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We present a foundationally verified implementation of a reliable communication library for asynchronous

client-server communication, and a stack of formally verified components on top thereof. Our library is

implemented in OCaml on top of UDP and features characteristic traits of existing communication protocols,

such as a simple handshaking protocol, bidirectional channels, and retransmission/acknowledgement mecha-

nisms. We specify the library in the Aneris distributed separation logic using a distributed variant of so-called

dependent separation protocols, which hitherto have only been used in a non-distributed concurrent setting.

We demonstrate how our specification of the reliable communication library simplifies formal reasoning about

applications, including a distributed lock manager and a remote procedure call library, which we in turn use

to verify a sequentially consistent lazily replicated key-value store with leader-followers and some clients thereof.

Our development is highly modular – each component is verified relative to specifications of the components

it uses (not the implementation). All the results we present are formalized in the Coq proof assistant.

1 INTRODUCTION
Distributed programming is in some respect similar to message-passing concurrency where threads

coordinate through the exchange of messages. However, contrary to communication between

threads, network communication is unreliable (messages can be dropped, reordered, or duplicated)

and asynchronous (messages arrive with a delay, which, in the presence of network partitions, is in

general indistinguishable from a connection loss, e.g., due to a remote machine crash).

Implementations of distributed applications therefore often rely on a transport layer, such as TCP

or SCTP, to provide reliable communication channels among network servers and clients. Here

“reliable” refers to the requirement that a server must process client requests in the order they are

issued (FIFO order) and should not process each request more than once.
1

Different transport layer libraries share two common traits: (1) they all provide a high-level API,

which hides the implementation details by means of which reliable communication is achieved, and

(2) the API they provide is stated in terms of BSD (Berkely Software Distribution) socket-like API

primitives connect, listen, accept, send, and recv that allow establishing asynchronous client-server

connections and to transmit data via bidirectional channels.

It is well-known that the implementation and use of a transport layer library is challenging and

error-prone[Guo et al. 2013] and thus it is a good target for formal verification. In recent years, there

has been much research progress on tools for analysis and verification of distributed systems using

various techniques, ranging from model checking to mechanized verification in proof assistants.

1
Because of network asynchrony it is very difficult to achieve exactly-once processing [Fekete et al. 1993; Gray 1979; Halpern

1987]. See [Ivaki et al. 2018] for a detailed survey of reliability notions in distributed systems.
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However, most of this research is situated on one of two ends of a spectrum of how the reliable

communication is treated.

On one end, existing work focuses on high-level properties of distributed applications assuming
that the underlying transport layer of the verification framework is reliable, e.g., [Gondelman et al.

2021; Krogh-Jespersen et al. 2020; Sergey et al. 2018], or assuming that the shim connecting the

analysis framework to executable code is reliable [Lesani et al. 2016; Wilcox et al. 2015]. That

can limit guarantees about the verified code and lead to the discrepancies between the high-level

specification, verification tool, and shim of such verified distributed systems [Fonseca et al. 2017].

On the other end of the spectrum, existing work focuses on showing correctness properties of pro-

tocols for reliable communication (e.g., formalization of the TCP protocol implementations [Bishop

et al. 2006; Smith 1996], sliding window protocol verification in 𝜇CRL [Badban et al. 2005], or

Stenning’s protocol verified in Isabelle [Compton 2005]) without capturing the reliability guarantees

in a logic in a modular way that facilitates reasoning about clients of those protocols.

The purpose of the work presented in this paper is to show how we can tie these two loose ends of
the spectrum, by connecting distributed applications to an unreliable network via a high-level modular
specification of a verified implementation of a reliable network communication library, verified on top
of an unreliable network. Concretely, in this paper, we use Aneris [Krogh-Jespersen et al. 2020], a

distributed higher-order separation logic, to present the first modular specification and foundational

verification of an OCaml implementation of a transport-layer-level reliable communication library.

Our implementation uses UDP primitives for unreliable network communication and the verifi-

cation of the implementation leverages Aneris’ facilities for reasoning about UDP-like unreliable
communication primitives.

2

A key point of using a reliable transport layer library is to simplify programming of applications

on top of it. Hence, it should also be expected that our specifications of the reliable communication

library can similarly simply reasoning about applications built on top of the library, by providing

more abstract and simpler reasoning patterns than the low-level Aneris reasoning patterns. We

achieve this by formulating our specifications of the reliable communication library in terms of a

distributed variant of the so-called dependent separation protocols, which we integrate with Aneris
via the Actris framework [Hinrichsen et al. 2020] from which the protocols originate.

To demonstrate the application and expressivity of our specifications, we implement and verify

several non-trivial distributed applications on top of our reliable communication library. In the

remainder of this introduction we give a more detailed overview of the technical development in

the paper and summarize our contributions.

1.1 Overview of the Technical Development and Contributions
Figure 1 gives a graphical overview of the work presented in this paper. As shown in the left side

of the figure, the reliable communication library and the clients thereof are implemented in a subset

of OCaml, on top of an extensible library of simple data structures and message serialization, and a

simple fixed shim that primarily defines OCaml wrappers around the UDP network primitives and

concurrency primitives such as locks and monitors.

The reliable communication library (RCLib) supports asynchronous asymmetric channel creation

(using a 4-way handshake à la SCTP) and is implemented using standard techniques such as

sequence identifiers, retransmissions/acknowledgments, and channel descriptors for bidirectional

data transmission. On top of RCLib we implement a distributed lock manager, an RPC service, and

2
The first publication on Aneris Krogh-Jespersen et al. [2020] assumed duplicate protection of the network; that assumption

has since been lifted, making the Aneris network model very close to UDP unreliable communication.
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Fig. 1. The overview of our approach.

a sequentially consistent lazily replicated key-value store with leader-followers. Finally, we have

implemented and verified some example client programs of the leader-followers key-value store.

As part of this work, we have implemented a simple compiler that translates programs written

in a subset of OCaml to AnerisLang, the formally defined programming language that Aneris
is proved sound for. The formal operational semantics of AnerisLang matches, by design, the

intended operational semantics for the subset of OCaml that we use (Note that there is no official

formal semantics for OCaml). Thus we obtain AnerisLang implementations for every OCaml

implementation, as shown in the figure.

The core contribution of this paper is depicted by the green part of the figure and consists of the

modular specification and verification of the reliable communication library and its clients. The

specification and verification is done formally in Coq using the Aneris distributed separation logic,

and also relies on the so-called ghost theory of Actris. Aneris is itself defined on top of the Iris

base logic, which in turn is modeled and proved sound in Coq. Thus our work is foundational: the

whole tower of reasoning is built on top of and within the Coq proof assistant. For closed examples,

such as the client programs of the leader-followers, we have used the adequacy theorems of Aneris
to extract proofs in Coq that express that the verified programs are indeed safe to run w.r.t. the

formal operational semantics of AnerisLang.
We leverage the fact that Aneris is defined on top of Iris to obtain highly modular and general

specifications. For example, our distributed lock manager can be used to guard any Iris resource,

just like a regular concurrent lock module in Iris can. Similarly, the RPC library specifies request

handlers using abstract pre- and post-condition, which can be instantiated with advanced Iris

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.
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features such as higher-order concurrent abstract predicates (HOCAP) to reason about logically

atomic remote procedure calls.

We stress that each component shown in the figure is verified relative to the specification of

the libraries that it is built on top of (not their implementations); this simplifies reasoning since

the specifications of libraries hide all the implementation details of the libraries. For instance,

the leader-followers is verified on top of the specification of the RPC library, which is expressed

solely in terms of an abstract specification of the remote procedure function. In particular, the

verification of the leader-followers implementation does not involve any reasoning about network-

level communication at all.

Contributions. In summary, we make the following contributions:

• We present the first foundationally verified implementation of a reliable communication

library for asynchronous client-server communication with FIFO at-most once message

delivery guarantee (Section 2).

• We demonstrate that the Actris framework, which has previously only been applied to

message-passing concurrency, can also effectively be applied to specify and verify implemen-

tations of distributed sessions (Section 2).

• We demonstrate the usefulness of our logic by verifying several examples such as a distributed
lock manager, which allow client reasoning about atomic transactions. Furthermore, we

develop a generic remote procedure call library which can be used as a middleware component

to further simplify the formal development of distributed applications (Section 3).

• Using the RPC library, we verify a sequentially consistent lazily replicated key-value store with
leader-followers implementation in which the leader can both read from- and write to the

contents of the store, and the followers lazily replicate the updates from the leader, preserving

the order of the leaders writes. To the best of our knowledge, our proof is the first modular

foundational verification of sequentially consistent lazy replication (Section 4).

• We prove the specifications for the reliable communication library within the Aneris frame-

work, without changing its underlying network model or its axioms. As a result, we obtain

the first program logic in which one can reason both about UDP-like communication and
reliable client-server sessions (Section 5).

• We implement a compiler that translates a subset of OCaml into AnerisLang. All of our
libraries and examples are written in OCaml (∼ 900 loc) using this compiler.

• All of our results are mechanized on top of Aneris logic and Actris framework in the Coq

proof assistant. The development is available in the accompanying artifact [Author(s) 2022].

2 RELIABLE COMMUNICATION LIBRARY
In this section we present the API and specification of the reliable communication library that we

have implemented and verified. We first present the API of the reliable communication library

(Section 2.1). We then cover Actris, the formal foundation of our reliable communication protocol

specifications (Section 2.2). Then, we present the specifications of our reliable communication

library (Section 2.3), and finally, we present a simple example (Section 2.4). We return to the

verification of the library itself in Section 5.

2.1 Reliable Communication Library API
Figure 2 describes the API of the reliable communication library implementation. The API declares

abstract data types of sockets and channel descriptors, and exposes the BSD socket-like primitives

for client-server bidirectional (message-directed) communication.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.
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type ('a, 'b) client_skt
type ('a, 'b) server_skt
type ('a, 'b) chan_descr
val mk_clt_skt : 'a serializer→'b serializer→saddr→('a, 'b) client_skt
val mk_srv_skt : 'a serializer→'b serializer→saddr→('a, 'b) server_skt
val listen : ('a, 'b) server_skt→unit
val accept : ('a, 'b) server_skt→('a, 'b) chan_descr * saddr
val connect : ('a, 'b) client_skt→saddr→('a, 'b) chan_descr
val send : ('a, 'b) chan_descr→'a→unit
val try_recv : ('a, 'b) chan_descr→'b option
val recv : ('a, 'b) chan_descr→'b

Fig. 2. The API of the reliable communication library.

We make an explicit distinction between client_skt, the type of active sockets on which clients

connect to a given server, server_skt, the type of passive sockets on which the servers listen for the

incoming data from multiple clients, and chan_descr, the type of channel descriptors that clients
and servers can use for reliable data transmission, once the clients connection request has been

accepted by the server and the connection has been established.

Furthermore, the library is polymorphic in the types of values exchanged between the clients

and server. This is achieved by making the library serialize the exchanged data internally, so the

user can directly send and receive values of the chosen data types, instead of operating on strings,

which is the standard type of message contents in Aneris. This is reflected in the API by the fact

that the aforementioned socket descriptor types take a pair of type parameters (′a,′ b), and that in

order to create a client or server socket, one must provide serializers for encoding/decoding strings

to and from those data types.

