
1

Verifying Reliable Network Components in a Distributed
Separation Logic with Dependent Separation Protocols

LÉON GONDELMAN, Aarhus University, Denmark

JONAS KASTBERG HINRICHSEN, Aarhus University, Denmark

MÁRIO PEREIRA, Nova Lincs, Portugal
AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

We present a foundationally verified implementation of a reliable communication library for asynchronous

client-server communication, and a stack of formally verified components on top thereof. Our library is imple-

mented in an OCaml-like language on top of UDP and features characteristic traits of existing protocols, such

as a simple handshaking protocol, bidirectional channels, and retransmission/acknowledgement mechanisms.

We verify the library in the Aneris distributed separation logic using a novel proof pattern—dubbed the session
escrow pattern—based on the existing escrow proof pattern and the so-called dependent separation protocols,
which hitherto have only been used in a non-distributed concurrent setting. We demonstrate how our specifi-

cation of the reliable communication library simplifies formal reasoning about applications, such as a remote
procedure call library, which we in turn use to verify a lazily replicated key-value store with leader-followers
and clients thereof. Our development is highly modular—each component is verified relative to specifications

of the components it uses (not the implementation). All our results are formalized in the Coq proof assistant.

1 INTRODUCTION
Distributed programming is in some respect similar to message-passing concurrency where threads

coordinate through the exchange of messages. However, contrary to communication between

threads, network communication is unreliable (messages can be dropped, reordered, or duplicated)

and asynchronous (messages arrive with a delay, which, in the presence of network partitions, is in

general indistinguishable from a connection loss, e.g., due to a remote machine crash).

Implementations of distributed applications therefore often rely on a transport layer, such as

TCP or SCTP, to provide reliable communication channels among network servers and clients.

Here “reliable” refers to the requirement that a server must process client requests in the order

they are issued (FIFO order) and should not process any request more than once.
1
Such transport

layer libraries often share two common traits: (1) they provide a high-level API which hides the

implementation details by means of which reliable communication is achieved, and (2) the API

they provide is stated in terms of BSD (Berkeley Software Distribution) socket-like API primitives

connect, listen, accept, send, and recv that allow establishing asynchronous client-server connections

and to transmit data via bidirectional channels.

It is well-known that the implementation and use of a transport layer library is challenging and

error-prone [Guo et al. 2013] and thus it is a good target for formal verification. In recent years there

has been much research progress on tools for analysis and verification of distributed systems using

various techniques, ranging from model checking to mechanised verification in proof assistants.

1
Because of network asynchrony it is very difficult to achieve exactly-once processing [Fekete et al. 1993; Gray 1979; Halpern

1987]. See [Ivaki et al. 2018] for a detailed survey of reliability notions in distributed systems.

Authors’ addresses: Léon Gondelman, Aarhus University, Denmark, gondelman@cs.au.dk; Jonas Kastberg Hinrichsen,

Aarhus University, Denmark, hinrichsen@cs.au.dk; Mário Pereira, Nova Lincs, Portugal, mjp.pereira@fct.unl.pt; Amin

Timany, Aarhus University, Denmark, timany@cs.au.dk; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

let client clt srv =
let s =
mk_client_skt str_ser int_ser clt in

let c = connect s srv in
send c "Carpe";
send c "Diem";
let m1 = recv c in
let m2 = recv c in
assert (m1 = 5 && m2 = 4)

let rec serve_loop c' =
let req = recv c' in
send c' (strlen req); serve_loop c'

let rec accept_loop s' =
let c' = fst (accept s') in
fork serve_loop c'; accept_loop s'

let server srv =
let s' = mk_server_skt int_ser str_ser srv in
server_listen s'; accept_loop s'

Fig. 1. Example: server returning the length of incoming strings.

However, most of this research is situated on one of two ends of a spectrum, regarding how the

reliable communication (when it is required) is treated.

On one end, existing work focuses on high-level properties of distributed applications assuming
reliability, e.g., assuming that the underlying transport layer of the verification framework is

(partially) reliable [Gondelman et al. 2021; Krogh-Jespersen et al. 2020; Sergey et al. 2018], or that

the shim connecting the analysis framework to executable code is reliable [Lesani et al. 2016; Wilcox

et al. 2015]. This approach can limit the verified guarantees and lead to discrepancies between the

specification, verification tool, and shim of such verified distributed systems [Fonseca et al. 2017].

On the other end of the spectrum, existing work focuses on verifying reliability and correctness

properties of protocols for reliable communication, e.g., formalization of the TCP protocol imple-

mentations [Bishop et al. 2006; Smith 1996], sliding window protocol verification in 𝜇CRL [Badban

et al. 2005], or Stenning’s protocol verified in Isabelle [Compton 2005]. This line of wok does not

capture the reliability guarantees in a logic in a modular way that facilitates reasoning about clients

of those protocols.

The purpose of the work presented in this paper is to show how we can tie these two loose ends

of the spectrum. Concretely, in this paper we present the first modularly specified and verified im-

plementation of a reliable communication library (RCLib), verified on top of an unreliable network.

Our specifications enable modular verification of full functional correctness properties of distributed

applications implemented on top of the reliable communication library. In the rest of this section

we discuss the implementation (Section 1.1), specifications (Section 1.2), and verification methodol-

ogy (Section 1.3) of RCLib, and the examples we have verified on top of the library (Section 1.4).

We conclude with a list of the concrete contributions made by the paper (Section 1.5).

1.1 Formally Verifiable Implementation of a Reliable Communication Library
Our implementation of the reliable communication library aims at a high level of realism by employ-

ing realistic features such as asynchronous asymmetric channel creation (using 4-way handshake à
la SCTP) and uses standard techniques such as sequence identifiers, retransmissions/acknowledg-

ments, and channel descriptors for bidirectional data transmission. The channel descriptors consist

of a local physical state containing send and receive buffers that is mutated both by user calls to

the send/receive operations and the internal protocol procedures (running as concurrent threads)

that enable reliable data transmission. Using buffers allows us to implement the user layer in a

network-agnostic way, which is thus identical for the client and server, thus simplifying verification.

Section 4 covers those implementation aspects and how they are verified in more detail.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:3

In Figure 1 we present a simple example of how RCLib can simplify implementations of distributed

programs. The example consists of a server that returns the length of incoming strings, and a simple

client that connects to and communicates with the server. The right-hand side of Figure 1 shows

the server implementation. The server is initialised using mk_server_skt int_ser str_ser srv,

which returns a new socket s', which is then put into listening mode with server_listen s'. Once

the server is initialised, it starts an “accept” loop. The accept s' operation blocks until a new client

connects, after which a channel descriptor 𝑐 ′ (along with the client address, which we throw away),

used to communicate with the client, is returned. The server serves each client on separate threads

using a “serve” loop. The serve loop receives incoming strings, computes their length, and sends

the results back. The left-hand side of Figure 1 shows the code for a particular client. The client first

allocates its socket handler using mk_client_skt str_ser int_ser clt, and then connects to the

server using connect s srv with the servers address srv. The operation blocks until the server

accepts the request, after which it returns the channel descriptor 𝑐 on which it communicates with

the server. The client then sends two consecutive messages “Carpe” and “Diem”, and waits for

the results m1 and m2. Note that for the client’s assertion assert (m1 = 5 && m2 = 4) to hold, the

communication must be reliable (in particular that messages arrive in order, and are not duplicated).

To verify the implementation of RCLib we need a formal operational semantics for distributed

systems, along with a mechanism for reasoning about the semantics. To this end we have imple-

mented the library in AnerisLang; an OCaml-like programming language with network primitives

for UDP-like sockets that is formally defined in the Coq proof assistant together with the Aneris
program logic [Krogh-Jespersen et al. 2020], which can be used to reason about unreliable dis-

tributed systems written in AnerisLang. Aneris allows reasoning about so-called unreliable spatial
resource transfer—safely transferring spatial resources over an unreliable network—using a variant

of the escrow pattern [Kaiser et al. 2017], which we will further elaborate on in Section 2.1.

As part of this work, to verify the AnerisLang implementation of RCLib, we have developed a

simple compiler that translates programs written in a subset of OCaml to AnerisLang, to (infor-

mally) tie the verified program to executable code. This approach is similar to one taken in prior

work [Chajed et al. 2019]. Note that such a compiler does not give any formal guarantees about

the executed OCaml code: in fact, no such guarantees are currently possible, as OCaml does not

have a formal semantics. Nevertheless, the formal operational semantics of AnerisLangmatches, by

design, the informal, but commonly understood, semantics of the corresponding subset of OCaml.

We remark that the trusted computing base of our framework (only) comprises (a) the compiler

from OCaml to AnerisLang, (b) the operational semantics of AnerisLang, and (c) the Coq proof

assistant in which we formalize all of our results. Note that Aneris is not part of the trusted

computing base as its adequacy (soundness) is proven in Coq.

