notion of subtyping, but is different
in nature from session subtyping.

The connection between logic and session types has been
studied through the Curry-Howard correspondence by e.g.,

Caires and Pfenning [9], Wadler [49], Carbone et al. [10],
and Dardha and Gay [12]. As part of this line of work, Perez
et al. used logical relations to prove termination [38] and
confluence [39] of session-based concurrent systems.

Mechanisation of Session Types. Mechanisations per-
taining to session types are all fairly recent. There are two
other mechanisations of session types in Iris. Tassarotti et al.
[44] proved termination preserving refinements for a com-
piler from a session-typed language to a functional language
where message buffers are modelled on the heap. Hinrichsen
et al. [23, 24] developed the Actris mechanisation that this
work is built on top of. Both lines of work focus on different
properties than type safety.

Gay et al. [21] explored various notions of duality, mecha-
nising their results in Agda, and demonstrate that allowing
duality to distribute over the recursive 𝜇-operator yields an
unsound system when type variables appear in messages, as
the message type could change in tandem with the dualisa-
tion of the recursion, making endpoints disagree on the type
of exchanged values. In our setup duality does not distribute
over 𝜇. Instead recursive definitions must be unfolded to
expose the session type before duality can be applied, ren-
dering the recursion and message type unchanged. Even so,
we can drop down to Actris and use Löb induction to prove
(subtyping) properties of recursive types and their duals.

Castro et al. [11] focused on the metatheory of binary
session types for synchronous communication, and prove in
Coq, using the locally nameless approach to variable binding,
subject reduction and that typing judgements are preserved
by structural congruence.
Thiemann [46] mechanised an intrinsically-typed defini-

tional interpreter for a session-typed languagewith recursive
types and subtyping in Agda. The mechanisation did, how-
ever, require a substantial amount of manual bookkeeping, in
particular for properties about resource separation. Rouvoet
et al. [42] streamlined the intrinsically-typed approach by
developing separation logic-like abstractions in Agda. They
applied these abstractions to a small session-typed language
without recursive types, subtyping, or polymorphism.

7 Conclusion

In this paper we demonstrate how the foundational semantic
approach to type safety can be applied to session typing and
how to construct and mechanise an extensible session-type
system with support for manual typing proofs. The crux
of the semantic approach is to use a program logic that is
expressive enough to model all intended features (e.g., chan-
nels, subtyping, polymorphism, recursion, locks/mutexes)
while satisfying the required properties (e.g., type safety). By
building on top of the Iris and Actris frameworks we are able
to inherit their constructs to mechanise such an extensible
session-type system with little proof effort.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. Robbert Krebbers was supported by the Dutch Research
Council (NWO), project 016.Veni.192.259.

191

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

A Type System

This appendix includes an extensive overview of the mech-
anised semantic session-type system. Like the paper, all of
the definitions and rules have been mechanised in the Coq
proof assistant, and can be found in [25].

In particular, the appendix shows the type and judgement
definitions in Figure 7, the typing rules in Figures 8 and 9,
and the subtyping rules in Figures 11 and 12.

As some of the details of the type system were omitted in
the main text, we preface the overview with a cursory clari-
fication of these. In particular, we introduce a streamlined
approach for handling copyable versus uncopyable types,
which allows unifying various typing rules (Appendix A.1).
We furthermore describe kinded subtyping and type equiva-
lence (Appendix A.2), shared reference types (Appendix A.3),
and discuss the internal versions of all judgements of the
type system (Appendix A.4).

We omit the typing rule for polymorphic sends from ğ3.5
because it can be derived from the original rule for send
(Ty-ChanSend) along with the subsumption (Ty-Sub) and the
subtyping for instantiating the binders of the send session
type (SubTy-Send-In).

A.1 Uncopy

To handle copyable types, one typically has two rules for
each construct that might move out ownership (one for non-
copyable types and one for copyable types). For example:

Ty-RefUniqLoad-Move

Γ, (𝑥 : refuniq𝐴) ⊨ !𝑥 : 𝐴 ⊨Γ, (𝑥 : refuniq any)

Ty-RefUniqLoad-Copy

copyable𝐴

Γ, (𝑥 : refuniq𝐴) ⊨ !𝑥 : 𝐴 ⊨Γ, (𝑥 : refuniq𝐴)

The full version of our type system unifies these rules as the
single rule Ty-RefUniqLoad using the uncopy type former.
The uncopy type former acts as an inverse of the copy type
former. When uncopy is applied to copy𝐴, copy and uncopy
cancel out, leaving the type 𝐴, as expressed by the subtyp-
ing rule SubTy-Uncopy-Elim. In combination with the rule
SubTy-Copy-Intro, this means that the uncopy type former
has no effect on copyable types 𝐴, i.e., if copyable𝐴, then
uncopy𝐴 <: 𝐴. However, when applied to a non-copyable
type 𝐴, the uncopy type former has an effect, and thus can-
not be stripped. This prevents the value from being used
again, similarly to replacing the type by any.

The uncopy type former is defined in terms of the coreP
modality of Iris (coreP itself is defined in terms of other
logical primitives), which acts as a similar łinversež to the
persistence modality (□). The definition and proof rules of
the coreP modality can be found at https://gitlab.mpi-sws.

org/iris/iris/-/blob/master/theories/bi/lib/core.v.