The API of our library can be used following the usual workflow of reliable client-server com-

munication: (1) by calling the listen function, the server is set to listen for incoming connection

requests, which the server can accept, one at a time, by calling the accept function, which returns

a new channel descriptor for each accepted connection; (2) each client connects to the server, by

calling the connect function, which, when it terminates, returns a new channel descriptor on the

client side; (3) once the connection is established, each side can use its own channel descriptor for

reliable data transmission in both directions, by calling send, try_recv and recv functions.

2.2 Actris: specification and reasoning about reliable communication
The Actris framework [Hinrichsen et al. 2020] provides a generic means of specifying and reasoning

about reliable communication for arbitrary implementations of reliable communication.
3
It does so

by using a notion of session-type-inspired separation logic protocols, called dependent separation
protocols, defined by the following three constructors :

prot ∈ iProto ::= ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot | ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot | end

These constructors are used to specify a sequence of obligations to send (!) and receive (?), which can
be terminated by end. More specifically, the constructors ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot and ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot
specify an exchange of a value 𝑣 , along with resources described by 𝑃 , given an instantiation of

the binders ®𝑥 : ®𝜏 . The binders ®𝑥 : ®𝜏 bind into both the value 𝑣 , the proposition 𝑃 , and the tail prot.
The latter means that the protocols are dependent, i.e., that message exchanges can depend on

3
In this section we only cover the details of the Actris framework that are relevant to the this paper. For a more detailed

presentation, see Hinrichsen et al. [2020].
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the exchanges that was made before them. Additionally, dependent separation protocols can be

defined recursively using the Aneris 𝜇-operator (most of the protocols presented in this paper are

recursive). Finally, we often write ! ®𝑥 : ®𝜏 ⟨𝑣⟩. prot instead of ! ®𝑥 : ®𝜏 ⟨𝑣⟩{True}. prot.
The dependent separation protocols are subject to the conventional session type notion of duality

prot, which turns all sends (!) into receives (?), and vice versa, for the given protocol prot:

! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot end = end

By this notion of duality, we can guarantee that any two programs with dual protocols will have

sound communication, since whenever one endpoint expects some message, the other endpoint

will send just that, and vice versa.

As an example consider the following dependent separation protocol of a simple echo-server:

echo_prot ≜ 𝜇rec. ?(𝑠 : String) ⟨𝑠⟩. ! (𝑛 : N) ⟨𝑛⟩{𝑛 = |𝑠 |}. rec
The protocol specifies (from the server’s point of view) how the server first receives an arbitrary

string 𝑠 from the client. The server then replies with a number 𝑛, which corresponds to the length

of the string, as captured by the corresponding message proposition, 𝑛 = |𝑠 |, and then recurses.

Additionally, the dependent separation protocols enjoy a so-called subprotocol relation (⊑),
which captures protocol-preserving updates. That is, local changes that are indistinguishable by
the other party, and therefore safe to perform without coordination. The most prominent such

protocol-preserving update is that of swapping, formally captured by the following relation:

⊑-swap
?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. ! ®𝑦 : ®𝜎 ⟨𝑤⟩{𝑄}. prot ⊑ ! ®𝑦 : ®𝜎 ⟨𝑤⟩{𝑄}. ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot

The rule captures that one can choose to send (!), a message, before the prior receive (?), whenever
their binders are disjoint (this condition ensures that the send is independent of the receive).

To see why this is useful, consider a situation where a client of the echo-server sends two

messages upfront, and only awaits the responses from the server afterwards. The protocol of such

a client cannot possibly be strictly dual to the server’s echo_prot protocol, and so it might seem

that its communication with the server is not inherently sound. However, we can guarantee that it

is sound, if we can update the initially strictly dual protocol, using the protocol-preserving updates

captured by the subprotocol relation, so that the dual of the echo_prot fits the client:

echo_prot ⊑ ! (𝑠1 : String) ⟨𝑠1⟩. ! (𝑠2 : String) ⟨𝑠2⟩.
?(𝑛1 : N) ⟨𝑛1⟩{𝑛1 = |𝑠1 |}. ?(𝑛2 : N) ⟨𝑛2⟩{𝑛2 = |𝑠2 |}. echo_prot

As the client’s first receive and second send are independent, the relation follows directly from

unfolding the recursive definition twice, and using the ⊑-swap rule (and omitted structural rules).

With the dependent separation protocols in hand, we can specify our channel descriptors with

the so-called channel endpoint ownership 𝑐 >
ip−−→
𝑠𝑒𝑟

prot, inspired by a connective of the same name

from the Actris framework. The channel endpoint ownership asserts that 𝑐 is a channel descriptor,

of which we have exclusive ownership. It additionally captures that the channel descriptor must

follow the protocol specified by prot, which is made formal in the following section. Finally, the

channel endpoint ownership asserts that the channel endpoint lives at the node with ip address ip,
and that values sent from it must be serializable by the serializer 𝑠𝑒𝑟 .

2.3 Reliable Communication API and Specifications
Similar to how the OCaml API hides the implementation details of the reliable communication

library, our specification, shown in Figure 3, hides the details of how the implementation is verified

that are irrelevant to the user. It does so by using a so-called dependent specification pattern, in which
the specifications of the API primitives are dependent on the user parameters (UP : RC_UserParams)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.



Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:7

RC User Parameters and Resources:

UP ∈ RC_UserParams ≜
{srv : Address; prot : iProto; ss : Serializer; cs : Serializer}

𝑆 ∈ RC_Resources (UP : RC_UserParams) ≜

{SrvCanInit : iProp;
CanListen : Socket → iProp;
Listens : Socket → iProp;

CltCanInit : Address → iProp;
CanConnect : Socket → Address → iProp}

Server Setup Specifications:
Ht-make-server-socket [S]

{𝑆.SrvCanInit}
⟨𝑆.srv.ip; mk_srv_skt 𝑆.ss 𝑆.cs 𝑆.srv⟩

{𝑤. ∃𝑠𝑘𝑡 .𝑤 = 𝑠𝑘𝑡 ∗ 𝑆.CanListen 𝑠𝑘𝑡 }

Ht-listen [S]

{𝑆.CanListen 𝑠𝑘𝑡 }
⟨𝑆.srv.ip; listen 𝑠𝑘𝑡⟩

{𝑆.Listens 𝑠𝑘𝑡 }

Ht-accept [S]

{𝑆.Listens 𝑠𝑘𝑡 } ⟨𝑆.srv.ip; accept 𝑠𝑘𝑡⟩ {𝑤. ∃𝑐, sa.𝑤 = (𝑐, sa) ∗ 𝑆.Listens 𝑠𝑘𝑡 ∗ 𝑐 >
𝑆.srv.ip−−−−−→
𝑆.ss 𝑆.prot}

Client Setup Specifications:
Ht-make-client-socket [S]

{𝑆.CltCanInit 𝑠𝑎}
⟨𝑠𝑎.ip; mk_sa_skt 𝑆.ss 𝑆.cs 𝑠𝑎⟩

{𝑤. ∃𝑠𝑘𝑡 .𝑤 = 𝑠𝑘𝑡 ∗ 𝑆.CanConnect 𝑠𝑎 𝑠𝑘𝑡 }

Ht-connect [S]

{𝑆.CanConnect 𝑠𝑎 𝑠𝑘𝑡 }
⟨𝑠𝑎.ip; connect 𝑠𝑘𝑡 𝑆 .srv⟩

{𝑤. ∃𝑐.𝑤 = 𝑐 ∗ 𝑐 >
𝑠𝑎.ip−−−→
𝑆.cs 𝑆.prot}

Reliable Data Transmission Specifications:
Ht-reliable-send

{𝑐 >
ip−−→
𝑠𝑒𝑟

! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ∗
𝑃 [®𝑡/®𝑥] ∗ Ser 𝑠𝑒𝑟 (𝑣 [®𝑡/®𝑥])}
⟨ip; send 𝑐 (𝑣 [®𝑡/®𝑥])⟩

{𝑐 >
ip−−→
𝑠𝑒𝑟

prot [®𝑡/®𝑥]}

Ht-reliable-try-recv

{𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot}
⟨ip; try_recv 𝑐⟩

{𝑤. (𝑤 = None ∗ 𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot) ∨
(∃®𝑦.𝑤 = Some (𝑣 [®𝑦/®𝑥]) ∗ 𝑐 >

ip−−→
𝑠𝑒𝑟

prot [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥])}
Fig. 3. The specifications of the Reliable Communication Library

provided by the user, and on the abstract specification resources (𝑆 : RC_Resources UP) pro-
vided by the library itself.

4
For brevity’s sake, we write e.g. 𝑆.srv as being UP .srv, whenever

𝑆 : RC_Resources UP . Given a concrete instance of such user parameters, and the concrete library-

provided abstract specification resources, the user obtains a concrete instance of the proof rules and

some initial resources; here 𝑆.SrvCanInit and 𝑆.CltCanInit sa (for each client).We cover how such

initial resources are freely obtained in Section 5.2. We now explain each of those three components

(user parameters, abstract specification resources, and specifications of the API primitives).

To initialize the library, the user must supply the following four parameters:

• srv: the statically known socket address of the server;

• prot: the dependent separation protocol clients can use to interact with the server;

• ss: the serializer for the values sent by the server/received by clients;

• cs: the serializer for the values sent by clients/received by the server.

4
One can think of the dependent specification pattern as providing a logically specified module interface dependent on

universally quantified user parameters, and existentially quantified abstract specification resources.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.
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The specification resources that the library then provides consist of abstract predicates that the

client must use to start the server and clients, and later, to set up the server and clients connection,

as described in detail below.

Server setup specifications. The specification of the server setup is given by the rules Ht-make-

server-socket [S], Ht-listen [S], and Ht-accept [S]. The Ht-make-server-socket [S] rule consumes

the token 𝑆.SrvCanInit to set up the server socket, which produces the token 𝑆.CanListen 𝑠𝑘𝑡
that must then be passed to the precondition of the Ht-listen [S] rule, in order to put the server

into listening mode. In return, the postcondition of the Ht-listen [S] rule gives back to the user

the token 𝑆.Listens 𝑠𝑘𝑡 which can then be passed to the precondition of the Ht-accept [S] rule in

order to obtain the channel descriptor of the next incoming established connection. Note that the

postcondition of theHt-accept [S] rule not only provides the user with a channel endpoint ownership

𝑐 >
𝑆.srv.ip−−−−−→
𝑆.ss 𝑆.prot for the newly created channel endpoint

5 𝑐 but also gives the 𝑆.Listens 𝑠𝑘𝑡 token
back (so that the accept function can be called again). Finally, note that the channel endpoint

ownership has the initial protocol state 𝑆.prot, the dual of the user parameter protocol.

Client setup specifications. The specifications of the client setup is given by the rules Ht-make-

client-socket [S] and Ht-connect [S]. The former allows setting up the client socket, by turning

the 𝑆.CltCanInit 𝑠𝑎 token into the 𝑆.CanConnect 𝑠𝑎 𝑠𝑘𝑡 token. The latter then allows the client to

connect to the server, consuming the 𝑆.CanConnect 𝑠𝑎 𝑠𝑘𝑡 token to produce the channel endpoint

ownership 𝑐 >
𝑠𝑎.ip−−−→
𝑆.cs 𝑆.prot. The channel endpoint ownership has the initial protocol state 𝑆.prot.