1.2 Modular Specifications of RCLib using Dependent Separation Protocols
To enable reasoning about functional correctness of the RCLib clients and libraries built on top of

RCLib, we prove Aneris program logic specifications for the RCLib API. The key ingredient of these

specifications is that they capture reliability guarantees of the client-server communication using

dependent separation protocols of the Actris framework [Hinrichsen et al. 2020, 2022]. The dependent

separation protocols are session type-like protocols that allow so-called reliable dependent resource
transfer, by specifying a sequence of obligations to send or receive messages. Each exchange

is associated with logical binders, a physical value, and separation logic resources, to specify

obligations that the sender has to guarantee, and the receiver can rely on. Notably, the protocols

are dependent, meaning that each specified exchange can depend on the exchanges that were made

before them. As an example, the session of the echo-server example above can be captured by the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

following dependent separation protocol:

echo_prot ≜ 𝜇rec. ! (𝑠 : String) ⟨𝑠⟩. ?(𝑛 : N) ⟨𝑛⟩{𝑛 = |𝑠 |}. rec

The protocol specifies (from the client’s point of view) how the client must first sends a string 𝑠 to

the server, and how the server then replies with a number 𝑛, which corresponds to the length of

the string, as captured by the corresponding message proposition, 𝑛 = |𝑠 |. The protocol is recursive,
by virtue of the 𝜇-operator.

Given a protocol prot that describes a session for a specific client-server communication, we

further follow the Actris methodology by associating each channel descriptor 𝑐 in an established

session with a predicate 𝑐 >
ip−−→
𝑠𝑒𝑟

prot in the logic called a channel descriptor resource. Here 𝑠𝑒𝑟 describes
how the values must be serialized, ip corresponds to the ip-address of the node that the channel

descriptor belongs to, and prot describes the current state of the protocol.
When a session is established between a client and the server, alongwith fresh channel descriptors,

the client obtains the resource 𝑐 >
ip−−→
𝑠𝑒𝑟

prot, and the server obtains the resource 𝑐 >
ip−−→
𝑠𝑒𝑟

prot. Here,
prot denotes the dual of the protocol prot, which turns all sends into receives, and vice versa. This

enforces that what is sent by one side is what the other side receives. The local states of the protocol

then change on each side with every user’s call to the send and receive operations. We cover the

specification pattern formally in Section 3, which presents the specification of the RCLib API and

shows how it is used to prove the example above.

1.3 Modular Verification of RCLib and the Session Escrow Pattern
The dependent separation protocols that we adopt has previously been applied to verify reliable

communication implemented via shared-memory message-passing [Hinrichsen et al. 2020, 2022].

In this paper, we apply the methodology to specify an implementation of reliable communication

that is built on top of unreliable network primitives. This mismatch between a reliable proof pattern

and an unreliable implementation imposes multiple non-trivial challenges, which we elaborate on

in Section 2.3.

Our solution to these challenges is a new proof pattern called the session escrow pattern, which is

the main technical contribution of this paper. The session escrow pattern effectively merges the

unreliable spatial resource transfer of the escrow pattern with the reliable dependent resource transfer
of Actris, to achieve so-called unreliable dependent resource transfer. We present the session escrow

pattern in Section 4.2, and discuss how it elegantly solves the non-trivial verification challenges.

1.4 Verified Reliable Distributed Components on top of the RCLib
We demonstrate the expressivity of the RCLib specifications by verifying a number of examples,

including the simple example presented in Figure 1. As a more realistic case study, we implement a

remote procedure call (RPC) service library. We additionally use the RPC library to implement and

verify a lazily replicated key-value store with leader-followers implementation in which the leader

can both read from and write to the contents of the store, and the followers lazily replicate the

updates from the leader, preserving the order of the leader’s writes.

We leverage the fact that Aneris allows us to obtain highly modular and general specifications.

Indeed, each component (RCLib, RPC, leader-followers KVS) is verified relative to the specification of
the libraries that it is built on top of (not their implementations); this simplifies reasoning since the

specifications of libraries hide all the verification related details. For instance, the leader-followers

is verified on top of the specification of the RPC library, which is expressed in terms of an abstract

specification of the remote procedure calls. In particular, the verification of the leader-followers

KVS does not involve any reasoning about network-level communication at all.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:5

1.5 Contributions
In summary, the main contributions of this work are:

• RCLib: The first foundationally verified implementation of a reliable communication library

for client-server communication with session-based protocol specifications (Section 3).

• The session escrow pattern; a proof pattern for reasoning about reliable dependent transfer of

resources in an unreliable setting, used to verify the RCLib (Section 4).

• A demonstration of the expressivity of the RCLib specifications through the verification of

a generic remote procedure call library, which can be used as a middleware component to

further simplify the formal development of distributed applications (Section 5).

• A verified implementation of a leader-followers key-value store on top of the RPC library,

demonstrating the vertical modularity enabled by the RCLib specifications (Section 6).

All of our results are mechanized on top of the Aneris logic and Actris framework in the Coq

proof assistant, and consists of ∼15.500 lines of Coq code. The development is available in the

accompanying artifact [Author(s) 2022].

2 PRIORWORK AND ITS LIMITATIONS
In this section we recall some of the key features of the existing logical frameworks that our work

builds on. We first give an overview of the Aneris program logic (Section 2.1) and the Actris ghost

theory (Section 2.2) and then discuss some of the limitations of these frameworks (Section 2.3),

motivating the construction of the session escrow pattern, which is presented in (Section 4).

2.1 Aneris: Distributed Separation Logic
Aneris is an extension of the Iris concurrent separation logic with support for reasoning about

distributed programs in which each node is written in an ML-like language, with low-level socket-

based communication primitives akin to the UDP protocol. An overview of the distributed-relevant

parts of the logic can be found in Figure 2.

Specifications in Aneris are stated as ip-decorated Hoare triples {𝑃 } ⟨𝑖𝑝 ; 𝑒⟩ {𝛷} . Similar to

conventional the Aneris Hoare-triples capture that given the precondition (𝑃 : iProp), the program
𝑒 can safely be executed at the specified ip, and as a result the postcondition (𝛷 : Val → iProp) holds
for the returned value. We derive partial correctness from a closed proof of a Hoare triple, as will

be formally explained later in this section. We often write {𝑃 } ⟨𝑖𝑝 ; 𝑒⟩ {𝑤.𝑄} ≜ {𝑃 } ⟨𝑖𝑝 ; 𝑒⟩ {𝜆𝑤.𝑄} ,
and {𝑃 } ⟨𝑖𝑝; 𝑒⟩ {𝑄} ≜ {𝑃 } ⟨𝑖𝑝; 𝑒⟩ {𝜆𝑤.𝑤 = () ∗𝑄} .
Aneris has proof rules which reflect the conventional informal specification of UDP-based

communication in a distributed setting, decorated with user-specified protocols that allows for

transfer of spatial resources of fresh messages, using an intuition similar to the escrow pattern. We

elaborate on this intuition at the end of this section.

To express the proof rules Aneris employs new logical predicates that each govern parts of the

network resources. The FreeIp(ip) resource2 asserts that no node exists at the specified ip (ip).
The FreePorts(ip,P) resource asserts that the specified ports (P), at the specified ip (ip), have not
been bound. We often write FreeAddr(𝑠𝑎) ≜ FreePorts(𝑠𝑎.ip, {𝑠𝑎.port}). The 𝑠ℎ ip

↩−→ (𝑜, 𝑏) resource
asserts exclusive ownership of a socket handler (𝑠ℎ) at the node with the given ip (ip), asserting
that it is either closed or open on a given address (𝑜 : Option Address), as well as whether it is in a

blocking or non-blocking state (𝑏 : + ⊘). The Unallocated(𝐴) resource asserts that the given
addresses (𝐴 : Set Address) are “unallocated”, meaning that no protocols have been assigned to

them yet. Conversely, once “allocated”, the duplicable 𝑠𝑎 Z⇒ 𝛷 resource asserts that the socket at

the given address (𝑠𝑎), follows the given protocol (𝛷 : Message → Prop). The 𝑠𝑎 { (𝑅,𝑇) resource
2
Since Aneris is a resourceful separation logic, we often refer to predicates as resources.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

Grammar:

𝜏, 𝜎 ::= Handle | Socket | Address | Message | . . .
𝑃,𝑄 ::= FreeIp(ip) | FreePorts(ip,P) | 𝑠ℎ ip

↩−→ (𝑜, 𝑏) | Unallocated(𝐴) | 𝑠𝑎 Z⇒ 𝛷 | 𝑠𝑎 { (𝑅,𝑇) | . . .
Network primitives:

Ht-start

{𝑃 ∗ FreePorts(ip,P)} ⟨ip; 𝑒⟩ {𝑤. True}
{𝑃 ∗ FreeIp(ip)} ⟨ipsys; start ip 𝑒⟩ {𝑤.𝑤 = ()}