A.2 Kinded Subtyping and Type Equivalence

The subtyping relation <: is kinded, i.e., it takes arguments
of type Type𝑘 and its definition depends on the kind 𝑘 . By
making the subtyping relation kinded, we can unify subtyp-
ing rules that are identical for both type kinds, such as the
rule SubTy-Refl for reflexivity.
Additionally, to unify subtyping rules that go in both di-

rections, such as the rule SubTy-Rec-Unfold for unfolding
recursive types, we define a relation for type equivalence
𝐾 <:> 𝐿 as the symmetric closure of the subtyping relation:

𝐾 <:> 𝐿 ≜ 𝐾 <: 𝐿 ∧ 𝐿 <: 𝐾

Similar to the subtyping relation, the relation for type equiv-
alence is kinded so it applies to both term and session types.

A.3 Shared References

We also have an additional type former refshr, which is not
mentioned in the main text of the paper. This is the type of
shared references, or references that can be freely duplicated
and shared between threads, but whose type is not allowed to
change by writing new values. Moreover, shared references
can only hold values of a copyable type, to prevent values
from being copied by reading and writing to a reference.

The definition of the type former refshr for shared refer-
ences is standard in logical relation developments in Iris. It is

defined in terms of Iris invariants, written 𝑃 , which contain
a proposition 𝑃 . Invariants are always persistent (even if the
proposition 𝑃 itself is not), meaning they can be freely du-
plicated. Moreover, it is possible to open an invariant to gain
access to the proposition 𝑃 inside, as long as that is restricted
to an atomic program step, and the invariant is re-established
by reproving 𝑃 at the end of the atomic step In practice, this
means that it is only possible to apply atomic read and write
operations to shared references, and the fact that invariants
must be re-established ensures that we cannot change the
type of the value contained in the reference, in contrast to
the store rule for unique references refuniq.

A.4 Internal Judgements

In ğ5 we remarked that in the Coq mechanisation we de-
fined the typing judgement as an internal definition in Iris,
instead of as an external definition in the meta logic. In the
full version of the type system, we use the same treatment
for the typing judgements. To make sure that the judgements
behave like ordinary propositions of higher-order logic (in-
stead of propositions that hold ownership), their definitions
include the plainlymodality (■). This modality carves out the
step-indexed subset of the Iris logic. The rules of the plainly
modality can be found in https://gitlab.mpi-sws.org/iris/iris/-

/blob/master/theories/bi/plainly.v.
As a result of defining all judgements as internal notions,

all typing rules are in fact implications in the Iris logic.

192

https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/lib/core.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/lib/core.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/plainly.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/plainly.v

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

Term Types:

Type⋆ ≜ Val→ iProp

any ≜ 𝜆𝑤. True

1 ≜ 𝜆𝑤. 𝑤 ∈ {()}

B ≜ 𝜆𝑤. 𝑤 ∈ B
Z ≜ 𝜆𝑤. 𝑤 ∈ Z

refuniq𝐴 ≜ 𝜆𝑤. ∃𝑣 . 𝑤 ∈ Loc ∗ (𝑤 ↦→ 𝑣) ∗ ⊲(𝐴𝑣)

refshr 𝐴 ≜ 𝜆𝑤. (𝑤 ∈ Loc) ∗ ∃𝑣 . (𝑤 ↦→ 𝑣) ∗ □(𝐴𝑣)
𝐴1 ×𝐴2 ≜ 𝜆𝑤. ∃𝑤1,𝑤2. 𝑤 = (𝑤1,𝑤2) ∗

⊲(𝐴1𝑤1) ∗ ⊲(𝐴2𝑤2)
𝐴1 +𝐴2 ≜ 𝜆𝑤. ∃𝑣 . (𝑤 = inl 𝑣 ∗ ⊲(𝐴1 𝑣)) ∨

(𝑤 = inr 𝑣 ∗ ⊲(𝐴2 𝑣))
𝐴 ⊸ 𝐵 ≜ 𝜆𝑤. ∀𝑣 . ⊲(𝐴𝑣) −∗ wp (𝑤 𝑣) {𝐵}

chan 𝑆 ≜ 𝜆𝑤. 𝑤 ↣ 𝑆

copy𝐴 ≜ 𝜆𝑤. □(𝐴𝑤)
𝐴→ 𝐵 ≜ copy (𝐴 ⊸ 𝐵)

uncopy𝐴 ≜ 𝜆𝑤. coreP (𝐴𝑤)
𝜇 (𝑋 : 𝑘) . 𝐾 ≜ 𝜇 (𝑋 : Type𝑘). 𝐾 (𝐾 is contractive in 𝑋)
∀(𝑋 : 𝑘). 𝐴 ≜ 𝜆𝑤. ∀(𝑋 : Type𝑘). wp (𝑤 ()) {𝐴}
∃(𝑋 : 𝑘). 𝐴 ≜ 𝜆𝑤. ∃(𝑋 : Type𝑘). ⊲(𝐴𝑤)

mutex𝐴 ≜ 𝜆𝑤. ∃lk, ℓ . (𝑤 = (lk, ℓ)) ∗
isLock lk (∃𝑣 . (ℓ ↦→ 𝑣) ∗ ⊲(𝐴𝑣))

mutex𝐴 ≜ 𝜆𝑤. ∃lk, ℓ . (𝑤 = (lk, ℓ)) ∗ (ℓ ↦→ −) ∗
isLock lk (∃𝑣 . (ℓ ↦→ 𝑣) ∗ ⊲(𝐴𝑣))

Typing Judgement:

Γ ⊨ 𝜎 ≜ ∗(𝑥,𝐴) ∈Γ . 𝐴(𝜎 (𝑥))
Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ ≜ ■(∀𝜎. (Γ ⊨ 𝜎) −∗ wp 𝑒 [𝜎] {𝑣 .𝐴 𝑣 ∗ (Γ′ ⊨ 𝜎)})

Session Types:

Type♦ ≜ iProto

end ≜ end

!𝐴. 𝑆 ≜ ! (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆
?𝐴. 𝑆 ≜ ? (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

! ®𝑋 :®𝑘
𝐴. 𝑆 ≜ ! (®𝑋 : ®Type𝑘) (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

? ®𝑋 :®𝑘
𝐴. 𝑆 ≜ ? (®𝑋 : ®Type𝑘) (𝑣 : Val) ⟨𝑣⟩{𝐴𝑣}. 𝑆

⊕{ ®𝑆} ≜ ! (𝑙 : Z) ⟨𝑙⟩{𝑙 ∈ dom(®𝑆)}. ®𝑆 (𝑙)
&{ ®𝑆} ≜ ? (𝑙 : Z) ⟨𝑙⟩{𝑙 ∈ dom(®𝑆)}. ®𝑆 (𝑙)

Subtyping:

𝐴 <: 𝐵 ≜ ■(∀𝑣 . 𝐴 𝑣 −∗ 𝐵 𝑣)
𝑆 <: 𝑇 ≜ ■(𝑆 ⊑ 𝑇)

𝐾 <:> 𝐿 ≜ 𝐾 <: 𝐿 ∧ 𝐿 <: 𝐾
Γ <:ctx Γ

′ ≜ ■(∀𝜎. (Γ ⊨ 𝜎) −∗ (Γ′ ⊨ 𝜎))

Other:

copyable𝐴 ≜ 𝐴 <: copy𝐴

Figure 7. Typing judgements and type formers.

Basics:

Ty-Unit

Γ ⊨ () : 1 ⊨Γ
Ty-Bool

Γ ⊨ 𝑏 : B ⊨Γ
Ty-Int

Γ ⊨ 𝑖 : Z ⊨Γ

Ty-Neg

Γ ⊨ 𝑒 : B ⊨Γ′

Γ ⊨ ¬𝑒 : B ⊨Γ′

Ty-Arith

Γ ⊨ 𝑒2 : Z ⊨Γ
′

Γ
′ ⊨ 𝑒1 : Z ⊨Γ

′′ op ∈ {+,−}

Γ ⊨ 𝑒1 op 𝑒2 : Z ⊨Γ
′′

Ty-Cond

Γ ⊨ 𝑒2 : Z ⊨Γ
′

Γ
′ ⊨ 𝑒1 : Z ⊨Γ

′′ op ∈ {=, ≤}

Γ ⊨ 𝑒1 op 𝑒2 : B ⊨Γ
′′

Ty-If

Γ ⊨ 𝑒1 : B ⊨Γ
′

Γ
′ ⊨ 𝑒2 : 𝐴 ⊨Γ′′ Γ

′ ⊨ 𝑒3 : 𝐴 ⊨Γ′′

Γ ⊨ if 𝑒1 then 𝑒2 else 𝑒3 : 𝐴 ⊨Γ′′

Ty-Var

Γ, (𝑥 :𝐴) ⊨ 𝑥 : 𝐴 ⊨Γ, (𝑥 : uncopy𝐴)

Ty-Lam

Γ, (𝑥 :𝐴) ⊨ 𝑒 : 𝐵 ⊨Γ′′

Γ · Γ′ ⊨ 𝜆 𝑥. 𝑒 : 𝐴 ⊸ 𝐵 ⊨Γ′

Ty-Rec

Γ = (𝑥1 :𝐴1), . . . , (𝑥𝑛 :𝐴𝑛)
Γcopy = (𝑥1 : uncopy𝐴1), . . . , (𝑥𝑛 : uncopy𝐴𝑛)

Γcopy, (𝑓 :𝐴→ 𝐵), (𝑥 :𝐴) ⊨ 𝑒 : 𝐵 ⊨Γ′′

Γ · Γ′ ⊨ rec 𝑓 𝑥 = 𝑒 : 𝐴→ 𝐵 ⊨Γ′

Ty-App

Γ ⊨ 𝑒2 : 𝐴 ⊨Γ′ Γ
′ ⊨ 𝑒1 : 𝐴 ⊸ 𝐵 ⊨Γ′′

Γ ⊨ 𝑒1 𝑒2 : 𝐵 ⊨Γ
′′

Ty-Let

Γ1 ⊨ 𝑒1 : 𝐴 ⊨Γ2 Γ2, (𝑥 :𝐴) ⊨ 𝑒2 : 𝐵 ⊨Γ3

Γ1 ⊨ let 𝑥 = 𝑒1 in 𝑒2 : 𝐵 ⊨Γ3 \ 𝑥

Ty-Par

Γ1 ⊨ 𝑒1 : 𝐴1 ⊨Γ
′
1 Γ2 ⊨ 𝑒2 : 𝐴2 ⊨Γ

′
2

Γ1 · Γ2 ⊨ 𝑒1 | | 𝑒2 : 𝐴1 ×𝐴2 ⊨Γ
′
1 · Γ

′
2

Ty-Sub

Γ1 <:ctx Γ
′
1 Γ

′
1 ⊨ 𝑒 : 𝐴 ⊨Γ′2 𝐴 <: 𝐵 Γ

′
2 <:ctx Γ2

Γ1 ⊨ 𝑒 : 𝐵 ⊨Γ2

Figure 8. Term typing rules.