Reliable data transmission specifications. Once a session has been established between the server

and client, they share the same specifications, based on the channel endpoint ownership fragment

𝑐 >
ip−−→
𝑠𝑒𝑟

prot, where prot determines the current state of the session. Both sides can then exchange

values in accordance with the protocol, using Ht-reliable-send and Ht-reliable-try-recv rules.

The Ht-reliable-send rule states that to send a value, the protocol must be in a sending state

(! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot). We must then provide a concrete instantiation (®𝑡 : ®𝜏) of the binders (®𝑥 : ®𝜏), and
give up the ownership of the resources (𝑃 [®𝑡/®𝑥]). Additionally, we must show that the value to be

sent (𝑣 [®𝑡/®𝑥]) is serializable by the associated serializer 𝑠𝑒𝑟 . As a result, we get back the channel

endpoint ownership whose protocol is updated to its dependent tail (prot [®𝑡/®𝑥]).
The Ht-reliable-try-recv rule specifies that to receive a value, the protocol must be in a receiving

state (?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot). If there is nothing to receive, we simply retain ownership of the original

protocol state. Otherwise, we obtain an instantiation (®𝑦 : ®𝜏 ) of the binders specified by the protocol

(®𝑥 : ®𝜏), for which we obtain ownership of the resource specified by the protocol (𝑃 [®𝑦/®𝑥]), and
unification of the received value (𝑤 ) with the value of the protocol (𝑤 = 𝑣 [®𝑦/®𝑥]). As a result, we get
back the channel endpoint ownership whose protocol is updated to its dependent tail (prot [®𝑦/®𝑥]).
Finally, we derive the following specification for a blocking receive (recv) (which blocks until

there is a value to return):

Ht-reliable-recv

{𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot} ⟨ip; recv 𝑐⟩ {𝑤. ∃®𝑦.𝑤 = 𝑣 [®𝑦/®𝑥] ∗ 𝑐 >
ip−−→
𝑠𝑒𝑟

prot [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥]}

2.4 A Simple Example: Verifying an Echo Server
To illustrate how the RCLib specifications can be used concretely, we consider an implementation

of an echo server that returns the length of each incoming request, as presented in Figure 4.

The right-hand side of Figure 4 shows the server’s code. Once the server is started and is listening

to the clients on the socket s, it calls the accept loop. The latter returns, for each newly accepted

5
We use “channel endpoint” and “channel descriptor” interchangeably.
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let client clt srv =
let s =
mk_client_skt str_ser int_ser clt in

let c = connect s srv in
send c "Carpe";
send c "Diem";
let m1 = recv c in
let m2 = recv c in
assert (m1 = 5 && m2 = 4)

let rec serve_loop c =
let req = recv c in
send c (strlen req);
serve_loop c

let rec accept_loop s =
let c = fst (accept s) in
fork serve_loop c;
accept_loop s

let server a =
let s = mk_server_skt int_ser str_ser a in
server_listen s;
accept_loop s

Fig. 4. Example: server returning the length of the incoming requests.

client connection, a fresh channel descriptor 𝑐 and spawns a thread on which it will serve the client

serve_loop c. The service consists of a loop, which on each iteration receives a string as request,

computes its length, and sends the result back.
6

The left-hand side of Figure 4 shows the code for a particular client, which connects to the echo

server’s address srv, and, when a connection is established, acquires the channel descriptor 𝑐 , on

which it can communicate with the server. The client then sends two consecutive messages “Carpe”

and “Diem”, and waits for the results𝑚1 and𝑚2. Note how, in order to hold, the client’s assertion

assert (m1 = 5 && m2 = 4) relies on the fact that the communication with the server is reliable.

To prove that the assertion never fails, we prove a separation logic specification for the example

code and then apply the adequacy theorem (see section 5.2). The full formal specification and proof

thereof can be found in our accompanying Coq formalization [Author(s) 2022]; we now give an

overview of it. The crux of the verification is to use an appropriate dependent separation protocol,

which in this example can be the protocol from Section 2.2:

echo_prot ≜ 𝜇rec. ?(𝑠 : String) ⟨𝑠⟩. ! (𝑛 : N) ⟨𝑛⟩{𝑛 = |𝑠 |}. rec
We thus start by instantiating the RCLib with the following user parameters:

UP_ex ≜ {srv := srv_ex; prot := echo_prot; ss := int_ser; cs := str_ser}
Here the S_ex.srv is some globally known socket address, and the protocol (from the client’s view)

is the dual of echo_prot, and serialized values are strings (from client to server) and integers (from

server to clients). The library then provides us with the resources 𝑆 : RC_Resources (UP_ex) and
the proof rules for RCLib primitives that we can use to verify the client and the server. We show

the following specifications for the client and server:

{𝑆.SrvCanInit} ⟨S_ex.srv.ip; server 𝑆.srv⟩ {False} (𝑠𝑒𝑟𝑣𝑒𝑟 )
{𝑆.CltCanInit sa} ⟨𝑠𝑎.ip; client sa S_ex.srv⟩ {True} (𝑐𝑙𝑖𝑒𝑛𝑡)

Until the session has been established, the proof of both the client and server is done by symbolic

execution. Then, we can prove the server loops by Löb induction, by showing that at any given

iteration, both loops end in the same state that they began. For the accept_loop this is straightfor-

ward, as the 𝑆.Listens 𝑠𝑘𝑡 token is preserved when applying Ht-accept [S]. For the serve_loop

6
All examples considered in this paper follow the same multi-threaded paradigm. This is not a limitation, and we believe

that our RCLib specifications also work for e.g. an event-driven paradigm, but we leave such investigation for future work.
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DLM API:
type dlm

val dlm_start : saddr→unit
val dlm_connect : saddr→saddr→dlm

val dlm_acquire : dlm→unit
val dlm_release : dlm→unit

DLM User Parameters and Resources:

UP ∈ DLM_UserParams ≜ {srv : Address; 𝑅 : iProp}
S ∈ DLM_Resources (UP : DLM_UserParams) ≜

{ CanStart : iProp;
CanConnect : Address → iProp;

CanAcquire : Ip → Val → iProp;
CanRelease : Ip → Val → iProp }

DLM Specifications:
Ht-dlm-start [S]

{S.CanStart ∗ S.𝑅}
⟨S.srv.ip; dlm_start S.srv⟩

{True}

Ht-dlm-connect [S]

{S.CanConnect sa}
⟨sa.ip; dlm_connect sa S.srv⟩

{dlm. S.CanAcquire sa.ip dlm}
Ht-dlm-acqire [S]

{S.CanAcquire ip dlm}
⟨ip; dlm_acquire dlm⟩

{S.CanRelease ip dlm ∗ S.𝑅}

Ht-dlm-release [S]

{S.CanRelease ip dlm ∗ S.𝑅}
⟨ip; dlm_release dlm⟩

{S.CanAcquire ip dlm}

Fig. 5. API and specifications for the Distributed Lock Manager

this is easy as well, as the echo_prot protocol recurses after two steps, so that the proof boils down
to showing that the body of the loop adheres to the echo_prot protocol. This is straightforward to

show, using Ht-reliable-recv and Ht-reliable-send rules.

The verification of the client is a slightly more subtle, since the client sends two messages in a

row, after which it awaits for two messages in a row, and as such this does not match syntactically

with the echo_prot. However, it does so semantically, since the client’s second send request and its

first received response are independent, and so we can update the protocol by using the subprotocol

relation, as we explained in Section 2.2. The propositions of the protocol (𝑚1 = |“Carpe”| and
𝑚2 = |“Diem”|) then lets us show that the assertions hold, which concludes the proof.

3 DISTRIBUTED LOCK MANAGER AND RPC SERVICE LIBRARIES
To demonstrate the expressivity of the reliable communication library of Section 2, we consider

the specification and verification of two distributed components on top of our library, namely a

distributed lock manager (Section 3.1), and a multi-threaded RPC service (Section 3.2), which we

present in this section. In Section 4 we will then show how those libraries themselves are used to

facilitate the formal development of clients and applications that make use of them.

3.1 Distributed Lock Manager
A distributed lock manager (DLM) enables coordination and coarse-grained concurrent synchroni-

sation in a distributed network, for instance to enforce atomicity of transactions. Synchronisation is

achieved by exposing a globally known distributed lock, which individual nodes can race to acquire

before executing a critical section of the distributed algorithm (e.g., a sequence of transactions).
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Client Protocol Server
{S.CanAcquire ip dlm}

{dlm >
ip−→
𝑠𝑠

dprot S true}
send dlm “acquire”;

{𝑐 >
ip−→
𝑠𝑠

dprot S true ∗ is_lock lk S.𝑅}
recv 𝑐; acquire lk;

!⟨“acquire”⟩.

{𝑐 >
ip−→
𝑠𝑠

_ ∗ is_lock lk S.𝑅 ∗ S.𝑅}
send 𝑐 “acquire_ok”;

{𝑐 >
ip−→
𝑠𝑠

dprot S false ∗ is_lock lk S.𝑅}

{𝑐 >
ip−→
𝑠𝑠

_}
recv dlm;

?⟨“acquire_ok”⟩{S.𝑅}.

{𝑐 >
ip−→
𝑠𝑠

dprot S false ∗ S.𝑅}
{S.CanRelease ip dlm ∗ S.𝑅}

...
{S.CanRelease ip dlm ∗ S.𝑅}

{𝑐 >
ip−→
𝑠𝑠

dprot S false ∗ S.𝑅}
send dlm “release”

{𝑐 >
ip−→
𝑠𝑠

dprot S true}
{S.CanAcquire }

recv 𝑐; release lk
{𝑐 >

ip−→
𝑠𝑠

dprot S false ∗ is_lock lk S.𝑅}
!⟨“release”⟩{S.𝑅}.
dprot S true {𝑐 >

ip−→
𝑠𝑠

dprot S true ∗ is_lock lk S.𝑅}

Fig. 6. The reliable communication of the DLM service

Figure 5 presents the API and the specification of the DLM. The server/client setup of the DLM

is standard. The DLM service can be started on a server on any (globally known) socket address

using dlm_start. Clients can then connect to the manager via a call to dlm_connect, which, when
it terminates, returns an instance of the distributed lock object 𝑑𝑙𝑚 (of the abstract data type dlm)
which behaves locally as a standard lock: clients can call dlm_acquire to await and acquire the

lock, and call dlm_release to release it.

3.1.1 Specifications of the DLM. The specifications of the DLM are stated using the same dependent

specification pattern as the reliable communication library of Section 2. The specifications are

parametric in the user provided parameters (UP : DLM_UserParams), consisting of a universally

agreed upon manager network socket address (S.srv) and the resources (S.𝑅) that the distributed
lock will guard, once the manager is started. The DLM is then specified in terms of abstract resources

(S : DLM_Resources UP) which reflect the state transition system of how a distributed lock can be

created and used to synchronously access the guarded resources (S.𝑅).
The initial resources S.CanStart and S.CanConnect sa (for each client) are freely obtained during

the initial setup, similarly to the RCLib. The S.CanStart resource must be provided when starting

the DLM service, to ensure that this only happens once, as specified by Ht-dlm-start [S]. The

S.CanConnect sa resource is used once for each client to connect to the DLM service on the given

socket address (sa), which in turn yields the S.CanAcquire ip dlm resource for the returned lock

handle (dlm), as specified by Ht-dlm-connect [S]. The S.CanAcquire ip dlm resource is used when

acquiring the lock, which in turn yields the guarded resources (S.𝑅) and the S.CanRelease ip dlm
resource, as specified by Ht-dlm-acqire [S]. Finally, the S.CanRelease ip dlm resource can be used,

alongside the guarded resources (S.𝑅), to release the lock, specified by Ht-dlm-release [S].