Ht-newsocket

{True}
⟨ip; socket ()⟩

{𝑤. ∃𝑠ℎ.𝑤 = 𝑠ℎ ∗ 𝑠ℎ ip
↩−→ (None,)}

Ht-settimeout

{𝑠ℎ ip
↩−→ (𝑜, 𝑏)} ⟨ip; settimeout 𝑠ℎ 𝑛 𝑚⟩ {if (𝑛 = 0 ∧𝑚 = 0) then 𝑠ℎ ip

↩−→ (𝑜,) else 𝑠ℎ ip
↩−→ (𝑜, ⊘)}

Ht-socketbind

{FreeAddr(𝑠𝑎) ∗ 𝑠ℎ 𝑠𝑎.ip
↩−−→ (None, 𝑏)}

⟨𝑠𝑎.ip; socketbind 𝑠ℎ 𝑠𝑎⟩
{𝑤.𝑤 = 0 ∗ 𝑠ℎ 𝑠𝑎.ip

↩−−→ (Some 𝑠𝑎, 𝑏)}

Ht-socket-interp-alloc

{𝑃 ∗ 𝑠𝑎 Z⇒ 𝛷} ⟨ip; 𝑒⟩ {𝑤.𝑄}
{𝑃 ∗ Unallocated({𝑠𝑎})} ⟨ip; 𝑒⟩ {𝑤.𝑄}

Ht-send

{𝑠ℎ 𝑚.src.ip
↩−−−−→ (Some𝑚.src, 𝑏) ∗𝑚.dst Z⇒ 𝛷 ∗

𝑚.src { (𝑅,𝑇) ∗ (𝑚 ∉ 𝑇 ⇒ 𝛷 𝑚) }
⟨𝑚.src.ip; sendto 𝑠ℎ 𝑚.str𝑚.dst⟩

{𝑤.𝑤 = |𝑚.src| ∗𝑚.src { (𝑅,𝑇 ∪ {𝑚}) ∗
𝑠ℎ

𝑚.src.ip
↩−−−−→ (Some𝑚.src, 𝑏) }

Ht-recv

{𝑠ℎ 𝑠𝑎.ip
↩−−→ (Some 𝑠𝑎, 𝑏) ∗ 𝑠𝑎 { (𝑅,𝑇) ∗ 𝑠𝑎 Z⇒ Φ}

⟨𝑠𝑎.ip; receivefrom 𝑠ℎ⟩

{𝑤. 𝑠ℎ
𝑠𝑎.ip
↩−−→ (Some 𝑠𝑎, 𝑏) ∗

(𝑏 = ⊘ ∗𝑤 = None ∗ 𝑠𝑎 { (𝑅,𝑇)) ∨
(∃𝑚.𝑤 = Some (𝑚.str,𝑚.src) ∗𝑚.dst = 𝑠𝑎 ∗

𝑠𝑎 { (𝑅 ∪ {𝑚},𝑇) ∗ (𝑚 ∉ 𝑅 ⇒ 𝛷 𝑚))}
Fig. 2. The grammar and a selection of rules of the Aneris communication layer.

asserts the history of messages received (𝑅) and transmitted (𝑇) at the given address (𝑠𝑎). Finally,

FreePorts(ip,P) and Unallocated(𝐴) enjoy splitting; FreePorts(ip,P1 ⊎P2) ⊣⊢ FreePorts(ip,P1) ∗
FreePorts(ip,P2) and Unallocated(𝐴1 ⊎𝐴2) ⊣⊢ Unallocated(𝐴1) ∗ Unallocated(𝐴2).

The semantics of these connectives is made clear by the associated logical rules. The rule Ht-start

states that one can start new nodes using start ip 𝑒 whenever the ip address is free (FreeIp(ip)),
giving back the assertion that all the ports (P) at the ip are free (FreePorts(ip,P)). Note that

start ip 𝑒 can only be executed on the “system” node with the ip address: ipsys. This is to reflect

that the language does not have dynamic allocation of nodes, and instead only allows setting up

the nodes from an initial node that can be thought of as an admin node. The rule Ht-newsocket

specifies that the socket () expression allocates a new socket, returning the handle (𝑠ℎ), for which

we obtain exclusive ownership 𝑠ℎ
ip
↩−→ (None,), capturing that the socket is initially unbound

(None), and blocking (). The blocking status of a socket can be updated with settimeout 𝑠ℎ 𝑛 𝑚,

as specified by the Ht-settimeout rule, which sets the blocking status based on the given timeout.

Since Aneris is time-insensitive, the timeout is treated as the binary blocking flag in the logic.

Sockets can be bound to addresses via socketbind 𝑠ℎ 𝑠𝑎, as specified by the Ht-socketbind rule, that

updates the socket handle resource to the bound address 𝑠ℎ
ip
↩−→ (Some sa, 𝑏). Protocols are bound to

socket addresses using the Ht-socket-interp-alloc rule, which captures that an Unallocated({sa})
resource can be converted to an sa Z⇒ 𝛷 resource at any given time. The rule Ht-send specifies how

we can send a message (𝑚.str) over a socket (𝑠ℎ) to a given destination address (𝑚.dst) using the
sendto 𝑠ℎ 𝑚.str𝑚.dst command. This requires that the socket is bound (𝑠ℎ

ip
↩−→ (Some𝑚.src, 𝑏)), the

presence of the message history (𝑚.src { (𝑅,𝑇)), and that we know the protocol of the destination

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:7

(𝑚.dst Z⇒ 𝛷). If the message is fresh (𝑚 ∉ 𝑇) we must give up the resources specified by the protocol

(𝛷 𝑚). We finally add the sent message to the history of transmitted message (𝑇 ∪ {𝑚}).
The rule Ht-recv specifies how we can receive messages over a socket (𝑠ℎ) using receivefrom 𝑠ℎ.

This requires that the socket is bound (𝑠ℎ
ip
↩−→ (Some 𝑠𝑎, 𝑏)), the presence of the message history

(𝑠𝑎 { (𝑅,𝑇)), and that we know our protocol (𝑠𝑎 Z⇒ 𝛷). If there is no message inbound the function

returns nothing (𝑤 = None), and we retain the original history of received messages (𝑅). If there is

a message inbound its contents are returned (𝑤 = Some𝑚.str,𝑚.src), and it is added the history

of received messages (𝑅 ∪ {𝑚}). Finally, if the message is fresh (𝑚 ∉ 𝑅) we obtain the resources

specified by our protocol (𝛷 𝑚). If the socket is blocking the function blocks until a message is

received, and thus the first case is only possible if the socket is non-blocking (𝑏 = ⊘).

Adequacy: obtaining the initial resources and closed proofs. The specifications presented above

depend on resources that seem to occur from nothing. Particularly Unallocated(𝐴), sa { (𝑅,𝑇),
and FreeIp(ip) occur as a precondition of various rules, while not being obtained as a result of

any. This is sound because closed proofs of complete programs in Aneris are instantiated with a

concrete network configuration, for which initial resources are provided. This is formally captured

by the foundationally mechanised Aneris adequacy theorem:

Theorem 2.1 (Adeqacy of Aneris). Let 𝜑 ∈ Val → Prop be a meta-level (i.e. Coq) predicate
over values and suppose that the following is derivable in Aneris:

ip ∉ ips ⇒ {Unallocated(𝐴) ∗∗𝑎∈𝐴, 𝑎 { (∅, ∅) ∗∗𝑛∈ips, FreeIp(𝑛)} ⟨ip; 𝑒⟩ {𝛷}

We then obtain the following properties:
• Safety: The program 𝑒 , i.e., all threads on all nodes, will never get stuck
• Postcondition Validity: If the program 𝑒 terminates with value 𝑣 , then 𝜑 𝑣 holds.

To verify a complete program, the first step is thus to pick the set of addresses (𝐴 : Set Address),
and the set of ips (excluding the ip of the initial node) (ips : Set Ip where ip ∉ ips); and then prove

the Hoare triple, in which we start with the initial network resources for tracking unallocated

addresses (Unallocated(𝐴)), socket histories (∗𝑎∈𝐴, 𝑎 { (∅, ∅)), and free ips (∗𝑛∈ips, FreeIp(𝑛)).
To obtain a closed proof of a distributed systemwe apply the adequacy theorem to the admin node

(with ip ipsys). To establishing statically known protocols one can apply the Ht-socket-interp-alloc

rule before starting the individual nodes, to obtain the duplicable sa Z⇒ 𝛷 resources which can be

distributed to the nodes when started.

2.2 Actris: Dependent Separation Protocols
The Actris framework [Hinrichsen et al. 2022] supports specifying and reasoning about reliable

communication. It does so by using a notion of session-type-inspired separation logic protocols,

called dependent separation protocols, defined by the following three constructors:

prot ∈ iProto ::= ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot | ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot | end
These constructors are used to specify a sequence of obligations to send (!) and receive (?), which can
be terminated by end. More specifically, the constructors ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot and ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot
specify an exchange of a value 𝑣 , along with resources described by 𝑃 , given an instantiation of

the binders ®𝑥 : ®𝜏 . The binders ®𝑥 : ®𝜏 bind into both the value 𝑣 , the proposition 𝑃 , and the tail prot.
The latter means that the protocols are dependent, i.e., that message exchanges can depend on

the exchanges that were made before them. Additionally, dependent separation protocols can be

defined recursively using the Aneris 𝜇-operator (most of the protocols presented in this paper are

recursive). Finally, we often write ! ®𝑥 : ®𝜏 ⟨𝑣⟩. prot instead of ! ®𝑥 : ®𝜏 ⟨𝑣⟩{True}. prot.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

The dependent separation protocols are subject to the conventional session type notion of duality
prot, which turns all sends (!) into receives (?), and vice versa, for the given protocol prot:

! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot = ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot end = end

By this notion of duality, we can guarantee that any two programs with dual protocols will have

well-behaved communication by construction; when one endpoint expects some message and

resources, the other endpoint will send just that, and vice versa.

As an example consider the following dependent separation protocol of a simple echo-server:

echo_prot ≜ 𝜇rec. ?(𝑠 : String) ⟨𝑠⟩. ! (𝑛 : N) ⟨𝑛⟩{𝑛 = |𝑠 |}. rec
The protocol specifies (from the server’s point of view) how the server first receives an arbitrary

string 𝑠 from the client. The server then replies with a number 𝑛, which corresponds to the length

of the string, as captured by the corresponding message proposition, 𝑛 = |𝑠 |, and then recurses.