193

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

Product and Sums:

Ty-Pair

Γ ⊨ 𝑒2 : 𝐴2 ⊨Γ
′

Γ
′ ⊨ 𝑒1 : 𝐴1 ⊨Γ

′′

Γ ⊨ (𝑒1, 𝑒2) : 𝐴1 ×𝐴2 ⊨Γ
′′

Ty-InL

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′

Γ ⊨ inl 𝑒 : 𝐴 + 𝐵 ⊨Γ′

Ty-InR

Γ ⊨ 𝑒 : 𝐵 ⊨Γ′

Γ ⊨ inr 𝑒 : 𝐴 + 𝐵 ⊨Γ′

Ty-Fst

Γ, (𝑥 :𝐴1 ×𝐴2) ⊨ fst 𝑥 : 𝐴1 ⊨Γ, (𝑥 : uncopy𝐴1 ×𝐴2)
Ty-Snd

Γ, (𝑥 :𝐴1 ×𝐴2) ⊨ snd 𝑥 : 𝐴2 ⊨Γ, (𝑥 :𝐴1 × uncopy𝐴2)

Ty-Case

Γ ⊨ 𝑒1 : 𝐴 + 𝐵 ⊨Γ
′

Γ
′ ⊨ 𝑒2 : 𝐴 ⊸ 𝐶 ⊨Γ′′ Γ

′ ⊨ 𝑒3 : 𝐵 ⊸ 𝐶 ⊨Γ′′

Γ ⊨ case 𝑒1 𝑒2 𝑒3 : 𝐶 ⊨Γ′′

Polymorphism:

Ty-TLam

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′′ 𝑋 ∉ 𝐹𝑉 (Γ, Γ′)

Γ · Γ′ ⊨ 𝜆 _. 𝑒 : ∀𝑋 . 𝐴 ⊨Γ′

Ty-TApp

Γ ⊨ 𝑒 : ∀𝑋 . 𝐴 ⊨Γ′

Γ ⊨ 𝑒 () : 𝐴[𝐾/𝑋] ⊨Γ′

Ty-Pack

Γ ⊨ 𝑒 : 𝐴[𝐾/𝑋] ⊨Γ′

Γ ⊨ 𝑒 : ∃𝑋 . 𝐴 ⊨Γ′

Ty-Unpack

Γ ⊨ 𝑒1 : ∃𝑋 . 𝐴 ⊨Γ′ Γ
′, (𝑥 :𝐴) ⊨ 𝑒2 : 𝐵 ⊨Γ

′′ 𝑋 ∉ 𝐹𝑉 (Γ, Γ′′, 𝐵)

Γ ⊨ let 𝑥 = 𝑒1 in 𝑒2 : 𝐵 ⊨Γ
′′ \ 𝑥

References:

Ty-ToRefShr

Γ ⊨ 𝑒 : refuniq (copy𝐴) ⊨Γ
′

Γ ⊨ 𝑒 : refshr 𝐴 ⊨Γ′

Ty-RefShrLoad

Γ ⊨ 𝑒 : refshr 𝐴 ⊨Γ′

Γ ⊨ !𝑒 : 𝐴 ⊨Γ′

Ty-RefShrStore

Γ ⊨ 𝑒2 : copy𝐴 ⊨Γ′ Γ
′ ⊨ 𝑒1 : refshr 𝐴 ⊨Γ′′

Γ ⊨ 𝑒1 ← 𝑒2 : 1 ⊨Γ
′′

Ty-RefUniqAlloc

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′

Γ ⊨ ref 𝑒 : refuniq𝐴 ⊨Γ′

Ty-RefUniqFree

Γ ⊨ 𝑒 : refuniq𝐴 ⊨Γ′

Γ ⊨ free 𝑒 : 1 ⊨Γ′

Ty-RefUniqStore

Γ ⊨ 𝑒 : 𝐵 ⊨Γ′, (𝑥 : refuniq𝐴)

Γ ⊨ 𝑥 ← 𝑒 : 1 ⊨Γ′, (𝑥 : refuniq 𝐵)

Ty-RefUniqLoad

Γ, (𝑥 : refuniq𝐴) ⊨ !𝑥 : 𝐴 ⊨Γ, (𝑥 : refuniq (uncopy𝐴))

Channels:

Ty-ChanAlloc

Γ ⊨ new_chan : 1→ chan 𝑆 × chan 𝑆 ⊨Γ

Ty-ChanSend

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′, (𝑥 : chan (!𝐴. 𝑆))

Γ ⊨ send 𝑥 𝑒 : 1 ⊨Γ′, (𝑥 : chan 𝑆)

Ty-ChanRecv

Γ, (𝑥 : chan (?𝐴. 𝑆)) ⊨ recv 𝑥 : 𝐴 ⊨Γ, (𝑥 : chan 𝑆)

Ty-ChanRecvPoly

Γ, (𝑥 : chan 𝑆), (𝑦 :𝐴) ⊨ 𝑒 : 𝐵 ⊨Γ′ ®𝑋 ∉ 𝐹𝑉 (Γ, Γ′, 𝐵)

Γ, (𝑥 : chan (? ®𝑋 :®𝑘
𝐴. 𝑆)) ⊨ let𝑦 = recv 𝑥 in 𝑒 : 𝐵 ⊨Γ′ \ {𝑦}

Ty-Select

1 ≤ 𝑖 ≤ 𝑛

Γ, (𝑥 : chan (⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛})) ⊨ select 𝑥 𝑙𝑖 : 1 ⊨Γ, (𝑥 : chan 𝑆𝑖)

Ty-Branch

Γ, (𝑥 : chan 𝑆1) ⊨ 𝑒1 : 𝐴 ⊨Γ′ · · · Γ, (𝑥 : chan 𝑆𝑛) ⊨ 𝑒𝑛 : 𝐴 ⊨Γ′

Γ, (𝑥 : chan (&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛})) ⊨ branch 𝑥 with 𝑙1 ⇒ 𝑒1 | . . . | 𝑙𝑛 ⇒ 𝑒𝑛 : 𝐴 ⊨Γ′

Figure 9. Term typing rules (cont.)