3.1.2 Verification of the DLM. The verification of the distributed lock manager primarily relies on

the fact that the DLM service is implemented using a physical lock that is shared by the threads, one

thread per client connected to the DLM, which serve the clients’ "acquire" and "release" requests

by trying to acquire/release the physical lock respectively. Consequently, all we need to do is

verify this interplay of client-server communication and the physical lock, by employing our RCLib
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specifications with the existing Aneris node-local lock specifications (omitted for brevity’s sake).

Similar to the example of the echo-server, to achieve this, we start be defining a suitable dependent

separation protocol, which captures the client-side interaction between the clients and the DLM:

dprot (S : DLM_Resources ) ≜ 𝜇rec. 𝜆(𝑏 : B). if𝑏 then ! ⟨“acquire”⟩. ?⟨“acquire_ok”⟩{S.𝑅}. rec ¬𝑏
else ! ⟨“release”⟩{S.𝑅}. rec ¬𝑏

The protocol can be in either of two states, as reflected by the boolean argument 𝑏: either the client

can request the lock (𝑏 = true), by sending “acquire”, or release the lock (𝑏 = false), by sending

“release”. Once an “acquire” message is sent, the server will reply with “acquire_ok” (when the

physical lock becomes available), along with ownership of the guarded resources (S.𝑅), after which
the protocol goes to the release state (by flipping the boolean). To release the lock the client must

send “release” along with the guarded resources (S.𝑅), after which the protocol goes back to the

acquire state (by flipping the boolean again).

Figure 6 sketches the proof of Ht-dlm-acqire [S] and Ht-dlm-release [S] to show the interplay

between the reliable communication and the physical lock. In the proof of Ht-dlm-acqire [S]

we start by unfolding the S.CanAcquire sa.ip dlm abstract resource, which, under the hood, is

simply the channel endpoint ownership (dlm >
ip−−−−−→S.srv.ip dprot S true). The protocol is then upheld

by sending the “acquire” request to the DLM. When the DLM receives the request, it waits for and

acquires the physical lock, obtaining the pre-established locked resources S.𝑅. The DLM then sends

back the “acquire_ok” message along with the pre-established resource S.𝑅, in accordance with

the protocol. Finally, the client receives the DLM response, along with the guarded resources. To

obtain the post-condition of the Ht-dlm-acqire [S] specification, we wrap up the channel endpoint

ownership (dlm >
ip−−−−−→S.srv.ip dprot S false), now in the release state, into its corresponding abstraction,

which is exactly S.CanRelease ip dlm.

The verification of the Ht-dlm-release [S] specification is similar. The unfolded channel endpoint

ownership, in its release state, is obtained from the release permission S.CanRelease ip dlm, and

the guarded resources are sent back, according to the protocol. On the server side, the lock is simply

released by giving back the received guarded resources. The post-condition of Ht-dlm-release [S]

is then trivially satisfied by wrapping up the channel endpoint ownership, which has now returned

to its acquire state, under the abstract resource S.CanAcquire sa.ip dlm.

3.2 RPC service
A remote procedure call (RPC) service is a key middleware component of distributed systems that

enables clients to call remote procedures as if the procedures were local. In RPC, the server usually

exposes a set of service procedures that the clients call remotely, and those procedures (also called

request handlers) can also be stateful, i.e. they can encapsulate the internal state of the server that

the clients might wish to update remotely. RPCs can be implemented either on top of UDP or TCP,

and in the latter case, the RPC benefits from the reliability guarantees.

In this work, we have implemented, specified and verified a variant of such an RPC service. This

variant exposes just one service handler, but in which the types of client’s request and server’s

response are polymorphic and higher-order. In particular, instantiating those types with sum-types

𝜏1𝑞 + 𝜏2𝑞 (for requests), and 𝜏1𝑟 + 𝜏2𝑟 (for responses) effectively allows us to encode an RPC service that

handles multiple procedures calls e.g., as a pair of procedures of type 𝜏1𝑞 → 𝜏1𝑟 and 𝜏2𝑞 → 𝜏2𝑟 .

Figure 7 shows the API and the specifications of our RPC library. The RPC service can be

initialised by calling rpc_start, which is parametric in the serializers for the request- and response

data types, the socket address of the server, and the implementation of the procedure that will be

used to handle the incoming requests. To call the procedure remotely, the clients must first connect
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RPC API:
type ('a, 'b) rpc

val rpc_start : 'b serializer→'a serializer→saddr→('a→'b)→unit
val rpc_connect : 'a serializer→'b serializer→saddr→saddr→('a, 'b) rpc
val rpc_make_request : ('a, 'b) rpc→'a→'b

RPC User Parameters and Resources:

UP ∈ RPC_UserParams ≜

{srv : Address;qs : Serializer;
rs : Serializer;

ReqData : Type; RepData : Type;
pre : Val → ReqData → iProp;
post : Val → ReqData → RepData → iProp}

S ∈ RPC_Resources (UP : RPC_UserParams) ≜
{CanStart : iProp; CanConnect : Address → iProp; CanRequest : Ip → Val → iProp}

RPC Specifications:
Ht-rpc-connect [S]

{S.CanConnect sa}
⟨sa.ip; rpc_connect S.qs S.rs sa S.srv⟩

{rpc. S.CanRequest sa.ip rpc}

Ht-rpc-start [S]

{S.CanStart ∗ rpc_process_spec S proc}
⟨S.srv.ip; rpc_start S.rs S.qs S.srv proc⟩

{True}

Ht-rpc-reqest [S]

{S.CanRequest ip rpc ∗
S.pre qv qd ∗ Ser S.qs qv}
⟨ip; rpc_make_request rpc qv⟩

{rv. S.CanRequest ip rpc ∗ ∃rd . S.post rv qd rd}

rpc_process_spec S proc ≜ ∀qv, qd .
{S.pre qv qd}

⟨S.srv.ip; proc qv⟩
{rv. ∃rd . Ser S.rs rv ∗ S.post rv qd rd}

Fig. 7. Specifications for the RPC service

to the server, by calling rpc_connect, which yields the RPC handle rpc. The handle is then used as

an argument of rpc_make_request along with some input data to make a request.

3.2.1 Specifications of the RPC service. The specifications of the RPC are parametric in the user

provided parameters (UP : RPC_UserParams), which most importantly consist of the universally

established server address (S.srv), and the logical data types of the requests and replies (S.ReqData
and S.RepData). Additionally, the user must determine the serializers to be used for the request and

reply values (S.qs and S.rs), so that the client and server can serialize and deserialize the exchanged

messages without coordination. Finally, the user must provide pre- and post-condition predicates

(S.S.pre and S.post) that relate the request and reply values with their corresponding data.

In return the RPC library provides the abstract predicates (S : RPC_Resources UP), which consist
of S.CanStart, S.CanConnect sa, and S.CanRequest ip rpc resources. The resources S.CanStart
and S.CanConnect sa govern the permission to start the server and allow clients to connect to it,

respectively, and are freely obtained during the initial setup, similar to the RCLib and DLM.

To start the RPC service the user must provide the precondition of the Ht-rpc-start [S] specifica-

tion, the S.CanStart token, and the proof that the procedure proc satisfies the specification defined

by rpc_process_spec. Indeed, this specification ensures the procedure function handles the in-

coming requests correctly. In particular, rpc_process_spec states that the procedure argument qv
must satisfy the pre-established precondition S.pre qv qd, and that the results rv must satisfy the
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Client Protocol Server{
S.CanRequest ip rpc ∗
S.pre qv qd ∗ Ser S.qs qv

}
{
rpc >

ip−−→S.qs rpc_prot S ∗
S.pre qv qd ∗ Ser S.qs qv

}
send rpc qv;

{rpc >
ip−−→S.qs _}

let qv = recv 𝑐 in

{𝑐 >
ip−−→S.rs rpc_prot S}

!qv qd⟨qv⟩{S.pre qv qd}.

{𝑐 >
ip−−→S.rs _ ∗ S.pre qv qd}

let rv = proc qv in
{𝑐 >

ip−−→S.rs _ ∗ S.post rv qd rd}
send 𝑐 rv

{𝑐 >
ip−−→S.rs rpc_prot S}

recv rpc
?rv rd⟨rv⟩{S.post rv qd rd}.

rpc_prot S

{rpc >
ip−−→S.qs _}{

rv. rpc >
ip−−→S.qs rpc_prot S ∗

∃rd . S.post rv qd rd

}
{
rv. S.CanRequest ip rpc ∗

∃rd . S.post rv qd rd

}
Fig. 8. The reliable communication of the RPC service

pre-established postcondition S.post rv qd rd. As such, it is thus necessary for the user to prove

rpc_process_spec, for the procedure function that they choose, when starting the server.

The S.CanConnect sa resource is used once per client to connect to the RPC service on the given

socket address, which in turn yields the S.CanRequest ip rpc resource for the returned RPC handle

rpc, as specified byHt-rpc-connect [S]. Finally, theHt-rpc-reqest [S] specification captures how the

client can make requests when in possession of the S.CanRequest ip rpc resource. Additionally, the
argument qv must satisfy the pre-established precondition S.pre qv qd, and qv must be serializable

by the pre-established request serializer S.qs. In return the client obtains the resources of the

pre-established postcondition S.post rv qd rd for the returned value rv.

3.2.2 Verification of the RPC service. The verification of the RPC service primarily boils down to

showing that the specification of the client’s rpc_make_request follows from the user provided

proof of the specification rpc_process_spec of the request handler at the server side. The crux of

this connection is once more to come up with an appropriate dependent separation protocol. In

particular, we need to specify the delegation of the handler call to the server:

rpc_prot (S :RPC_Resources UP) ≜
𝜇rec. ! (qv : Val) (qd : S.ReqData) ⟨qv⟩{S.pre qv qd}.

?(rv : Val) (rd : S.RepData) ⟨rv⟩{S.post rv qd rd}. rec
The protocol describes (from the clients point of view) the request-reply communication. The client

first sends a value qv, which is related to the request data qd by the pre-established S.pre qv qd
predicate. The server will then reply with a value rv, related to some reply data rd and the original

request data qd by the pre-established S.post rv qd rd predicate.

Figure 8 sketches the proof of how this protocol is used to connect the specifications of the

client’s local and remote calls in the verification of Ht-rpc-reqest [S]. First the abstract re-

source S.CanRequest ip rpc is unfolded, to obtain the underlying channel endpoint ownership

rpc >
ip−−→S.qs (rpc_prot S). The RPC precondition resources for the request value (S.pre qv qd) are then

transferred along the request, in accordance with the protocol. On the server side, the resources
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are conversely received, in accordance with the protocol. The resources are then supplied to the

procedure proc, yielding the reply value rv and the resources S.post rv qd rd, which are then sent

back to the client, again in accordance with the protocol. On the client side, the processed request

and resources are finally received and returned. As the protocol completed one cycle of recursion

and returned to the initial state, it can be packed back into the abstract resource S.CanRequest ip rpc,
so that postcondition of the rpc_make_request holds, thus concluding the proof.