The dependent separation protocols enjoy a so-called subprotocol relation (⊑), which captures

protocol-preserving updates: local changes that are indistinguishable by the other party, and which

are therefore safe to perform without coordination. The most prominent such protocol-preserving

update is that of swapping, formally captured by the following relation:

⊑-swap
(®𝑥 : ®𝜏) ## (®𝑦 : ®𝜎)

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. ! ®𝑦 : ®𝜎 ⟨𝑤⟩{𝑄}. prot ⊑ ! ®𝑦 : ®𝜎 ⟨𝑤⟩{𝑄}. ?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot
The rule captures that one can choose to send (!), a message, before the prior receive (?), whenever
their binders are disjoint (this condition ensures that the send is independent of the receive).

To see why this is useful, consider a situation where a client of the echo-server sends two

messages upfront, and only awaits the responses from the server afterwards. The protocol of such

a client cannot possibly be strictly dual to the server’s echo_prot protocol, and so it might seem

that its communication with the server is not inherently sound. However, we can guarantee that it

is sound, if we can update the initially strictly dual protocol, using the protocol-preserving updates

captured by the subprotocol relation, so that the dual of the echo_prot fits the client:

echo_prot ⊑ ! (𝑠1 : String) ⟨𝑠1⟩. ! (𝑠2 : String) ⟨𝑠2⟩.
?(𝑛1 : N) ⟨𝑛1⟩{𝑛1 = |𝑠1 |}. ?(𝑛2 : N) ⟨𝑛2⟩{𝑛2 = |𝑠2 |}. echo_prot

As the client’s first receive and second send are independent, the relation follows directly from

unfolding the recursive definition twice, and using the ⊑-swap rule (and omitted structural rules).

Actris ghost theory. The Actris framework includes a logical model of reliable dependent resource
transfer via the dependent separation protocols called the Actris ghost theory which is shown in

Figure 3. The model operates on three resources called prot_ctx 𝜒 ®𝑣1 ®𝑣2 and prot_ownl 𝜒 prot and
prot_ownr 𝜒 prot. The prot_ctx 𝜒 ®𝑣1 ®𝑣2 resource acts as a shared context that tracks the messages

that are currently in transit in either direction via ®𝑣1 and ®𝑣2 respectively; we refer to ®𝑣1 and ®𝑣2
as (reliable) buffers. The resources prot_ownl 𝜒 prot and prot_ownr 𝜒 prot represent the current
view of the session from the perspective of either endpoint. The resources are parameterised by

an identifier 𝜒 that associate them with each other. The rules of the ghost theory capture how to

allocate these resources (proto-alloc), how to release resources along with sent values (proto-send-

l) and how to acquire resources along with received values (proto-recv-l). We omit the symmetric

rules about the transfer from right to left.

More precisely, the proto-alloc rule captures that we can always allocate a new session with

a fresh indentifier 𝜒 , and some freely picked protocol prot. The proto-send-l rule captures that

to send a value, the protocol must be in a sending state (prot_ownl 𝜒 ! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot). We must

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:9

True ⇛ ∃𝜒. prot_ctx 𝜒 𝜖 𝜖 ∗ prot_ownl 𝜒 prot ∗ prot_ownr 𝜒 prot (proto-alloc)

prot_ctx 𝜒 ®𝑣1 ®𝑣2 ∗ prot_ownl 𝜒 (! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot) ∗ 𝑃 [®𝑡/®𝑥] ⇛(
⊲ | ®𝑣2 | prot_ctx 𝜒 (®𝑣1 · [𝑣 [®𝑡/®𝑥]]) ®𝑣2

)
∗ prot_ownl 𝜒 (prot [®𝑡/®𝑥]) (proto-send-l)

prot_ctx 𝜒 ®𝑣1 ([𝑤] · ®𝑣2) ∗ prot_ownl 𝜒 (?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot) ⇛
⊲∃®𝑦. (𝑤 = 𝑣 [®𝑦/®𝑥]) ∗ 𝑃 [®𝑦/®𝑥] ∗ prot_ctx 𝜒 ®𝑣1 ®𝑣2 ∗ prot_ownl 𝜒 prot [®𝑦/®𝑥] (proto-recv-l)

prot_ownl 𝜒 prot ∗ prot ⊑ prot ′ ⇛ prot_ownl 𝜒 prot ′ (proto-⊑-l)

Fig. 3. Excerpt of rules of the Actris ghost theory.

then provide a concrete instantiation (®𝑡 : ®𝜏) of the binders (®𝑥 : ®𝜏), and give up the resources (𝑃 [®𝑡/®𝑥]).
As a result, we get back the shared context with the message (for the given binder instantiation)

added at the end of the respective buffer (prot_ctx 𝜒 (®𝑣1 · [𝑣 [®𝑡/®𝑥]]) ®𝑣2). We additionally get back

the protocol resource whose protocol is updated to its dependent tail (prot [®𝑡/®𝑥]). The proto-recv-l

rule specifies that the protocol must be in a receiving state (prot_ownl 𝜒 (?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot)), and
that there is a message in the inbound buffer prot_ctx 𝜒 ®𝑣1 ([𝑤] · ®𝑣2). We then get an instantiation

of the binders (®𝑦 : ®𝜏) as specified by the protocol (®𝑥 : ®𝜏), for which we obtain ownership of the

resources specified by the protocol (𝑃 [®𝑦/®𝑥]). We additionally learn that the received value (𝑤) is

equal to the value of the protocol (𝑤 = 𝑣 [®𝑦/®𝑥]). Finally, we get back the shared context with the

message removed from the buffer (prot_ctx 𝜒 ®𝑣1 ®𝑣2) and, moreover, the protocol resource whose

protocol is updated to its dependent tail (prot [®𝑡/®𝑦]). Finally, the proto-⊑-l rule specifies that we
can update the local protocol resource according to the subprotocol relation ⊑.

Note that the conclusions of the rules are guarded by the later modality ⊲, and its iterated version

⊲𝑛 ; this is due to the higher-order nature of the ghost theory.

Finally, note that the rules are defined in terms of the viewshift connective 𝑃 ⇛ 𝑄 , which

intuitively captures that the ghost state described by 𝑃 can safely be updated to the ghost state

described by 𝑄 . This is made precise by the following rule:

Vs-csq

𝑃1 ⇛ 𝑃2 {𝑃2} ⟨ip; 𝑒⟩ {𝑤.𝑄2} ∀𝑤.𝑄2 ⇛ 𝑄1

{𝑃1} ⟨ip; 𝑒⟩ {𝑤.𝑄1}
We use the viewshift and this rule when instantiating the ghost state of our reliable communication

framework as presented in Section 3.

2.3 Limitations of Prior Work
Aneris and Actris individually solve the problems of unreliable spatial resource transfer and reliable
dependent resource transfer, respectively. However, neither of these are expressive enough for the

verification of our framework, which ultimately relies on unreliable dependent resource transfer.

Aneris and the escrow pattern. The escrow pattern is a method that can be used to achieve

unreliable spatial resource transfer, which has previously been used in Iris contexts [Kaiser et al.

2017]. The intuition behind the pattern is that both parties first pre-emptively agree on the resources

to be shared. The sending party then eventually stores the resources in a “box” at a fixed location,

after which they can repeatedly try to inform the receiving party that the resources are there. Once

the receiving party are informed they can go and obtain the resources. To ensure that only the

receiving party can obtain the resources once, the “box” can only be opened with a one-time-use

“key”, belonging to the receiving party.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

In Aneris, this is achieved by treating the socket interpretation sa Z⇒ 𝛷 as the resource agreement.

The history of transmitted messages𝑇 , tracked by the message histories sa { (𝑅,𝑇) then evidence

that the resources have been put into the “box”, and therefore we can repeatedly resend the message

to try and inform the receiver. Conversely, the history of received messages 𝑅 act as the “key”,

ensuring that we can only obtain each resource once.

The escrow pattern, and the Aneris variant thereof, allow us to transfer spatial resources in

an unreliable setting, however, it is not suited for transfer of dependent resources. Consider the

introductory example shown in Figure 1. The “boxes” of the escrow pattern would somehow need

to capture the dependent history of prior messages, and similarly the “keys” would need to be

applied sequentially. While this is possible with sufficient ghost state, it quickly grows beyond the

scope of the escrow pattern.

The Actris ghost theory in a unreliable distributed settings. The Actris ghost theory lets us reason

about reliable dependent resource transfer, however it is does not immediately apply to unreliable

distributed settings. It tracks reliable buffers of messages in transit; and to apply the ghost theory,

these reliable buffers have to be tied to physical objects. This was possible in prior work on Actris

[Hinrichsen et al. 2022], as the ghost theory was applied to shared memory message-passing, built

on top of lock-protected shared memory buffers. However, no such physical objects exist in a

distributed setting! While sufficient ghost state can be employed to tie the logical buffers of the

Actris ghost theory to the physical messages that are relayed over the network, it is not immediately

clear how this can be achieved, and it does not solve the unreliable nature of the message exchanges.