194

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

Locks:

Ty-MutexAlloc

Γ ⊨ newmutex : 𝐴→ mutex𝐴 ⊨Γ

Ty-MutexAcqire

Γ, (𝑥 : mutex𝐴) ⊨ acquiremutex 𝑥 : 𝐴 ⊨Γ, (𝑥 : mutex𝐴)

Ty-MutexRelease

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′, (𝑥 : mutex𝐴)

Γ ⊨ releasemutex 𝑥 𝑒 : 1 ⊨Γ′, (𝑥 : mutex𝐴)

Figure 10. Term typing rules (cont.)

Subtyping Properties:

SubTy-Refl

𝐾 <: 𝐾

SubTy-Trans

𝐾 <: 𝐿 𝐿 <: 𝑀

𝐾 <: 𝑀

SubTy-Bi

𝐾 <: 𝐿 𝐿 <: 𝐾

𝐾 <:> 𝐿

SubTy-Bi-Refl

𝐾 <:> 𝐾

SubTy-Bi-Trans

𝐾 <:> 𝐿 𝐿 <:> 𝑀

𝐾 <:> 𝑀

SubTy-Bi-Trans-Left

𝐾 <:> 𝐿 𝐿 <: 𝑀

𝐾 <: 𝑀

SubTy-Bi-Trans-Right

𝐾 <: 𝐿 𝐿 <:> 𝑀

𝐾 <: 𝑀

SubTy-Bi-Sym

𝐿 <:> 𝐾

𝐾 <:> 𝐿

SubTy-Rec-Unfold

𝜇 𝑋 . 𝐾 <:> 𝐾 (𝜇 𝑋 . 𝐾)

Term Subtyping:

SubTy-Any

𝐴 <: any

SubTy-Lolli

𝐶 <: 𝐴 𝐵 <: 𝐷

𝐴 ⊸ 𝐵 <: 𝐶 ⊸ 𝐷

SubTy-Arr

𝐶 <: 𝐴 𝐵 <: 𝐷

𝐴→ 𝐵 <: 𝐶 → 𝐷

SubTy-Product

𝐴 <: 𝐶 𝐵 <: 𝐷

𝐴 × 𝐵 <: 𝐶 × 𝐷

SubTy-Sum

𝐴 <: 𝐶 𝐵 <: 𝐷

𝐴 + 𝐵 <: 𝐶 + 𝐷

SubTy-Forall

∀𝑋 . (𝐴 <: 𝐵)

∀𝑋 . 𝐴 <: ∀𝑋 . 𝐵

SubTy-Exist

∀𝑋 . (𝐴 <: 𝐵)

∃𝑋 . 𝐴 <: ∃𝑋 . 𝐵
SubTy-Exist-Elim

𝐴[𝐾/𝑋] <: ∃𝑋 . 𝐴

SubTy-Ref-Uniq

𝐴 <: 𝐵

refuniq𝐴 <: refuniq 𝐵

SubTy-Ref-Shr

𝐴 <:> 𝐵

refshr 𝐴 <: refshr 𝐵

SubTy-Chan

𝑆 <: 𝑇

chan 𝑆 <: chan 𝑇

SubTy-Mutex

𝐴 <:> 𝐵

mutex𝐴 <: mutex𝐵

SubTy-MutexGuard

𝐴 <:> 𝐵

mutex𝐴 <: mutex𝐵

Copyable Types:

SubTy-Copy

𝐴 <: 𝐵

copy𝐴 <: copy𝐵

SubTy-Copy-Intro

copyable𝐴

𝐴 <: copy𝐴
SubTy-Copy-Elim

copy𝐴 <: 𝐴

SubTy-Uncopy

𝐴 <: 𝐵

uncopy𝐴 <: uncopy𝐵
SubTy-Uncopy-Intro

𝐴 <: uncopy𝐴

SubTy-Uncopy-Elim

uncopy (copy𝐴) <: 𝐴
SubTy-Copyable-Copy

copyable (copy𝐴)
SubTy-Copyable-Uncopy

copyable (uncopy𝐴)
SubTy-Copyable-Any

copyable any

SubTy-Copyable-Unit

copyable 1

SubTy-Copyable-Bool

copyableB

SubTy-Copyable-Int

copyableZ

SubTy-Copyable-Product

copyable𝐴 copyable𝐵

copyable (𝐴 × 𝐵)

SubTy-Copyable-Sum

copyable𝐴 copyable𝐵

copyable (𝐴 + 𝐵)

SubTy-Copyable-Exists

∀𝑋 . copyable𝐴

copyable (∃𝑋 . 𝐴)
SubTy-Copyable-RefShr

copyable (refshr 𝑋)
SubTy-Copyable-Mutex

copyable (mutex𝑋)

Figure 11. Subtyping rules.