4 SEQUENTIALLY CONSISTENT LAZY REPLICATIONWITH LEADER-FOLLOWERS
It is well-known that due to the CAP theorem [Gilbert and Lynch 2002] online services, e.g.,
replicated key-value store (KVS), cannot at the same time have the three important properties

of consistency (all replicas agreeing on the state of the system at all times), availability (being

responsive in a timely fashion), and partition-tolerance (functioning in the presence of network

failures). Hence, online services often try to strike a balance between these three important proper-

ties depending on the application at hand. The system that we present in this section is a replicated

KVS with different guarantees for read and write operations. The entire system, i.e., the leader and
all the followers as we will explain, is guaranteed to agree upon, and preserve, the order of write

operations. This is achieved by having a central server node, called the leader, which registers all

the write operations. The state of the leader is then lazily replicated by so-called follower servers
which periodically poll the state of the leader and store a local copy. The idea is that a client has to

direct all the write requests to the leader while they have a choice to direct read operations at the

leader or any of the followers. The read operation directed at the leader is guaranteed to always

return the most up-to-date value while those directed at a follower may return a stale value.

4.1 Specification for the Leader and Followers
We will first consider a simplified version of the system, i.e., a system consisting of only a single

server: the leader. Considering only one server with no replication the system behaves as though

the KVS is stored entirely locally — for the sake of this argument we are ignoring network issues

such as delays or network partitions. Hence, we can give simple specifications to the read and write

functions similar to those for local heap-allocated references:

leader-only-write-spec

{𝑘 ↦→ldr vo} ⟨ip; write 𝑘 𝑣⟩ {𝑥 . 𝑘 ↦→ldr Some 𝑣 ∗ 𝑥 = ()}
leader-only-read-spec

{𝑘 ↦→ldr
𝑞 vo} ⟨ip; read 𝑘⟩ {𝑥 . 𝑘 ↦→ldr

𝑞 vo ∗ 𝑥 = vo}
Here the 𝑘 ↦→ldr vo proposition where vo is an optional value (similar to the usual points-to

proposition in standard separation logic except instead of values we use optional values) asserts

ownership over the key 𝑘 in the KVS and indicates its value (None indicates that no writes have

taken place on that particular key). The proposition 𝑘 ↦→ldr
𝑞 vo is the fractional variant where

ownership is only asserted for a fraction 0 < 𝑞 ∈ Q ≤ 1.

The specs given above for reading and writing in fact remain sound for interacting with the

leader even in the presence of followers (Indeed the spec leader-only-write-spec, as we will discuss

below, can be derived from our general spec for the write operation given in Figure 9). The values

read from followers can correspond to old write operations which have since been overwritten.

In order to express this intuition formally we introduce propositions in our logic for tracking the

history of all write operations in the form of a sequence of write events. A write event, we, is a
tuple consisting of the target key in the KVS, the written value, as well as its logical time, i.e., its
index in the history of write events observed by the system. We write we.key and we.value for the
key and value of the write event respectively. Furthermore, we write ℎ↓𝑘 for the optional value

of the last (latest) write event in history ℎ whose key is 𝑘 . We use the observation proposition

Obs(DB, ℎ), defined in terms of Iris resources, to indicate that the history ℎ (a sequence of write
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events) has been observed at the server whose address is DB; this server could either be the leader

or a follower. The important intuition here is that write operations are immediately observed on

the leader while they are only observed on followers if they have occurred before the point in time

when said follower has last polled and copied the state of the leader. Observation propositions

are persistent, i.e., Obs(DB, ℎ) ⊣⊢ Obs(DB, ℎ) ∗ Obs(DB, ℎ), and only express the knowledge that a

certain history has been observed. In addition to introducing observations we also let points-to

predicates specify the optional write event corresponding to the key instead of an optional value.

That is, in the proposition 𝑘 ↦→kvs wo (our form of points-to proposition for the system featuring

followers), wo is an optional write event. This, as we will see in Section 4.2, allows us to express

stronger guarantees for the write operation.

Following an approach similar to Gondelman et al. [2021] we use Iris invariants to express the

relationship between the logical state of each key on the leader, exposed to the client as 𝑘 ↦→ldr 𝑣 , the

logical state of what is observed by each server, exposed to the client asObs(DB, ℎ), and the physical
state (stored in the memory) of each server which is not exposed to the client. The following tables

give a summary of the building blocks used in the specification of leader and followers:

Proposition Intuitive meaning

𝑘 ↦→kvs wo

Asserts exclusive ownership over the key 𝑘 with

the last write event being wo. Note that wo is an
optional value and can be None which indicates

that no value has ever been written to 𝑘 .

Obs (DB, ℎ)
This persistent proposition asserts the knowledge

that history ℎ has been observed by the server

whose address is DB.

GlobalInv
N

Relates the resources underlying 𝑘 ↦→kvs 𝑣 and

Obs (DB, ℎ) and enables tying these to physical

states through local invariants (one invariant per

server) which are not exposed to the client.

Symbol Meaning

we Ranges over write events.

wo Ranges over optional write events, i.e., it is either
None or Some we.

write The write function.

read The read function for leader.

readfl The read function for follower fl.

DB Ranges over server addresses: leader or follower.

DBld The addresses of the leader.

DBfl The address of follower fl.

These are the important properties of observations
7
:

GlobalInv
N ∗ 𝑘 ↦→kvs

𝑞 wo ≡∗ 𝑘 ↦→kvs
𝑞 wo ∗ ∃ℎ. Obs(DBld, ℎ) ∗ ℎ↓𝑘 = wo (observe-at-leader)

GlobalInv
N ∗ Obs(DB, ℎ) ≡∗ ∃ℎ′. Obs(DBld, ℎ

′) ∗ prefix (ℎ,ℎ′) (leader-observes-first)

Obs(DB, ℎ) ∗ Obs(DB′, ℎ′) ⊢ prefix (ℎ,ℎ′) ∨ prefix (ℎ′, ℎ) (linear-order)

The property (observe-at-leader) states that the current value stored by the leader is always

observed by the leader; the history where this write event is the last write event with key 𝑘 is

observed on the leader. Note how this property is stated using the update modality, ≡∗, which
allows for accessing invariants to obtain the necessary information since points-to propositions,

observations, and the physical states of servers are all tied together using such invariants. The

property (linear-order) states that all servers, the leader and the followers, always agree on the

order of observed write events, i.e., the history observed by one of them must be a prefix (as a

sequence) of that of the other server.

The specifications for writing to the KVS, reading from the leader, and reading from the followers

are given in Figure 9. Note how the specification for reading a key on the leader, leader-read-spec,

is exactly the same as the leader-only situation, leader-only-read-spec. On the other hand, the

write spec, write-spec, is strengthened compared to leader-only-write-spec. It states that having

𝑘 ↦→kvs wo, the write event added as the result of this call, is the first write event after wo

7
See our Coq development for a complete list of properties.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.



Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:17

write-spec

{𝑘 ↦→kvs wo ∗ Obs (DBld , ℎ) ∗ ℎ↓𝑘 = wo} ⟨ip; write 𝑘 𝑣⟩ {∃hf ,we.we.key = 𝑘 ∗ we.value = 𝑣 ∗ hf ↓𝑘 = None ∗
Obs (DBld , ℎ ++hf ++ [we]) ∗ 𝑘 ↦→kvs Some we}

leader-read-spec

{𝑘 ↦→kvs
𝑞 wo} ⟨ip; read 𝑘 ⟩ {𝑥. 𝑘 ↦→kvs

𝑞 wo ∗ ( (𝑥 = None ∧ wo = None) ∨ (∃we. 𝑥 = we.value ∧ wo = Some we)) }
follower-read-spec

{Obs (DBfl, ℎ) } readfl 𝑘 {𝑥. ∃ℎ′. prefix (
ℎ,ℎ′

)
∗ Obs (DBfl, ℎ

′) ∗(
(𝑥 = None ∧ ℎ′y

𝑘
= None) ∨ (∃we. ℎ′y

𝑘
= Some we ∧ 𝑥 = Some we)

) }
Fig. 9. The specification for the write operation and the read operation for both the leader and followers.

The specification for reading a key from a follower, follower-read-spec, states that after reading

we obtain the knowledge that the observed history on the follower in question is possibly extended

in a way such that the returned write event is consistent with this observed history — the extended

history is the history observed at the moment the read operation was carried out on the follower.

Note how the specifications for the read and write operations, despite the implementation of

the KVS being based on that of the RPC library and in turn on the reliable communication library

and ultimately Aneris’s network primitives, do not mention any of these dependencies or their

specs. This demonstrates that our modular verification approach enables proper encapsulation of

modules (what Krogh-Jespersen et al. [2020] refer to as vertical modularity) .

Deriving the Leader-Only Spec. The leader-only specifications, leader-only-write-spec and leader-

only-read-spec, can be derived from the general specs, write-spec and leader-read-spec, by defining

the leader-only version of the points-to proposition as follows:

𝑘 ↦→ldr vo ≜

{
𝑘 ↦→kvs None if vo = None
∃wo. 𝑘 ↦→kvs Some we ∗ we.value = 𝑣 if vo = Some 𝑣 for some value 𝑣

Note how the leader-only read function returns the value of the write event returned by the read

function. The leader-only-read-spec spec follows straightforwardly from leader-read-spec. To see

how leader-only-write-spec follows from write-spec note how we can use (observe-at-leader) to

obtain that there exists a history ℎ such that ℎ↓𝑘 = wo whenever we have 𝑘 ↦→kvs wo, which we

simply obtain by unfolding the definition of 𝑘 ↦→ldr vo above, and a case analysis on whether vo is
None or Some 𝑣 .8

4.2 Client Examples
Here we discuss two illustrative examples of client programs. The examples are given in Figure 10.

The example in Figure 10a demonstrates causal consistency of our KVS, which is implied by our

specification as it guarantees linear histories. The example in Figure 10b shows how distributed

locks can be used to make transactions. The code of the two examples are actually very similar.

Both programs consist of two clients running in parallel. One client, client0, only performs two

write operations, 37 to 𝑥 followed by 1 to 𝑦, while the other client, client1, only reads. The first

difference between the two examples is that in the causality example the read operation is directed

at a follower while in the transaction example the read operation is directed at the leader. In the case

of the causality example, client1 first waits until it observes the value 1 on 𝑦 and then asserts that

𝑥 has value 37. Note that the program order in do_writes implies that the second write causally

8
Technically, we also need the global invariant GlobalInv

N
to derive the write specification, but we gloss over that here.
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let do_writes () =
write "x" 37; write "y" 1

let rec wait_on_read k v =
let res = read_fl k in
if res = Some v then
()

else
wait_on_read k v

let do_reads () =
wait_on_read "y" 1;
let vx = read_fl "x" in
assert (vx = Some 37)

let client0 () = do_writes ()

let client1 () = do_reads ()

client0 () ||| client1 ()

(a) Causality Example

let do_writes lk =
dlm_acquire lk;
write "x" 37; write "y" 1;
dlm_release lk

let rec do_reads lk =
dlm_acquire lk;
let vx = read "x" in
if vx = Some 37 then
let vy = read "y" in
assert (vy = Some 1); dlm_release lk

else
dlm_release lk; do_reads lk

let client0 () = do_writes (dlm_connect ())

let client1 () = do_reads (dlm_connect ())

client0 () ||| client1 ()

(b) Transaction Example

Fig. 10. Two Examples Clients of Leader-Followers. In each case client0 and client1 are run in parallel on two
different nodes (written with three parallel vertical lines). We assume that the KVS, i.e., the leader and the
followers, have been initialized prior to running these clients.

depends on the first write. In the transaction example, on the other hand, client1 waits until 𝑥 has

value 37, i.e., it knows that the first write has been performed. It then proceeds to read the value

of 𝑦 and asserts that it must have value 1, i.e., the second write is also performed. In other words,

this example ensures that, at least as far as client1 can observe, the two write operations form

an atomic transaction; either they are both observable by client1 or neither is. This only makes

sense because both writes and reads are protected by a distributed lock which coordinates the two

clients’ interaction with the KVS.