Additionally, as mentioned earlier, the Actris ghost theory imposes an obligation to strip multiple

laters when applying its rules. In the prior work on Actris this was achieved by instrumenting the

critical section of the implementation, guarded by a lock, with sufficient non-operative steps (skip

instructions), that would each strip a later. This is not possible in a distributed setting, as the only

way to share the session context is via atomically accessible invariants. Instead one needs to strip

all of the laters imposed by the ghost theory during a single physical step. We describe how we

deal with this challenge in Section 4.2.

3 RELIABLE COMMUNICATION LIBRARY API AND SPECIFICATION
In this section we present the API (Section 3.1) and the specification (Section 3.2) of the reliable

communication library that we have implemented and verified, followed by the verification of the

simple example presented in Figure 1 (Section 3.3).

3.1 Reliable Communication Library API
Figure 4 describes the API of the reliable communication library implementation. The API declares

abstract data types of sockets and channel descriptors, and exposes the BSD socket-like primitives

for client-server bidirectional (message-directed) communication.

We make an explicit distinction between client_skt, the type of active sockets on which clients

connect to a given server, server_skt, the type of passive sockets on which the servers listen for the

incoming data from multiple clients, and chan_descr, the type of channel descriptors that clients
and servers can use for reliable data transmission, once the clients’ connection requests have been

accepted by the server and the connection has been established.

The library is polymorphic in the types of values exchanged between the clients and server. This

is achieved by making the library serialize the exchanged data internally, allowing the user directly

to send and receive values of the chosen data types, instead of operating on strings, which is the

standard type of message contents in Aneris. Thus the socket descriptor types are parameterized

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:11

type ('a, 'b) client_skt
type ('a, 'b) server_skt
type ('a, 'b) chan_descr
val mk_clt_skt : 'a serializer→'b serializer→saddr→('a, 'b) client_skt
val mk_srv_skt : 'a serializer→'b serializer→saddr→('a, 'b) server_skt
val listen : ('a, 'b) server_skt→unit
val accept : ('a, 'b) server_skt→('a, 'b) chan_descr * saddr
val connect : ('a, 'b) client_skt→saddr→('a, 'b) chan_descr
val send : ('a, 'b) chan_descr→'a→unit
val try_recv : ('a, 'b) chan_descr→'b option
val recv : ('a, 'b) chan_descr→'b

Fig. 4. The API of the reliable communication library.

by a pair of types (′a,′ b) and to create sockets, one must provide serializers for encoding/decoding

strings to and from those data types.

The API of our library can be used following the usual workflow of reliable client-server com-

munication: (1) by calling the listen function, the server is set to listen for incoming connection

requests, which the server can accept, one at a time, by calling the accept function, which returns

a new channel descriptor for each accepted connection; (2) each client connects to the server, by

calling the connect function, which, when it terminates, returns a new channel descriptor on the

client side; (3) once the connection is established, each side can use its own channel descriptor for

reliable data transmission in both directions, by calling the send and recv functions.

3.2 Reliable Communication API and Specifications
Similar to how the OCaml API hides the implementation details of the RCLib, our specification,

shown in Figure 5, hides the verification details that are irrelevant to the user. It does so by using a

dependent specification pattern, in which the specifications of the API primitives are dependent on

the user parameters (UP : RC_UserParams) provided by the user, and on the abstract specification
parameters (𝑆 : RC_Resources UP) provided by the library itself.

3
To initialize the library, the user

must supply the following four parameters:

• srv: the statically known socket address of the server;

• prot: the dependent separation protocol clients can use to interact with the server;

• ss: the serializer for the values sent by the server/received by clients;

• cs: the serializer for the values sent by clients/received by the server.

For brevity’s sake, we simply write 𝑆.srv instead of UP .srv, whenever 𝑆 : RC_Resources UP .
The initialization is captured formally by the RC-init-alloc rule. The rule is parametric in a freely

picked instance of the user parameters UP , and yields an instance of the library provided abstract

specification parameters 𝑆 , along with an initialisation resource 𝑆.SrvInit. To use the verification

framework a user is then expected to:

(1) Obtain the initial network resources via the Aneris adequacy theorem (Theorem 2.1);

(2) Initialise the reliable communication library via the RC-init-alloc and Vs-csq rules;

(3) Allocate the static server socket interpretation with the library-provided server protocol

𝑆.srv Z⇒ 𝑆.𝛷srv using Ht-socket-interp-alloc;

(4) Distribute the server initialisation resource 𝑆.SrvInit to the server node, and the duplicable

static server socket interpretation 𝑆.srv Z⇒ 𝑆.prot to all nodes.

3
One can think of the dependent specification pattern as providing a logically specified module interface dependent on

universally quantified user parameters, and existentially quantified abstract specification resources.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

RC User Parameters and Resources:

UP ∈ RC_UserParams ≜
{srv : Address; prot : iProto; ss : Serializer; cs : Serializer}

𝑆 ∈ RC_Resources (UP : RC_UserParams) ≜

{ CanListen : Socket → iProp;
Listens : Socket → iProp;

CanConnect : Ip → Socket → iProp;

SrvInit : iProp;
𝛷srv : Message → Prop}

RC-init-alloc

True ⇛ ∃(𝑆 : RC_Resources UP). 𝑆 .SrvInit
Server Setup Specifications:

Ht-make-server-socket [S]

{𝑆.srv Z⇒ 𝑆.𝛷srv ∗ 𝑆.SrvInit ∗
FreeAddr(𝑆.srv) ∗ 𝑆.srv { (∅, ∅)}
⟨𝑆.srv.ip; mk_srv_skt 𝑆.ss 𝑆.cs 𝑆.srv⟩

{𝑤. ∃𝑠𝑘𝑡 .𝑤 = 𝑠𝑘𝑡 ∗ 𝑆.CanListen 𝑠𝑘𝑡 }

Ht-listen [S]

{𝑆.CanListen 𝑠𝑘𝑡 }
⟨𝑆.srv.ip; listen 𝑠𝑘𝑡⟩

{𝑆.Listens 𝑠𝑘𝑡 }

Ht-accept [S]

{𝑆.Listens 𝑠𝑘𝑡 } ⟨𝑆.srv.ip; accept 𝑠𝑘𝑡⟩ {𝑤. ∃𝑐, sa.𝑤 = (𝑐, sa) ∗ 𝑆.Listens 𝑠𝑘𝑡 ∗ 𝑐 >
𝑆.srv.ip−−−−−→
𝑆.ss 𝑆.prot}

Client Setup Specifications:
Ht-make-client-socket [S]

{𝑆.srv Z⇒ 𝑆.𝛷srv ∗ Unallocated({sa}) ∗
FreeAddr(sa) ∗ sa { (∅, ∅) }
⟨𝑠𝑎.ip; mk_clt_skt 𝑆.ss 𝑆.cs 𝑠𝑎⟩

{𝑤. ∃𝑠𝑘𝑡 .𝑤 = 𝑠𝑘𝑡 ∗ 𝑆.CanConnect 𝑠𝑎.ip 𝑠𝑘𝑡 }

Ht-connect [S]

{𝑆.CanConnect ip 𝑠𝑘𝑡 }
⟨ip; connect 𝑠𝑘𝑡 𝑆 .srv⟩

{𝑤. ∃𝑐.𝑤 = 𝑐 ∗ 𝑐 >
𝑠𝑎.ip−−−→
𝑆.cs 𝑆.prot}

Reliable Data Transmission Specifications:
Ht-reliable-send

{𝑐 >
ip−−→
𝑠𝑒𝑟

! ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot ∗
𝑃 [®𝑡/®𝑥] ∗ Ser 𝑠𝑒𝑟 (𝑣 [®𝑡/®𝑥])}
⟨ip; send 𝑐 (𝑣 [®𝑡/®𝑥])⟩

{𝑐 >
ip−−→
𝑠𝑒𝑟

prot [®𝑡/®𝑥]}

Ht-reliable-try-recv

{𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot}
⟨ip; try_recv 𝑐⟩

{𝑤. (𝑤 = None ∗ 𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot) ∨
(∃®𝑦.𝑤 = Some (𝑣 [®𝑦/®𝑥]) ∗ 𝑐 >

ip−−→
𝑠𝑒𝑟

prot [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥])}
Ht-reliable-recv

{𝑐 >
ip−−→
𝑠𝑒𝑟

?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot} ⟨ip; recv 𝑐⟩ {𝑤. ∃®𝑦.𝑤 = 𝑣 [®𝑦/®𝑥] ∗ 𝑐 >
ip−−→
𝑠𝑒𝑟

prot [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥]}

Fig. 5. The specifications of the Reliable Communication Library

Setup specifications. The specification of the server setup is given by the rules Ht-make-server-

socket [S], Ht-listen [S], and Ht-accept [S]. The Ht-make-server-socket [S] rule takes the initialisa-

tion resource 𝑆.SrvInit, the static server interpretation 𝑆.srv Z⇒ 𝑆.𝛷srv, along with the primitive

Aneris resources FreeAddr(𝑆.srv) and 𝑆.srv { (∅, ∅) to set up the server socket. As a result, we ob-
tain the resource 𝑆.CanListen 𝑠𝑘𝑡 that can then be used to satisfy the precondition of the Ht-listen

[S] rule. In return, the postcondition of the Ht-listen [S] rule yields the resource 𝑆.Listens 𝑠𝑘𝑡
which can then be passed to the precondition of the Ht-accept [S] rule in order to obtain the channel

descriptor resource 𝑐 >
𝑆.srv.ip−−−−−→
𝑆.ss 𝑆.prot of the next incoming established connection, with the (dual

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:13

of the) user picked protocol 𝑆.prot. Note that the postcondition of the Ht-accept [S] rule both

provides the user with the channel descriptor ownership and gives the 𝑆.Listens 𝑠𝑘𝑡 resource
back (so that the accept function can be called again).