195

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

Context Subtyping:

Ctx-Permute

Γ
′ is a permutation of Γ

Γ <:ctx Γ
′

Ctx-Refl

Γ <:ctx Γ

Ctx-Trans

Γ1 <:ctx Γ2 Γ2 <:ctx Γ3

Γ1 <:ctx Γ3

Ctx-Nil

Γ <:ctx []

Ctx-Cons

𝐴 <: 𝐵 Γ <:ctx Γ
′

(𝑥 :𝐴), Γ <:ctx (𝑥 :𝐵), Γ
′

Ctx-App

Γ1 <:ctx Γ2 Γ
′
1 <:ctx Γ

′
2

Γ1 · Γ
′
1 <:ctx Γ2 · Γ

′
2

Ctx-Copy

(𝑥 :𝐴) <:ctx (𝑥 :𝐴), (𝑥 : uncopy𝐴)

Ctx-Copyable

copyable𝐴

(𝑥 :𝐴) <:ctx (𝑥 :𝐴), (𝑥 :𝐴)

Session Subtyping:

SubTy-Send

𝐵 <: 𝐴 𝑆 <: 𝑇

!𝐴. 𝑆 <: !𝐵.𝑇

SubTy-Recv

𝐴 <: 𝐵 𝑆 <: 𝑇

?𝐴. 𝑆 <: ?𝐵.𝑇

SubTy-Send-In

!
(®𝑋 :®𝑘)

𝐴. 𝑆 <: !𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋]
SubTy-Recv-In

?𝐴[®𝐾/ ®𝑋] . 𝑆 [®𝐾/ ®𝑋] <: ?
(®𝑋 :®𝑘)

𝐴. 𝑆

SubTy-Send-Out

𝑆 <: !𝐴.𝑇

𝑆 <: !
(®𝑋 :®𝑘)

𝐴.𝑇

SubTy-Recv-Out

?𝐴. 𝑆 <: 𝑇

?
(®𝑋 :®𝑘)

𝐴. 𝑆 <: 𝑇

SubTy-Select

∀𝑖 . ®𝑆𝑖 <: ®𝑇𝑖

⊕{®𝑙𝑖 : ®𝑆𝑖 }𝑖∈®𝑖 <: ⊕{
®𝑙𝑖 : ®𝑇𝑖 }𝑖∈®𝑖

SubTy-Select-SubsetEq

®𝑗 ⊆ ®𝑖

⊕{®𝑙𝑖 : ®𝑆𝑖 }𝑖∈®𝑖 <: ⊕{
®𝑙 𝑗 : ®𝑆 𝑗 } 𝑗 ∈®𝑗

SubTy-Branch

∀𝑖 . ®𝑆𝑖 <: ®𝑇𝑖

&{®𝑙𝑖 : ®𝑆𝑖 }𝑖∈®𝑖 <: &{
®𝑙𝑖 : ®𝑇𝑖 }𝑖∈®𝑖

SubTy-Branch-SubsetEq

®𝑖 ⊆ ®𝑗

&{®𝑙𝑖 : ®𝑆𝑖 }𝑖∈®𝑖 <: &{
®𝑙 𝑗 : ®𝑆 𝑗 } 𝑗 ∈®𝑗

SubTy-Swap-Recv-Send

?𝐴. !𝐵. 𝑆 <: !𝐵. ?𝐴. 𝑆

SubTy-Swap-Branch-Send

&{𝑙1 : !𝐴. 𝑆1, . . . , 𝑙𝑛 : !𝐴. 𝑆𝑛} <: !𝐴.&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}
SubTy-Swap-Recv-Select

?𝐴. ⊕ {𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} <: ⊕{𝑙1 : ?𝐴. 𝑆1, . . . , 𝑙𝑛 : ?𝐴. 𝑆𝑛}

SubTy-Swap-Branch-Select

&{𝑙1 : ⊕{𝑙
′
1 : 𝑆 (1,1) , . . . , 𝑙

′
𝑚 : 𝑆 (1,𝑚) },

. . . ,

𝑙𝑛 : ⊕{𝑙 ′1 : 𝑆 (𝑛,1) , . . . , 𝑙
′
𝑚 : 𝑆 (𝑛,𝑚) }}

<: ⊕{𝑙 ′1 : &{𝑙1 : 𝑆 (1,1) , . . . , 𝑙𝑛 : 𝑆 (𝑛,1) },
. . . ,

𝑙 ′𝑚 : &{𝑙1 : 𝑆 (𝑛,1) , . . . , 𝑙𝑛 : 𝑆 (𝑛,𝑚) }}

Append Subtyping:

SubTy-App

𝑆 <: 𝑈 𝑇 <: 𝑉

𝑆 ·𝑇 <: 𝑈 ·𝑉
SubTy-App-Assoc

𝑆 · (𝑇 ·𝑈) <:> (𝑆 ·𝑇) ·𝑈
SubTy-App-Send

(! ®𝑋 𝐴. 𝑆) ·𝑇 <:> ! ®𝑋 𝐴. (𝑆 ·𝑇)
SubTy-App-Recv

(? ®𝑋 𝐴. 𝑆) ·𝑇 <:> ? ®𝑋 𝐴. (𝑆 ·𝑇)

SubTy-App-Select

(⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}) ·𝑇 <:> ⊕{𝑙1 : 𝑆1 ·𝑇, . . . , 𝑙𝑛 : 𝑆𝑛 ·𝑇 }
SubTy-App-Branch

(&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}) ·𝑇 <:> &{𝑙1 : 𝑆1 ·𝑇, . . . , 𝑙𝑛 : 𝑆𝑛 ·𝑇 }