We now sketch how we can prove that both of these client programs are safe, that is, that the

assert statements shown in the two examples do not fail. (Formal specifications and proofs thereof

can be found in our Coq formalization – our adequacy results described in section 5.2 then imply

that both examples are safe to run and thus that the assert statements do not fail.)

Proof Intuition for the Causality Example. For this example we use an Iris invariant together with

points-to propositions and the leader’s observations (very similar to how they are tied together

in the pre- and postcondition of write-spec) to assert that at all times there is at most one write

operation on 𝑥 and at most one write operation on 𝑦 and the former happens before the latter.

Hence, when client1 observes the write to 𝑦 it is guaranteed that the (only) write to 𝑥 is also in

the observed history.

Proof Intuition for the Transaction Example. The proof, instead of using an invariant as in the proof
of the causality example above, takes advantage of the guarded resource of the distributed lock.

The guarded resource essentially states the following simple property using points-to propositions:

the value stored in 𝑥 is 37 if and only if the value stored in 𝑦 is 1. Hence, acquiring the lock on

client1 we know that if we read 1 from 𝑦 then we must read 37 from 𝑥 .
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4.3 Implementation and Verification
So far we described how we specify the leader-followers KVS and how the client’s code can use

those specifications. Here we give a brief overview of how we implement the leader and followers,

and how we verify them w.r.t. the specification presented above.

Implementation. The KVS, i.e., both the leader and followers, is implemented directly on top of

the RPC library. That is, we only implement handlers which, upon clients’ requests, write (at the

leader) or read (at the leader or follower) the local state of the server. The local state consists of a

key-value table together with a log of all write events observed by that server. The idea is that the

primary state of the KVS is the log. The key-value table is a memoization table to optimize read

operations which simply look up the value in the table instead of seeking the latest written value

to the requested key in the log. Hence, the write operation on the leader, in addition to adding the

write event to the log, also updates the local table. Similarly, when a follower receives a new write

event from the leader, in addition to adding it to its local log, it updates its local copy of the table.

The interaction between the leader and the followers is also implemented using the RPC library

where the leader assumes the role of the server for followers which periodically make a request to

the leader asking for the next available log entry they have not seen yet. The programs for both

the leader and followers are concurrent programs, e.g., the leader runs two different threads one

for serving clients and another one for serving followers. These programs use locks to protect the

data structures shared between different threads running on each server.
9

Verification. The crux of the verification is to:

• Give concrete definitions of the abstract predicates, e.g., Obs(DB, ℎ) and 𝑘 ↦→kvs wo.
• Instantiate the specifications of the RPC library for handlers.

• Show the Hoare triples for the handlers as ascribed by the RPC library.

We start by defining two sets of propositions in terms of Iris resources using Iris’s so-called

authoritative resource algebra and fractional resource algebras. These resource constructions are

standard and hence we will not get into the details of these constructions; see Jung et al. [2018]

for similar constructions, e.g., the resource construction for relating the contents of the physical

heap to separation logic’s standard points-to propositions. Iris’s authoritative resource algebra

allows us to construct resources that can be split into two parts, a so-called full part and a so-called

fragment part. The idea is that the fragments must always be included in the full part — the notion

of included depends on the precise construction of the resource as we will explain below. These

two sets of propositions are as follows:

Proposition Intuition

KWTable (𝑀) Tracks global view of the mapping from keys to their latest write events maintained by the leader.

𝑘 ↦→kvs wo As before; the write event always agrees with, i.e., is included in,𝑀 in KWTable (𝑀) .

LogGI (DB, ℎ)
Tracks the log of write events observed on server DB in the global invariant. Always agrees with LogLI and
Loglocal .

LogLI (DB, ℎ)
Tracks the log of write events observed on server DB in the local invariant of the server. Always agrees with

LogGI and Loglocal .

Loglocal (DB, ℎ)
Tracks the log of write events observed on server DB in the proof of correctness of RPC handlers. Always agrees

with LogGI and LogLI .

Obs (DB, ℎ) As before; the history ℎ is a prefix of, i.e., is included in, the history tracked in LogGI , LogLI , and Loglocal .

9
Technically in the implementation we use monitors which are very similar to locks except in that instead of busy waiting

they put the thread to sleep. From a verification point of view though locks and monitors are fairly similar and hence not

worth discussing in detail here.
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Table-lookup

KWTable (𝑀) ∗ 𝑘 ↦→kvs wo ⊢ 𝑀 (𝑘) = wo

Table-update

KWTable (𝑀) ∗ 𝑘 ↦→kvs wo ≡∗ KWTable (𝑀 [𝑘 ↦→ wo′]) ∗ 𝑘 ↦→kvs wo′

Logs-agree

𝑋,𝑌 ∈ {GI, LI, local} 𝑋 ≠ 𝑌

Log𝑋 (DB, ℎ) ∗ Log𝑌 (DB, ℎ′) ⊢ ℎ = ℎ′

Obs-prefix

𝑋 ∈ {GI, LI, local}
Log𝑋 (DB, ℎ) ∗ Obs(DB, ℎ′) ⊢ prefix (ℎ′, ℎ)

Obs-update

prefix (ℎ,ℎ′)
LogGI (DB, ℎ) ∗ LogLI (DB, ℎ) ∗ Loglocal (DB, ℎ) ≡∗

LogGI (DB, ℎ′) ∗ LogLI (DB, ℎ′) ∗ Loglocal (DB, ℎ′) ∗ Obs(DB, ℎ′)

Fig. 11. Rules governing the internal leader-followers library propositions.

Here the propositions KWTable (𝑀) and 𝑘 ↦→kvs wo are defined as an instance of the authoritative

resource algebra where the former is defined the full part and the latter defined as a fragment.

Similarly, the propositions LogGI (DB, ℎ), LogLI (DB, ℎ), and Loglocal (DB, ℎ) are defined as the full

part of an instance of the authoritative resource algebra (split into three different parts) while the

proposition Obs(DB, ℎ) is defined as a fragment in the same resource algebra.

The rules governing these propositions are shown in Figure 11. The rules capture how the

inclusions of the underlying authoritative resource algebras are reflected for the propositions

(notably in rules Table-lookup, Logs-agree, and Obs-prefix), and how they are preserved when

resources are updated (notably in rules Table-update and Obs-update).

Given these propositions we can define the global and local invariants as follows:
10

GlobalInv ≜ ∃𝑀,ℎ. KWTable (𝑀) ∗ LogGI (DBld, ℎ) ∗ LogMapConsistent (ℎ,𝑀) ∗∗
fl∈Followers

∃ℎ′. LogGI (DBfl, ℎ
′) ∗ prefix (ℎ′, ℎ)

LocalInvDB ≜ ∃𝑀,ℎ, 𝑣, 𝑣 ′. LogLI (DB, ℎ) ∗ LogMapConsistent (ℎ,𝑀) ∗ ℓtblDB
DB↦−−→ 𝑣 ∗ isMap(𝑣,𝑀) ∗

ℓlogDB
DB↦−−→ 𝑣 ′ ∗ isSeq(𝑣 ′, ℎ)

The global invariant states that there is a map𝑀 that is our global view of the state of the leader. It

is consistent with the history observed by the leader. Also, the history observed by each follower is

a prefix of the history of the leader. The local invariant on the other hand states that there is a map

that is consistent with the history observed by the server and that this map is physically stored, as

the value 𝑣 , in the memory location ℓtblDB . Similarly, it asserts that the server physically stores the

sequence that is the history ℎ, as the value 𝑣 ′, in the memory location ℓlogDB .

Given these propositions and invariants we instantiate the RPC library by taking the precondition

and the postcondition of the handler to be the combination of the preconditions and postconditions

of the read and write operation; the RPC request is essentially a tagged request specifying whether

the request is read or write along with the relevant data. One nuance that we have avoided is that

the specs that we have given to the read and write operations do not take advantage of the fact

that these operations are logically atomic. A logically atomic operation is an operation that is not

physically atomic, i.e., in the small-step operational semantics it takes more than a single step, but

10
The local invariant is essentially stated as a lock invariant. See [Birkedal and Bizjak 2017] for locks in Iris.
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still effectively behaves atomically. Our general specs for the read and write operation follow the

so-called HOCAP-style of specifications which allow us to take advantage of the logical atomicity

of these operations, i.e., we can open invariants around these operations as though they were

physically atomic. (In particular, opening invariants around read and write operations is needed

for the proof of the causality example.) The specs we presented earlier are weaker than (can be

derived from) the HOCAP-style specs. That being said, given ordinary specs for a logically atomic

operation it is rather easy to come up with the corresponding HOCAP-style specification. See

[Gondelman et al. 2021] for a discussion on HOCAP-style specs and our formal Coq development

for more details of how they are used, e.g., in the proof of the causality example presented above.

The preconditions and postconditions of the read and write operations used in instantiating the

RPC library are those of the more-general HOCAP-style specs.

Showing that the Hoare triples for the handler functions as ascribed by the specification of the

RPC library is rather straightforward. We only need to show that during the three main operations

of the KVS, i.e., reading, writing, and updating the follower, the local and global invariants are

preserved. Note that in reasoning about these simple properties we do not need to reason about

the UDP network (handled by the reliable communication library), or the communication protocol

used (handled by the RPC library). These properties simply follow from the rules governing the

abstract predicates we presented earlier. This shows the power and flexibility of our approach and

the idea of vertical modularity, i.e., the idea that libraries are separate modules verified separately.

Indeed, each layer in our stack of libraries (UDP networking primitives → reliable communication

library → RPC library → KVS library) completely hides its internals, i.e., its specs which the proof

of its clients rely on, do not mention the previous layers in any way, shape, or form.

5 VERIFICATION OF THE RELIABLE COMMUNICATION LIBRARY AND ADEQUACY
We have thus far presented high-level specifications of the various reliable communication com-

ponents that we have implemented and verified. In doing so, we have omitted some of the more

technical details, for brevity’s sake. In this section we address some of these omissions. In particular,

we cover the verification of the reliable communication library (Section 5.1), and the process of

obtaining the initial resources of our libraries, and thereby a closed proof in Aneris (Section 5.2).

5.1 Verification of the Reliable Communication Library
The crux of verifying the reliable communication library was to properly integrate it with the

Actris framework. The Actris framework primarily operates on a notion of two reliable logical
buffers between the two participants of the specified session, henceforth referred to as the left and
the right participant. Each logical buffer tracks the values in transit from one participant to the

other. we will refer to these as the left-to-right and right-to-left buffers, respectively. The buffers
are reliable in that the order of messages are preserved, there are no duplicates, and messages

are not lost. The dependent separation protocols of Actris then specify the values (and associated

resources) that are allowed to pass through the logical buffers in either direction, depending on

sequence and polarity (! or ?) of the individual exchanges.
The main problem is then to connect these logical buffers to the messages that are exchanged

over the unreliable network. As previously explained, the semantics of an unreliable network, like

the one in Aneris, may cause messages to arrive out of order, be duplicated, or be lost. As a result,

it may seem difficult to tie them to the reliable logical buffers of Actris, especially considering the

dependent nature of Actris, which necessitates that messages are transferred in order.