The specification of the client setup is given by the rules Ht-make-client-socket [S] and Ht-

connect [S]. The former allows setting up the client socket, by supplying the static server socket

interpretation 𝑆.srv Z⇒ 𝑆.𝛷srv, and the primitive Aneris resources FreeAddr(𝑠𝑎), 𝑠𝑎 { (∅, ∅), and
Unallocated({𝑠𝑎}), which yields the 𝑆.CanConnect 𝑠𝑎.ip 𝑠𝑘𝑡 resource. The latter then allows the

client to connect to the server, consuming the 𝑆.CanConnect ip 𝑠𝑘𝑡 token to produce the channel

endpoint ownership 𝑐 >
𝑠𝑎.ip−−−→
𝑆.cs 𝑆.prot, with the initial protocol state 𝑆.prot.

Reliable data transmission specifications. Once a session has been established between the server

and client, they share the same specifications, based on the channel endpoint ownership fragment

𝑐 >
ip−−→
𝑠𝑒𝑟

prot, where prot determines the current state of the session. Both sides can then exchange

values in accordance with the protocol, using the Ht-reliable-send, Ht-reliable-try-recv, and

Ht-reliable-recv rules. The rules are remniscent of the Actris ghost theory rules presented in

Figure 3 (except that for send, we need to show that the value to be sent (𝑣 [®𝑡/®𝑥]) is serializable by
the associated serializer 𝑠𝑒𝑟).

3.3 A Simple Example: Verifying a String Length Server
To illustrate how the RCLib specifications can be used concretely, we consider the example presented

in Figure 1, of a server that returns the length of each incoming string.

To prove that the assertion assert (m1 = 5 && m2 = 4) never fails, we prove two individual

separation logic specifications for the server and client, compose them using a system node, and

then apply the adequacy theorem (see section 2.1). The system node is defined as follows:

start (srv.ip) (server srv); start (clt.ip) (client clt srv)

The full formal specification and proof thereof can be found in our accompanying Coq formalization

[Author(s) 2022]; we now give an overview of it. The crux of the verification is to use an appropriate

dependent separation protocol, which in this example can be the echo_prot protocol presented in

Section 1. We thus start by instantiating the RCLib with the following user parameters:

UP ≜ {srv := srv; prot := echo_prot; ss := int_ser; cs := str_ser}
Here the UP.srv is some globally known socket address, and the protocol (from the client’s view)

is echo_prot. The serialized values are strings (from client to server) and integers (from server

to clients). The library then provides us with the resources 𝑆 : RC_Resources (UP) and the proof

rules for RCLib primitives that we can use to verify the client and the server. We then show the

following specifications for the client and server:

{𝑆.srv Z⇒ 𝑆.𝛷srv ∗ 𝑆.SrvInit ∗ FreeAddr(𝑆.srv) ∗ 𝑆.srv { (∅, ∅)} ⟨S.srv.ip; server 𝑆.srv⟩ {False}
{𝑆.srv Z⇒ 𝑆.𝛷srv ∗ Unallocated({sa}) ∗ FreeAddr(sa) ∗ sa { (∅, ∅)} ⟨𝑠𝑎.ip; client sa S.srv⟩ {True}

Until the session has been established, both proofs are done by symbolic execution. Then, we can

prove the server loops by Löb induction (a proof principle for reasoning about recursive definitions),

by showing that at any given iteration, both loops end in the same state that they began. For

the accept_loop this is straightforward, as the 𝑆.Listens 𝑠𝑘𝑡 token is preserved when applying

Ht-accept [S]. For the serve_loop this is easy as well, as the echo_prot protocol recurses after

two steps, so the proof boils down to showing that the body of the loop adheres to the echo_prot
protocol. This is straightforward to show, using Ht-reliable-recv and Ht-reliable-send rules.

The verification of the client is a slightly more subtle, since the client sends two messages in a row,

after which it awaits for two messages in a row, and as such this does not match syntactically with

the echo_prot. However, it does so semantically, since the client’s second send request and its first

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

received response are independent, and so we can update the protocol
4
by using the subprotocol

relation as we explained in Section 2.2. The propositions of the protocol (𝑚1 = |“Carpe”| and
𝑚2 = |“Diem”|) then let us show that the assertions hold, which concludes the proof.

As an indication of the proof effort of verifications performed with the RCLib the program and

proof of this example consists of ∼ 350 lines of Coq code.

4 IMPLEMENTING AND VERIFYING THE RELIABLE COMMUNICATION LIBRARY
In this section, we provide insight on how we implemented and verified the key parts of the RCLib

w.r.t. the specifications given in Figure 5. We focus on how we achieve the unreliable dependent

resource transfer specified by the dependent protocols via a novel proof pattern—the session escrow
pattern—which conceptually merges the distributed sharing of spatial resources via the escrow

pattern with the reliable dependent resource transfer of the dependent separation protocols. We first

give an overview of how we implemented the reliable communication library (Section 4.1). We then

cover the session escrow pattern, and how it resolves key limitations of Aneris and Actris when

applied to reliable distributed transfer (Section 4.2). Finally, we give an overview of how we tie the

session escrow pattern to the physical code to verify the send and receive operations (Section 4.3).

4.1 Implementation of the RCLib Channel Descriptor
The RCLib is implemented directly on top of Aneris’s primitive unreliable socket handlers. It

employs an asynchronous server-client architecture, where the server serves multiple clients on the
same socket handle. Once a connection is established the asymmetric nature is hidden via symmetric

channel descriptors, on which the client and server operate identically. The implementation consists

of three distinct parts, describe in detail below:

• The connection step: Initiating the session via unreliable socket primitives.

• The channel descriptors: Symmetric interface for the session endpoints.

• Internal network procedures: Tagging and tracking sequence ids, retransmission, etc.

Implementation of the connection step. The server and client sockets are initialised with their

respective socket operationmk_srv_skt 𝑆.ss 𝑆.cs 𝑆.srv andmk_clt_skt 𝑆.ss 𝑆.cs 𝑠𝑎, which bundle

the pre-determined serializers (𝑆.ss and 𝑆.cs) together with a new socket, which is allocated and

bound via the unreliable socket primitives of AnerisLang. The server is set to listen using the

listen 𝑠𝑘𝑡 operation. This operation allocates an accept buffer for new available sessions, and starts

a loop that awaits incoming server messages on the server socket. Server messages can either be

connection requests, from new clients, or session messages and acknowledgements from existing

clients. Connection requests are sent by clients using connect 𝑠𝑘𝑡 𝑆 .srv to the statically known

server address 𝑆.srv. When a connection request is received, the server initialises a new session

by allocating a channel descriptor for the channel (described momentarily), enqueueing it into

the accept buffer, and responding (with retransmission) that the connection was successful. Once

the connection acknowledgement has been received, the connect 𝑠𝑘𝑡 𝑆 .srv function starts a loop

that awaits incoming session messages on the client socket. The function additionally allocates

and returns a new channel descriptor. Finally, the accept 𝑠𝑘𝑡 function is used on the server-side to

dequeue and return the first channel descriptor in the queue.

Implementation of the channel descriptors. We represent a channel descriptor as a 4-tuple consist-

ing of (ℓsbuf , ℓrbuf , slk, rlk). The reference ℓsbuf stores a send buffer sbuf , implemented as a queue,

which stores the values to be sent over the network. Each call to send 𝑐 𝑣 then simply enqueus 𝑣 to

sbuf . The reference ℓrbuf stores a receive buffer rbuf , implemented as a queue, containing values

4
A single Coq tactic resolves the subprotocol relation, updates the protocol and executes the second send request.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:15

coming from the other session endpoint, in the order that they were originally sent (by virtue of

the underlying network implementation). Each user’s call to recv 𝑐 then simply loops until a value

is available, dequeues it from the queue rbuf , and returns it to the user. Finally, the slk, rlk are

locks guarding the send and receive buffer respectively (since those buffers are shared between

the internal procedures and user’s calls to the send/receive operations). Using buffers allows us to

implement send and receive in a way that is simple, network agnostic, and identical for the client

and server (and it also simplifies verification).

Implementation of the internal network procedures. The internal network procedures of the server

and client concurrently forward values from/to the buffers of the channel descriptors.

In parallel to user calls to send, the internal sending procedure (a non-terminating loop) keeps

(re)transmitting the contents of sbuf over the network via the unreliable network primitives of

AnerisLang. To achieve sequential ordering the messages are ascribed a sequence id which reflects

the order in which they were originally enqueued into the send buffer and which lets the other

endpoint accept them in the order they were sent. To this end, the internal procedure maintain

a reference ℓsid to a sequence id lower bound sid that reflects the sequence id of the first message

in sbuf (initially 0). The messages 𝑣0 . . . 𝑣𝑖 . . . 𝑣 (|sbuf |−1) of sbuf are thus indexed by sid + 𝑖 . To

avoid retransmitting messages forever, the internal procedure accepts acknowledgement messages.