SubTy-App-End-Right

𝑆 · end <:> 𝑆

SubTy-App-End-Left

end · 𝑆 <:> 𝑆

Duality Subtyping:

SubTy-Dual

𝑇 <: 𝑆

𝑆 <: 𝑇

SubTy-Dual-Left

𝑇 <: 𝑆

𝑆 <: 𝑇

SubTy-Dual-Right

𝑇 <: 𝑆

𝑆 <: 𝑇
SubTy-Dual-Send

! ®𝑋 𝐴. 𝑆 <:> ? ®𝑋 𝐴. 𝑆
SubTy-Dual-Recv

? ®𝑋 𝐴. 𝑆 <:> ! ®𝑋 𝐴. 𝑆

SubTy-Dual-Select

⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} <:> &{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}
SubTy-Dual-Branch

&{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛} <:> ⊕{𝑙1 : 𝑆1, . . . , 𝑙𝑛 : 𝑆𝑛}
SubTy-Dual-End

end <:> end

Figure 12. Subtyping rules (cont.)

196

CPP ’21, January 18ś19, 2021, Virtual, Denmark J. Kastberg Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson

References
[1] Amal Ahmed. 2004. Semantics of types for mutable state. Ph.D. Disser-

tation. Princeton University.

[2] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N.

Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic foundations

for typed assembly languages. TOPLAS 32, 3 (2010), 7:1ś7:67. https:

//doi.org/10.1145/1709093.1709094

[3] Andrew W. Appel and David A. McAllester. 2001. An indexed model

of recursive types for foundational proof-carrying code. TOPLAS 23, 5

(2001), 657ś683. https://doi.org/10.1145/504709.504712

[4] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and

Jérôme Vouillon. 2007. A very modal model of a modern, major, gen-

eral type system. In POPL. 109ś122. https://doi.org/10.1145/1190216.

1190235

[5] Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with

Session Types. PACMPL 1, ICFP (2017), 37:1ś37:29. https://doi.org/10.

1145/3110281

[6] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Man-

ifest Deadlock-Freedom for Shared Session Types. In ESOP (LNCS,

Vol. 11423). 611ś639. https://doi.org/10.1007/978-3-030-17184-1_22

[7] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Unde-

cidability of asynchronous session subtyping. Information and Com-

putation 256 (2017), 300ś320. https://doi.org/10.1016/j.ic.2017.07.010

[8] Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho.

2013. Behavioral Polymorphism and Parametricity in Session-Based

Communication. In ESOP (LNCS, Vol. 7792). 330ś349. https://doi.org/

10.1007/978-3-642-37036-6_19

[9] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic

Linear Propositions. In CONCUR (LNCS, Vol. 6269). 222ś236. https:

//doi.org/10.1007/978-3-642-15375-4_16

[10] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko

Yoshida. 2017. Multiparty session types as coherence proofs. Acta

Informatica 54, 3 (2017), 243ś269.

[11] David Castro, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST:

Engineering the Meta-theory of Session Types. In TACAS (LNCS,

Vol. 12079). 278ś285. https://doi.org/10.1007/978-3-030-45237-7_17

[12] Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic

for Deadlock-Free Session-Typed Processes. In FOSSACS (LNCS,

Vol. 10803). 91ś109. https://doi.org/10.1007/978-3-319-89366-2_5

[13] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session

Types Revisited. In PPDP. 139ś150. https://doi.org/10.1007/978-3-030-

17184-1_22

[14] Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical Step-

Indexed Logical Relations. In LICS. 71ś80. https://doi.org/10.1109/

LICS.2009.34

[15] Derek Dreyer, Amin Timany, Robbert Krebbers, Lars Birkedal,

and Ralf Jung. 2019. What Type Soundness Theorem Do You

Really Want to Prove? SIGPLAN blog post, available

at https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-

do-you-really-want-to-prove/.

[16] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A

Mechanised Relational Logic for Fine-Grained Concurrency. In LICS.

442ś451. https://doi.org/10.1145/3209108.3209174

[17] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2020. Compositional

Non-Interference for Fine-Grained Concurrent Programs. To appear

in S&P’21.

[18] Simon J. Gay. 2008. Bounded polymorphism in session types. MSCS

18, 5 (2008), 895ś930. https://doi.org/10.1017/S0960129508006944

[19] Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In

A List of Successes That Can Change the World - Essays Dedicated to

Philip Wadler on the Occasion of His 60th Birthday. 95ś108. https:

//doi.org/10.1007/978-3-319-30936-1_5
[20] Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types

in the pi calculus. Acta Informatica 42, 2-3 (2005), 191ś225. https:

//doi.org/10.1007/s00236-005-0177-z

[21] Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality

of Session Types: The Final Cut. In PLACES (EPTCS, Vol. 314). 23ś33.

https://doi.org/10.4204/EPTCS.314.3

[22] Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and

Robbert Krebbers. 2020. Scala step-by-step: soundness for DOT with

step-indexed logical relations in Iris. PACMPL 4, ICFP (2020), 114:1ś

114:29. https://doi.org/10.1145/3408996

[23] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers.

2020. Actris 2.0: Asynchronous session-type based reasoning in sepa-

ration logic. (2020). Manuscript in preparation.

[24] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers.

2020. Actris: Session-type based reasoning in separation logic. PACMPL

4, POPL (2020), 6:1ś6:30. https://doi.org/10.1145/3371074

[25] Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and

Jesper Bengtson. 2021. Coq Mechanization of łMachine-Checked

Semantic Session Typingž. Archived version at https://zenodo.org/

record/4322752, latest version at https://gitlab.mpi-sws.org/iris/actris.