To resolve this problem, we first establish a new intuition for the physical messages, by leveraging

the implementation of the reliable transport layer, which is designed in the style of SCTP. In
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particular, we will think of messages given to the transport layer as being committed, and messages

received from the transport layer (in the order that they were sent) as being accepted.
With this intuition we can relate the committed and accepted messages with the logical Actris

buffers. In particular, whenever either side commits a message, it is added to the corresponding

buffer (e.g. the left-to-right buffer for the left participant, and vice versa) along with the associated

resources, and when they accept messages, we remove it from the corresponding buffer (e.g. the

left-to-right buffer for the right participant, and vice versa), and take out the associated resources.

Achieving an SCTP-like implementation is a matter of proving some handshake procedure for

the connection establishment (which we do not present here due to the lack of space) and of

employing standard reliability mechanisms such as sequence identifiers and retransmissions with

acknowledgments. In particular, we ascribe any committed message with a sequence id. On the

receiving side we then track the sequence id that we are currently expecting, and only accept

messages with the right sequence id. With this we can guarantee that we only accept one message

for each id (thus ensuring duplication-protection), and that we only accept the messages in order

(order-preservation). To avoid the loss of messages, both sides additionally re-transmit all messages,

until they receive an acknowledgement that the messages have been accepted (although we cannot

formally verify that this guarantees progress as will be discussed in Section 7).

This approach relies on some subtle details. In particular, we need a way to:

(1) Atomically share and update the Actris logical buffers between the participants

(2) Guarantee that sent and received messages are properly tied to sequence ids

(3) Ensure that the sequenced messages correspond to the logical buffers of Actris

To achieve (1) we make use of Iris’s invariants, which lets us share resources, which can then be

accessed atomically. While this is a standard reasoning pattern in Iris, it proved non-trivial to use

in conjunction with Actris. That is since the Actris rules require stripping multiple later modalities
(as a result of Iris/Aneris being a step-indexed logic), while we canonically can only strip one,

during an atomic step. To resolve this, we leveraged the work by Mével et al. [2019], that effectively

allows the user to strip multiple laters per physical step (bounded by the total number of physical

steps taken so far). We omit further details about step-indexing and stripping later modalities, and

instead refer the interested reader to the related work [Hinrichsen et al. 2020; Mével et al. 2019].

To achieve (2) we use ghost state for multiple monotonically growing lists. In particular, we let

each participant track the values that they have committed and accepted, and attach the duplicable

evidence of any such commit and acceptance to the Aneris messages. This effectively guarantees

that every committed message is associated with just one sequence id (one entry in the list of

committed messages), and every message is only accepted once (one entry in the list of accepted

messages, which is also a prefix of the other participants list of committed messages).

To achieve (3) we relate the logical buffers of Actris with the lists of committed and accepted

messages. In particular, the left-to-right buffer is exactly the left participants list of committed

messages, truncated by the right participants list of accepted messages, and vice versa.

5.2 Adequacy: obtaining the initial component resources and closed proofs
The component specification presented in the paper depend on resources that we have claimed to

be obtained for free at the start of a verification. This is sound because a closed proof in Aneris

is instantiated for a concrete network configuration, for which initial resources are provided and

we can use those to derive the component-specific resources. This is formally captured by the

foundationally mechanised Aneris adequacy theorem:
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Theorem 5.1 (Adeqacy of Aneris). Let 𝜑 ∈ Val → Prop be a meta-level (i.e. Coq) predicate
over values and suppose that the following is derivable in Aneris:

(True ⇛ ∃®𝑥 : ®𝜏 . 𝑃) ∗ (∀®𝑥 : ®𝜏 . ∃cfg. ip ∉ (dom cfg) ∗ {𝑃 ∗ NetRes cfg} ⟨ip; 𝑒⟩ {𝜑})

We then obtain the following properties:

• Safety: The program 𝑒 will never get stuck
• Postcondition Validity: If the program 𝑒 terminates with value 𝑣 , then 𝜑 𝑣 holds.

In the remainder of this section, we outline how we apply this theorem. We focus on how the

requisite resources necessary for each component are derived. This is somewhat technical and is

intended for expert readers that are curious as to how we are able to obtain the initial component

resources, and thereby complete and closed proofs.

To use the adequacy theorem, we first need to pre-allocate ghost state in the left-side proof

obligation (True ⇛ ∃®𝑥 : ®𝜏 . 𝑃 ), which the network configuration can then rely on. We then have

to prove the right-side proof obligation where the universally quantified variables (®𝑥 : ®𝜏) lets us
refer to the pre-allocated ghost names. The first step is then to pick the network configuration

(cfg : Ip fin−⇀ Set (Port ×Option (Val → iProp))), consisting of the network node ips (excluding the

ip of the initial node), the open ports of the individual ips, and the statically known socket protocols.

We must then prove the Hoare triple, in which we start with ownership of the pre-allocated ghost

state 𝑃 , and the initial network resources NetRes cfg (left abstract for brevity’s sake).

With the initial network resources in hand, we just need to derive the initial component-specific

resources from them. This is non-trivial, as the component-specific resources may depend on the

socket interpretation protocols, which may depend on the specification user parameters, which

may finally depend on the dynamically pre-allocated ghost state identifiers. This effectively means

that we cannot derive the component-specific resources strictly after we have obtained NetRes cfg.
To resolve this restriction, and allow the user to only be concerned about the user parameters,

we provide a generic initialisation pattern for obtaining the initial component resources from the

adequacy theorem. In particular, we need a way to let the user:

(1) Pre-allocate ghost state that the user parameters can depend on.

(2) Generate intermediate component-specific resources from the user parameters.

(3) Obtain the initial network resources including the component-specific ones.

(4) Extract the initial component-specific tokens from the initial network resources.

We achieve (1) directly from the left-side proof obligation of Theorem 5.1, where the user can freely

pick the appropriate variables ®𝑥 : ®𝜏 and proposition 𝑃 , for the ghost state they need.

We achieve (2) from the following rule, which can be proven for each component:

∀UP, 𝑠𝑎𝑠. True ⇛ ∃𝑆,Ψ. SrvPreRes 𝑆 Ψ ∗
(∗
sa∈𝑠𝑎𝑠

CltPreRes 𝑆 Ψ sa

)
The rule states that given the component-specific user parameters (UP), and the set of client

addresses (𝑠𝑎𝑠), we get the component-specific record (𝑆), the component-specific server socket pro-

tocol (Ψ), and intermediate component-specific resources for the server and client (SrvPreRes 𝑆 Ψ
and∗sa∈𝑠𝑎𝑠 CltPreRes 𝑆 Ψ sa), which may contain component-specific ghost state.

We achieve (3) by picking the network configuration so that it includes the component-specific

socket protocols in the right-side proof obligation of the adequacy theorem. This yields network

resources that includes the component-specific socket protocol interpretations.
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We achieve (4) from the following rule, which can be proven for each component:

NetRes
(
cfg ·∪ {[𝑆.srv.ip := {(𝑆.srv.port, Some Ψ)}]} ·∪Ï

sa∈𝑠𝑎𝑠 {[sa.ip := {(sa.port,None)}]}

)
∗

SrvPreRes 𝑆 Ψ ∗ (∗sa∈𝑠𝑎𝑠 CltPreRes 𝑆 Ψ sa) ⇛
NetRes cfg ∗ 𝑆.SrvCanInit ∗ (∗sa∈𝑠𝑎𝑠 𝑆.CltCanInit sa) ∗
⟨component-specific specs⟩

The rule captures how we can extract the component-specific server and client network resources

and, in conjunction with the intermediate resources (SrvPreRes 𝑆 Ψ and∗sa∈𝑠𝑎𝑠 CltPreRes 𝑆 Ψ sa),
convert them into the initial server and client tokens (𝑆.SrvCanInit and∗sa∈𝑠𝑎𝑠 𝑆.CltCanInit sa).
Finally, to obtain a closed proof, we must consider how network nodes are started. Aneris

initialises a network of nodes through a so-called system node, which has elevated permissions to

start new nodes. An instance of such a system node would be the one for the echo-server example:

let system = start (srv_sa.ip) (server srv_sa); start (clt_sa.ip) (client clt_sa srv_sa)

Here srv_sa and clt_sa are some concrete disjoint socket addresses.

To verify such a root system node, we make use of the following Aneris rule:

Ht-start

ip ∈ dom cfg ip ≠ ipsys {𝑃 } ⟨ip; 𝑒⟩ {𝑤. True}
{𝑃 ∗ NetRes cfg} ⟨ipsys; start ip 𝑒⟩ {NetRes (cfg \ ip)}

The rule states that we can start a new node, provided that we have permission to start a node

on the target ip (NetRes cfg where ip ∈ dom cfg), and that the target ip node is different from the

system ip (ip ≠ ipsys). As a result, the permission to start another node on the target ip is given up

(NetRes (cfg \ ip)). We must additionally verify the node, given some resources 𝑃 . For the server

and client of the echo-server example we would choose 𝑆.SrvCanInit and 𝑆.CltCanInit clt_sa,
respectively, which we extracted from the network resources, as detailed above.

6 RELATEDWORK
Verification of Reliable Transport Layer Protocols. There has been several works focusing on

showing correctness of protocols for reliable communication. Smith [1996]’s work is one of the

earliest on formal verification of communication protocols. Bishop et al. [2006] provide HOL

specification and symbolic-evaluation testing for TCP implementations. Compton [2005] presents

Stenning’s protocol verified in Isabelle. Badban et al. [2005] presents verification of a sliding window

protocol in 𝜇CRL. None of those works however capture the reliability guarantees in a logic in a

modular way that facilitates reasoning about clients of those protocols. In contrast, our work both

verifies the reliable transport layer as a library and provides a modular high-level specification for

reasoning about distributed libraries and applications that require reliable communication.

Reliable Transport Protocols in Verification of Distributed Systems. In recent years, there has been

several verification frameworks to reason about implementations and/or high-level models of

distributed systems. Some of these works focus on high-level properties of distributed applications

assuming that the underlying transport layer of the verification framework is reliable, e.g., [Koh
et al. 2019; Sergey et al. 2018; Zhang et al. 2021] and the first version of Aneris framework [Gondel-

man et al. 2021; Krogh-Jespersen et al. 2020]. Other works that focus on high-level properties of

distributed applications [Hawblitzel et al. 2017; Nieto et al. 2022; Wilcox et al. 2015] also treat the

reliable communication as a part of the verification process to some extent.