When an acknowledgement message is received, the sbuf queue is pruned and the sid is updated

accordingly. If the acknowledgement message is less than sid the message is discarded. Otherwise,

all messages with a sequence id less than the acknowledgement are removed from sbuf and sid is

updated to the acknowledgement id, being the new lowest sequence id. Outbound messages are

serialized using the outbound serializer stored in the server/client sockets respectively.

The internal receiving procedure (again a non-terminating loop) awaits incoming messages,

and deserializes them using the inbound serializer stored in the server/client sockets respectively.

Inbound messages are filtered based on their sequence id, to ensure messages are only received

once. To this end, the loop uses a reference ℓaid which stores the current acknowledgement id
aid, which is the index that the next incoming message is expected to have. If the index of an

inbound message matches aid, the message payload is enqueued into the receive queue rbuf , and
an acknowledgement message with aid is sent back. If the received index is lower than aid, an
acknowledgement message with the current aid is still sent back to notify the sender that they can

prune their buffer and thus stop retransmitting the deprecated message. If the received index is

higher than the current sequence id, the message is simply discarded.

Finally, the server handles incoming requests by cross referencing the address of the incoming

session request with the list of channel descriptors, and processes the incoming message with

respect to the corresponding sequence id and receive queue.

4.2 Unreliable Dependent Resource Transfer with the Session Escrow Pattern
To verify the unreliable dependent resource transfer in an unreliable network we merge the ideas

behind the escrow pattern, already used in Aneris, with the dependent separation protocols, already

used in Actris. The result of this is the novel so-called “Session Escrow Pattern”, which has been

formalised partially via the Actris ghost theory. The pattern leverages the unreliable spatial resource

transfer of the escrow pattern, namely that we can asynchronously commit and release resources,

and track the state of the transfer via a duplicable witness, which we can replay over the network.

The pattern also leverages the reliable dependent resource transfer of the dependent separation

protocols, by allowing the ascription of expressive protocols of dependent sessions.

The intuition behind the pattern is that it, much like the Actris ghost theory, lets us initialise a

session described by a dependent separation protocol, which acts as an agreement between the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

sescrow-init

|⇝ ∃𝜒. ses_own 𝜒 left 0 0 prot ∗ ses_own 𝜒 right 0 0 prot

sescrow-send

ses_own 𝜒 𝑠 𝑛 𝑚 (! (®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. prot) ∗ 𝑃 [®𝑡/®𝑥]
|⇝ ses_own 𝜒 𝑠 (𝑛 + 1) 𝑚 (prot [®𝑡/®𝑥]) ∗ ses_idx 𝜒 𝑠 𝑛 (𝑣 [®𝑡/®𝑥])

sescrow-recv

ses_own 𝜒 𝑠 𝑛 𝑚 (?(®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. prot) ∗ ses_idx 𝜒 𝑠 𝑚 𝑤

|⇝ ∃(®𝑦 : ®𝜏). ses_own 𝜒 𝑠 𝑛 (𝑚 + 1) (prot [®𝑦/®𝑥]) ∗𝑤 = 𝑣 [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥]

sescrow-dup

ses_idx 𝜒 𝑠 𝑛 𝑣

ses_idx 𝜒 𝑠 𝑛 𝑣 ∗ ses_idx 𝜒 𝑠 𝑛 𝑣

Ht-step-modality

{𝑃 } ⟨ip; 𝑒⟩ {𝑤.𝑄}
{𝑃 ∗ |⇝ 𝑅} ⟨ip; 𝑒⟩ {𝑤.𝑄 ∗ 𝑅}

Fig. 6. The session escrow pattern and step-taking modality (Mask details omitted5).

separate channel descriptors about what messages and associated resources will be sent in either

direction, and in which order. A transfer made by either side is evidenced by a duplicable witness,

much alike the escrow pattern, which can be sent indefinitely over the network, until it is received

by the other side. Once received, the witness can then be used by the other side to obtain the

transferred resources. The pattern is formally presented in Figure 6.

The pattern operates on two types of resources, ses_own 𝜒 𝑠 𝑛 𝑚 prot and ses_idx 𝜒 𝑠 𝑛 𝑣 . The

𝜒 argument is an identifier that associates the resources with each other. The 𝑠 argument signifies

which side of the session the resource belongs to. The first resource has three additional arguments:

𝑛,𝑚, and prot. The 𝑛 and𝑚 arguments capture the number of messages that have been sent and

received by the endpoint, to track how far the endpoint is in the protocol. The prot argument

capture the local view of the protocol. The second resource has two additional arguments: 𝑛 and 𝑣 .

The 𝑛 argument captures the index of the message, while the 𝑣 argument captures the value that

the message is associated with.

The proof rules of the pattern are quite similar to the Actris ghost theory. The sescrow-init rule

initialises a new session, yielding a ghost resource for both endpoints, ses_own 𝜒 left 0 0 prot and
ses_own 𝜒 right 0 0 prot, which have initially sent and received zero messages. The protocol prot is
chosen freely for one endpoint, while the other gets the dual prot, similar to the Actris ghost theory.

The sescrow-send rule takes an endpoint resource with a sending protocol (ses_own 𝜒 𝑠 𝑛 𝑚 (! ®𝑥 :
®𝜏 ⟨𝑣⟩{𝑃 }. prot)), and the resources described by the protocol (𝑃 [®𝑡/®𝑥]), for some instantiation of

its binders (®𝑡 : ®𝜏). It returns the endpoint resource with the updated protocol and sending index

(ses_own 𝜒 𝑠 (𝑛 + 1)𝑚 (prot [®𝑡/®𝑥])), along with a witness that the message has been sent, tracking

the corresponding message index and value (ses_idx 𝜒 𝑠 𝑛 (𝑣 [®𝑡/®𝑥])). The sescrow-recv rule takes

an endpoint resource with a receiving protocol (ses_own 𝜒 𝑠 𝑛 𝑚 (?®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. prot)), and a

witness from the other endpoint that corresponds to the current receive index (ses_idx 𝜒 𝑠 𝑚 𝑤).

It returns the endpoint resource with the updated protocol and receive index (ses_own 𝜒 𝑠 𝑛 (𝑚 +
1) (prot [®𝑡/®𝑥])), and the resources described by the protocol (𝑃 [®𝑦/®𝑥]), for some instantiation of the

identifiers (®𝑦 : ®𝜏). The sescrow-dup rule captures that the witnesses can be freely duplicated.

5
The session escrow pattern is constructed using an Iris invariant. To avoid opening the same invariant twice, Iris uses

“namespaces” (N) to track opened invariants. More precisely, the pattern is specified with a namespace N, and ascribe the

modality with the namespace, e.g |⇝N . We refer the interested reader to [Jung et al. 2016].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:17

Finally, the rules are defined using a novel step-taking modality |⇝ 𝑅, as opposed to the multiple

laters in the Actris ghost theory. Intuitively, |⇝ 𝑅 holds if we can obtain 𝑅 after taking a step of the

operational semantics. This is made precise by the associated rule Ht-step-modality, which states

that one can resolve 𝑅 in the postcondition of a Hoare triple, when having |⇝ 𝑅 in the precondition.

While the step-taking modality may seem similar to the later modality, the step-taking modality

leverages recent discoveries that allows resolving multiple later modalities during one step of the

operational semantics [Matsushita et al. 2022; Mével et al. 2019; Spies et al. 2022]. In particular, the

modality abstracts over the concrete number of laters that needs to be resolved, by internalising

that we can resolve enough laters, at every operational step. This abstraction over the number of

laters is imperative for defining the session escrow pattern. In particular, it would be impossible to

state the above ghost theory rules, as either endpoint is unable to determine the number of laters

they would need to resolve, since that number is related to the number of inbound messages, which

cannot be inferred from the local state.

4.3 Verifying the Reliable Communication Library
With the session escrow pattern presented above, we now give an overview of howwe can verify the

reliable communication library. Similar to the implementation, the verification can be considered

in three parts; the connection step, the channel descriptors, and the internal network procedures.

Verifying the connection step. While established sessions have disjoint resources, the resources are

initially allocated together (using the sescrow-init rule). This happens on the server side, during the

handshake, when the server transfers the client’s resource (the ses_own 𝜒 left 0 0 prot resource)
to the client, using the Aneris rules. The client and server must agree on the session protocol

before the handshake (to satisfy the Aneris rules, which require mutual agreement on the socket

interpretations), which holds since the (statically known) server only serves a single pre-determined

protocol prot. This kind of distributed channel creation is in contrast with the message-passing

concurrency instantiation of Actris ghost theory, where both channel endpoints are stored on the

same node, and can thus be created logically and physically at the same time.