[26] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo.

1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In ESOP (LNCS, Vol. 1381). 122ś

138. https://doi.org/10.1007/BFb0053567

[27] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. PACMPL 2, POPL (2018), 66:1ś66:34. https://doi.org/10.

1145/3158154

[28] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2020. Safe systems programming in Rust: The promise and the chal-

lenge. To appear in CACM.

[29] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.

Higher-Order Ghost State. In ICFP. 256ś269. https://doi.org/10.1145/

2951913

[30] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris From the Ground Up: A Modular

Foundation for Higher-Order Concurrent Separation Logic. JFP 28

(2018), e20. https://doi.org/10.1017/S0956796818000151

[31] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and

Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.

637ś650. https://doi.org/10.1145/2676726.2676980

[32] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for

Interactive Proofs in Separation Logic. PACMPL 2, ICFP (2018), 77:1ś

77:30. https://doi.org/10.1145/3236772

[33] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan,

Derek Dreyer, and Lars Birkedal. 2017. The Essence of Higher-Order

Concurrent Separation Logic. In ESOP (LNCS, Vol. 10201). 696ś723.

https://doi.org/10.1007/978-3-662-54434-1_26

[34] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

Proofs in Higher-Order Concurrent Separation Logic. In POPL. 205ś

217. https://doi.org/10.1145/3093333.3009855

[35] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017.

A relational model of types-and-effects in higher-order concurrent

separation logic. In POPL. 218ś231. https://doi.org/10.1145/3093333.

3009877

[36] Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and

asynchronous subtyping for the higher-order 𝜋 -calculus. Information

and Computation 241 (2015), 227ś263. https://doi.org/10.1016/j.ic.2015.

02.002

[37] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global

Principal Typing in Partially Commutative Asynchronous Sessions. In

ESOP (LNCS, Vol. 5502). 316ś332. https://doi.org/10.1007/978-3-642-

00590-9_23

197

https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/3110281
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3371074
https://zenodo.org/record/4322752
https://zenodo.org/record/4322752
https://gitlab.mpi-sws.org/iris/actris
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913
https://doi.org/10.1145/2951913
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23

Machine-Checked Semantic Session Typing CPP ’21, January 18ś19, 2021, Virtual, Denmark

[38] Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho.

2012. Linear Logical Relations for Session-Based Concurrency. In ESOP

(LNCS, Vol. 7211). 539ś558. https://doi.org/10.1007/978-3-642-28869-

2_27

[39] Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho.

2014. Linear logical relations and observational equivalences for

session-based concurrency. Information and Computation 239 (2014),

254ś302. https://doi.org/10.1016/j.ic.2014.08.001

[40] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax.

In PLDI. 199ś208. https://doi.org/10.1145/53990.54010

[41] Benjamin C. Pierce et al. 2020. Programming Language Foundations.

https://softwarefoundations.cis.upenn.edu/plf-current/index.html

[42] Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco

Visser. 2020. Intrinsically-typed definitional interpreters for linear,

session-typed languages. In CPP. ACM, 284ś298. https://doi.org/10.

1145/3372885.3373818

[43] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and

compositional verification of object capability patterns. PACMPL 1,

OOPSLA (2017), 89:1ś89:26. https://doi.org/10.1145/3133913

[44] Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order

Logic for Concurrent Termination-Preserving Refinement. In ESOP

(LNCS, Vol. 10201). 909ś936. https://doi.org/10.1007/978-3-662-54434-

1_34

[45] The Coq-std++ Team. 2020. An extended łstandard libraryž for Coq.

Available online at https://gitlab.mpi-sws.org/iris/stdpp.

[46] Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for

Session Types. In PPDP. 19:1ś19:15. https://doi.org/10.1145/3354166.

3354184

[47] Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent

session types. PACMPL 4, POPL (2020), 67:1ś67:29. https://doi.org/10.

1145/3371135

[48] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars

Birkedal. 2018. A logical relation for monadic encapsulation of state:

Proving contextual equivalences in the presence of runST. PACMPL 2,

POPL (2018), 64:1ś64:28. https://doi.org/10.1145/3158152

[49] Philip Wadler. 2012. Propositions as sessions. In ICFP. 273ś286. https:

//doi.org/10.1145/2364527.2364568

[50] Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and

Symbolic Computation 8, 4 (1995), 343ś355.

198

https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1145/53990.54010
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3133913
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1007/978-3-662-54434-1_34
https://gitlab.mpi-sws.org/iris/stdpp
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3158152
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

	Abstract
	1 Introduction
	2 A Tour of Semantic Session Typing
	2.1 Language
	2.2 Semantic Typing in Iris
	2.3 Term Types
	2.4 Session Types

	3 Extending the Type System
	3.1 Term-Level Subtyping
	3.2 Copyable Types
	3.3 Equi-Recursive Term and Session Types
	3.4 Polymorphism in Term Types
	3.5 Polymorphism in Session Types
	3.6 Locks and Mutexes
	3.7 Session-Level Subtyping

	4 Manual Typing Proofs
	4.1 Receiving in Parallel
	4.2 A Parallel Computation Client

	5 Mechanisation in Coq
	6 Related Work
	7 Conclusion
	Acknowledgments
	A Type System
	A.1 Uncopy
	A.2 Kinded Subtyping and Type Equivalence
	A.3 Shared References
	A.4 Internal Judgements

	References