Nieto et al. [2022] implement a reliable causal broadcast library on top of Aneris’s UDP primitives

which they use to implement conflict-free replicated data types (CRDTs). Their implementation
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uses timestamps as sequence ids to achieve causal reliable delivery of broadcast UDP messages and

focuses on applications that are more suited for symmetric group communication e.g., CRDTs.
The Verdi framework [Wilcox et al. 2015] proposes a methodology to verify distributed systems

that relies on a notion of verified transformers. One such transformer is a Sequence Numbering

Transformer that allows ensuring that messages are delivered at most once, similar to the guarantees

provided by our RCLib. However, the design of this transforer, stated in a domain- specific event-

handler language, is specific to the Verdi methodology. In contrast, the RCLib we present in this

work is a realistic OCaml implementation of a reliable transport communication layer à la SCTP.
Moreover, some of the existing verification systems assume that the shim connecting the analysis

framework to executable code is reliable [Lesani et al. 2016; Wilcox et al. 2015]. That can limit

guarantees about the verified code and lead to the discrepancies between the high-level specification,

verification tool, and shim of such verified distributed systems [Fonseca et al. 2017].

Session Types in Distributed Systems. Session types, since their inception by Honda [1993], have

primarily been concernedwith idealised reliable communication, wheremessages are never dropped,

duplicated, or received out of order. Castro-Perez et al. [2019] developed a toolchain for “transport-

independent” multi-party session typed endpoints in Go. They show how their theory applies to

channel endpoints that may communicate locally (via shared memory) and in a distributed setting

(via TCP). Miu et al. [2021] developed a toolchain for generating TypeScript WebSocket code for

session type-checked TCP-based reliable communication in a distributed setting. Their system

guarantees communication safety and deadlock freedom, for which they provide a paper proof.

Recent work considers variations of unreliable communication, focused on constructing new

session type variants for handling the setting in question. Kouzapas et al. [2019] develops a session

type variant for such an unreliable setting where messages can be lost (although they are never

duplicated or arrive out of order). Their system handles message loss by tagging messages with a

sequence id where, when a failure is detected, the session catches up to the protocol through some

parametric failure handling mechanism. They provide such mechanism, where a default value of

the expected type is returned, after which the sequence id is increased.

7 CONLUSION AND FUTUREWORK
In this paper we have demonstrated the maturity of the Aneris distributed separation logic and the

genericity of the Actris dependent separation protocol framework, by combining them to implement

and verify a suite of reliable network components on top of low-level unreliable semantics. Each

component specification is encapsulated as an abstraction; no details about their building blocks are

exposed, even when these consist of other libraries. We thus achieve full vertical modularity i.e. the
libraries are separate modules verified separately. While we deem our low-level unreliable semantics

to be a step towards verification of more realistic languages, we find that the RCLib implementation

could be further improved from future extensions regarding realism and conventional guarantees.

The implementation of the reliable communication library includes a mechanism for retransmit-

ting messages until an acknowledgement is received. This is crucial, as messages could otherwise

be lost in the network, never to be retransmitted, resulting in any blocking receive halting indefi-

nitely. The Aneris logic however does not give us any formal guarantees about progress, and so

cannot verify that our implementation of retransmission actually ensures progress. It would thus

be interesting to investigate whether one can obtain any such progress guarantees for the library

by using the Trillium refinement logic [Timany et al. 2021]. Trillium allows for proving refinements

between the executions of the program and a user-defined model, and has been used to prove

eventual consistency for a Conflict-Free Replicated Data Type (CRDT) in conjunction with Aneris.
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Currently, the RCLib assumes that established connections are never closed, neither graciously,

nor because of an abrupt connection loss, e.g.due to a remote’s crash. Lifting those assumptions

would allow obtaining an even more realistic implementation, e.g.with the possibility of closing

the channel endpoints and connection reestablishment. For the latter, it would also be interesting

to consider how our specifications could be adapted to consider the possibility of crashes, e.g.by
integrating a crash-sensitive logic such as Perennial [Chajed et al. 2019]) into our framework.

The implementation is currently not partition-tolerant, as any partitioning between the server

and one of its client would prevent further communication between them. It would be interesting to

investigate methods for achieving fault-tolerance in Aneris, e.g.. by having a cluster of nodes acting

as the server, so the clients can broadcast to the entire cluster, rather than communicating with a

singular node. This would effectively handle partitions, as other nodes in the cluster could relay the

message to the server, and help in the development of fault-tolerant libraries (e.g., multi-consensus).

Finally, our system does not consider network security. It would be interesting to investigate

the verification of secure reliable channels, where the initial connection step includes a secure

handshake, after which the connection is provably secure.

ACKNOWLEDGMENTS
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation. During parts of this project

Amin Timany was a postdoctoral fellow of the Flemish research fund (FWO).

REFERENCES
Anonymous Author(s). 2022. Supplementary material.

Bahareh Badban, Wan J. Fokkink, Jan Friso Groote, Jun Pang, and Jaco van de Pol. 2005. Verification of a sliding window

protocol in 𝜇CRL and PVS. Formal Aspects Comput. 17, 3 (2005), 342–388. https://doi.org/10.1007/s00165-005-0070-0

Lars Birkedal and Aleš Bizjak. 2017. Lecture Notes on Iris: Higher-Order Concurrent Separation Log. http://iris-project.org/

tutorial-pdfs/iris-lecture-notes.pdf. (2017).

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith Wansbrough. 2006. Engineering

with logic: HOL specification and symbolic-evaluation testing for TCP implementations. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 55–66. https://doi.org/10.1145/1111037.

1111043

David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed programming

using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated communication

structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1–29:30. https://doi.org/10.1145/3290342

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe systemswith

Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM, 243–258. https://doi.org/10.1145/3341301.3359632

Michael Compton. 2005. Stenning’s Protocol Implemented in UDP and Verified in Isabelle. In Theory of Computing 2005,
Eleventh CATS 2005, Computing: The Australasian Theory Symposium, Newcastle, NSW, Australia, January/February
2005 (CRPIT, Vol. 41), Mike D. Atkinson and Frank K. H. A. Dehne (Eds.). Australian Computer Society, 21–30. http:

//crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html

Alan Fekete, Nancy Lynch, Yishay Mansour, and John Spinelli. 1993. The Impossibility of Implementing Reliable Communi-

cation in the Face of Crashes. J. ACM 40, 5 (nov 1993), 1087–1107. https://doi.org/10.1145/174147.169676

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An Empirical Study on the Correctness of

Formally Verified Distributed Systems. In Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). Association for Computing Machinery, New York, NY, USA, 328–343. https://doi.org/10.1145/

3064176.3064183

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant

Web Services. SIGACT News 33, 2 (jun 2002), 51–59. https://doi.org/10.1145/564585.564601

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal. 2021. Distributed causal

memory: modular specification and verification in higher-order distributed separation logic. Proc. ACM Program. Lang. 5,
POPL (2021), 1–29. https://doi.org/10.1145/3434323

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.1007/s00165-005-0070-0
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/1111037.1111043
https://doi.org/10.1145/1111037.1111043
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3341301.3359632
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html
https://doi.org/10.1145/174147.169676
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3434323


Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:27

James N Gray. 1979. A discussion of distributed systems. (1979).

Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan, Madan Musuvathi, Zheng Zhang,

and Lidong Zhou. 2013. Failure Recovery: When the Cure Is Worse Than the Disease. In 14th Workshop on Hot Topics in
Operating Systems, HotOS XIV, Santa Ana Pueblo, New Mexico, USA, May 13-15, 2013. https://www.usenix.org/conference/

hotos13/session/guo

J Y Halpern. 1987. Using Reasoning About Knowledge to Analyze Distributed Systems. Annual Review of Computer Science
2, 1 (1987), 37–68. https://doi.org/10.1146/annurev.cs.02.060187.000345

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian

Zill. 2017. IronFleet: Proving Safety and Liveness of Practical Distributed Systems. Commun. ACM 60, 7 (June 2017),

83–92. https://doi.org/10.1145/3068608

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. CoRR abs/2010.15030 (2020). arXiv:2010.15030 https://arxiv.org/abs/2010.15030

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.). Springer,
509–523. https://doi.org/10.1007/3-540-57208-2_35

Naghmeh Ivaki, Nuno Laranjeiro, and Filipe Araujo. 2018. A Survey on Reliable Distributed Communication. Journal of
Systems and Software 137 (03 2018), 713–. https://doi.org/10.1016/j.jss.2017.03.028

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 234–248. https://doi.org/10.1145/3293880.3294106

Dimitrios Kouzapas, Ramunas Gutkovas, A. Laura Voinea, and Simon J. Gay. 2019. A Session Type System for Asynchronous

Unreliable Broadcast Communication. CoRR abs/1902.01353 (2019). arXiv:1902.01353 http://arxiv.org/abs/1902.01353

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems -
29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. 336–365. https://doi.org/10.1007/978-3-

030-44914-8_13

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: certified causally consistent distributed key-value stores.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016. 357–370. https://doi.org/10.1145/2837614.2837622

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming
Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. 2021. Communication-safe web programming in

TypeScript with routed multiparty session types. In CC ’21: 30th ACM SIGPLAN International Conference on Compiler
Construction, Virtual Event, Republic of Korea, March 2-3, 2021, Aaron Smith, Delphine Demange, and Rajiv Gupta (Eds.).

ACM, 94–106. https://doi.org/10.1145/3446804.3446854

Abel Nieto, Léon Gondelman, Alban Reynaud, and Lars Birkedal. 2022. Modular Verification of Op-Based CRDTs in

Separation Logic. Proc. ACM Program. Lang. OOPSLA (2022). Accepted for publication..

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving with distributed protocols. Proc. ACM
Program. Lang. 2, POPL (2018), 28:1–28:30. https://doi.org/10.1145/3158116

M. A. S. Smith. 1996. Formal Verification of Communication Protocols. In FORTE.
Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel Nieto, and Lars Birkedal. 2021. Trillium:

Unifying Refinement and Higher-Order Distributed Separation Logic. CoRR abs/2109.07863 (2021). arXiv:2109.07863

https://arxiv.org/abs/2109.07863

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, David
Grove and Stephen M. Blackburn (Eds.). ACM, 357–368. https://doi.org/10.1145/2737924.2737958

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, William Mansky, Benjamin C.

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th
International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.

https://www.usenix.org/conference/hotos13/session/guo
https://www.usenix.org/conference/hotos13/session/guo
https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1145/3068608
https://arxiv.org/abs/2010.15030
https://arxiv.org/abs/2010.15030
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1016/j.jss.2017.03.028
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3293880.3294106
https://arxiv.org/abs/1902.01353
http://arxiv.org/abs/1902.01353
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1145/3446804.3446854
https://doi.org/10.1145/3158116
https://arxiv.org/abs/2109.07863
https://arxiv.org/abs/2109.07863
https://doi.org/10.1145/2737924.2737958


1:28 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

(LIPIcs, Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:19.

https://doi.org/10.4230/LIPIcs.ITP.2021.32

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	1.1 Overview of the Technical Development and Contributions

	2 Reliable Communication Library
	2.1 Reliable Communication Library API
	2.2 Actris: specification and reasoning about reliable communication
	2.3 Reliable Communication API and Specifications
	2.4 A Simple Example: Verifying an Echo Server

	3 Distributed Lock Manager and RPC Service Libraries
	3.1 Distributed Lock Manager
	3.2 RPC service

	4 Sequentially Consistent Lazy Replication with Leader-Followers
	4.1 Specification for the Leader and Followers
	4.2 Client Examples
	4.3 Implementation and Verification

	5 Verification of the Reliable Communication Library and Adequacy
	5.1 Verification of the Reliable Communication Library
	5.2 Adequacy: obtaining the initial component resources and closed proofs

	6 Related Work
	7 Conlusion and Future Work
	Acknowledgments
	References