Verifying the channel descriptors. To verify the channel descriptors, we associate the elements of

the send and received buffers sbuf and rbuf with the session escrow patternwitnesses ses_idx 𝜒 𝑠 𝑖 𝑣 .
We achieve this by relating the physical counters sid and aid with the counters of the session

escrow context as follows ses_own 𝜒 𝑠 (sid + |sbuf |) (aid − |rbuf |) prot. This is formally done by

using an existing lock library of Aneris, to enforce lock invariants that hold between any access to

the critical section of the related lock. The lock invariants of the buffers are as follows:

sbuf_inv 𝜒 𝛾𝑛 ip ℓsbuf ℓsid 𝑠𝑒𝑟 𝑠 ≜ ∃sbuf , sid .
ℓsbuf

ip↦−→q sbuf ∗ ℓsid
ip↦−→ sid ∗ ◦ (sid + |sbuf |) 𝛾𝑛 ∗

∗𝑖 ↦→𝑣∈sbuf , Ser 𝑠𝑒𝑟 𝑣 ∗ ses_idx 𝜒 𝑠 (sid + 𝑖) 𝑣

rbuf_inv 𝜒 𝛾𝑚 ip ℓrbuf ℓaid 𝑠 ≜ ∃rbuf , aid .
ℓrbuf

ip↦−→q rbuf ∗ ℓaid
ip↦−→ aid ∗ ◦ (aid − |rbuf |) 𝛾𝑚 ∗

∗𝑖 ↦→𝑣∈rbuf , ses_idx 𝜒 𝑠 (aid − |rbuf | + 𝑖) 𝑣

The locks govern their respective buffer (using a “queue resource” connective ℓ
ip↦−→q 𝑞), counter

(using the points-to-predicate ℓ
ip↦−→ 𝑣), and a ghost resource relating the counter to the session

escrow context. Most importantly, they capture that each element of the buffers govern a session

escrow witness. Notably, the iterated separation conjunction∗𝑖 ↦→𝑣∈®𝑣 asserts ownership of separate

resources at each element 𝑣 of the buffer ®𝑣 at index 𝑖 .
With the lock invariants in place we can define the channel descriptor resource as follows:

𝑐 >
ip−−→
𝑠𝑒𝑟

prot ≜ ∃𝜒,𝛾𝑛, 𝛾𝑚, 𝑠, 𝑛,𝑚, ℓsid, ℓaid .

𝑐 = (ℓsbuf , ℓrbuf , slk, rlk) ∗ ses_own 𝜒 𝑠 𝑛 𝑚 prot ∗ •𝑛 𝛾𝑛 ∗ •𝑚 𝛾𝑚 ∗
is_lock ip slk (sbuf_inv 𝜒 𝛾𝑛 ip ℓsbuf ℓsid 𝑠𝑒𝑟 𝑠) ∗
is_lock ip rlk (rbuf_inv 𝜒 𝛾𝑚 ip ℓrbuf ℓaid 𝑠)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

The descriptor resource captures the session escrow context ses_own 𝜒 𝑠 𝑛 𝑚 along with the ghost

state used to associate its counters 𝑛 and𝑚 with the internals of the lock invariants. Moreover, the

descriptor resource also keeps a copy of the duplicable lock predicates of both buffers.

With the definition of the channel descriptor resource we can verify the send and receive

functions of the reliable communication library. Whenever we send, we first obtain the internals

of the send buffer lock invariant (when acquiring the lock), and unify the counter 𝑛 with sid +
|sbuf |. We then simply use the session escrow send rule sescrow-send to obtain a new witness

ses_idx 𝜒 𝑠 (sid + |sbuf |) 𝑣 at the next sequence id, which we delegate to the send buffer when

enqueueing the value. Conversely, whenever we receive, we unify𝑚 with aid − |rbuf |, dequeue the
first element𝑤0 of the receive buffer, and derive that it has the witness ses_idx 𝜒 𝑠 (aid− |rbuf |) 𝑤 .

We can then use the witness along with the session escrow receive rule sescrow-recv to obtain the

resources specified by the protocol.

Verifying the internal network procedures. Verifying the internal layers of the server and clients

primarily involve relaying the session escrow witnesses using the primitive unreliable network

rules of Aneris. Ultimately, this means that we have to pick an appropriate socket interpretation.

Sidestepping the connection and acknowledgement messages, the socket interpretations asserts

that messages (1) are serializable using the pre-determined serializers, (2) are pairs of sequence

identifiers 𝑖 and payload values 𝑣 , and (3) are associated with a corresponding witness:

Φclt ≜ 𝜆𝑚.

(∃𝑖, 𝑣 . 𝑆 .ss𝑚.str (inl(𝑖, 𝑣)) ∗
ses_idx 𝜒 right 𝑖 𝑣) ∨

⟨acknowledgement_message⟩

Φsrv ≜ 𝜆𝑚.

(∃𝑖, 𝑣 . 𝑆 .cs𝑚.str (inl(𝑖, 𝑣)) ∗
ses_idx 𝜒 left 𝑖 𝑣) ∨

⟨acknowledgement_message⟩ ∨
⟨connection_message⟩

With this, the verification follows from using Aneris’s primitive rules for sending and receiving

along with preserving the invariants of the send and receive buffers. Notably, we are able to

guarantee that we only enqueue fresh values into the receive buffers, by filtering inbound messages

via the acknowledgement id aid.
As mentioned in Section 4.1, the implementation uses concurrency internally; verifying this

concurrency was achieved using existing Iris / Aneris verification techniques and thus we do not

further detail the verification thereof.

5 REMOTE PROCEDURE CALL LIBRARY
To demonstrate the expressivity of the RCLib specs (Section 3), we now consider the specification

and verification of a multi-threaded remote procedure call (RPC) library. In Appendix A we will then

show how this library itself is used to facilitate the formal development of clients and applications

that make use of it.

We have implemented, specified and verified a variant of such an RPC service. Our variant

exposes just one service handler, but it allows the types of the client’s request and the server’s

response to be polymorphic. In particular, when instantiating those types with sum-types 𝜏1𝑞 + 𝜏2𝑞 for

requests (and 𝜏1𝑟 + 𝜏2𝑟 for responses), we can effectively encode an RPC service that handles multiple

procedure calls, e.g., as a pair of procedures of type 𝜏1𝑞 → 𝜏1𝑟 and 𝜏2𝑞 → 𝜏2𝑟 .

Figure 7 shows the API and the specifications of our RPC library. The RPC library can be initialised

by calling rpc_start, which is parametric in the serializers for the request- and response data

types, the socket address of the server, and the implementation of the procedure that will be used

to handle the incoming requests. To call the procedure remotely, the clients must first connect to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:19

RPC API:
type ('a, 'b) rpc
val rpc_start : 'b serializer→'a serializer→saddr→('a→'b)→unit
val rpc_connect : 'a serializer→'b serializer→saddr→saddr→('a, 'b) rpc
val rpc_make_request : ('a, 'b) rpc→'a→'b

RPC User Parameters and Resources:

UP ∈ RPC_UserParams ≜

{srv : Address;qs : Serializer;
rs : Serializer;

ReqData : Type; RepData : Type;
pre : Val → ReqData → iProp;
post : Val → ReqData → RepData → iProp}

S ∈ RPC_Resources (UP : RPC_UserParams) ≜
{SrvInit : iProp; CanConnect : Address → iProp; 𝛷srv : Message → Prop}

RPC-init-alloc

True ⇛ ∃(𝑆 : RPC_UserParams UP). 𝑆 .SrvInit
RPC Specifications:

Ht-rpc-start [S]

{S.srv Z⇒ 𝑆.𝛷srv ∗ 𝑆.SrvInit ∗
FreeAddr(S.srv) ∗ S.srv { (∅, ∅) ∗
rpc_process_spec S proc }
⟨S.srv.ip; rpc_start S.rs S.qs S.srv proc⟩

{True}

rpc_process_spec S proc ≜ ∀qv, qd .
{S.pre qv qd}

⟨S.srv.ip; proc qv⟩
{rv. ∃rd . Ser S.rs rv ∗ S.post rv qd rd}

Ht-rpc-connect [S]

{FreeAddr(sa) ∗ sa { (∅, ∅) ∗
S.srv Z⇒ 𝑆.𝛷srv ∗ Unallocated({sa})}
⟨sa.ip; rpc_connect S.qs S.rs sa S.srv⟩

{rpc. S.CanRequest sa.ip rpc}

Ht-rpc-reqest [S]

{S.CanRequest ip rpc ∗
S.pre qv qd ∗ Ser S.qs qv}
⟨ip; rpc_make_request rpc qv⟩

{rv. S.CanRequest ip rpc ∗ ∃rd . S.post rv qd rd}

Fig. 7. Specifications for the RPC library.

the server, by calling rpc_connect, which yields the RPC handle rpc. The handle is then used as

an argument of rpc_make_request along with some input data to make a request.

5.1 Specifications of the RPC library
The specifications of the RPC are parametric in the user provided parameters (UP : RPC_UserParams),
which most importantly consist of the universally established server address (S.srv), and the logical
data types of the requests and replies (S.ReqData and S.RepData). Additionally, the user must de-

termine the serializers to be used for the request and reply values (S.qs and S.rs), so that the client

and server can serialize and deserialize the exchanged messages without coordination. Finally, the

user must provide pre- and post-condition predicates (S.S.pre and S.post) that relate the request
and reply values with their corresponding logical values.

In return the RPC library provides the abstract specification parameters (S : RPC_Resources UP),
which consist of SrvInit, 𝑆.𝛷srv, and the S.CanRequest ip rpc resources. The rpc library is ini-

tialised using the RPC-init-alloc rule, similarly to the RCLib approach.

To start the RPC service using rpc_start the user must use the Ht-rpc-start [S] specifica-

tion, which needs the static server socket interpretation S.srv Z⇒ 𝑆.𝛷srv, the SrvInit resource,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

Client Protocol Server{
S.CanRequest ip rpc ∗
S.pre qv qd ∗ Ser S.qs qv

}
{
rpc >

ip−−→S.qs rpc_prot S ∗
S.pre qv qd ∗ Ser S.qs qv

}
send rpc qv;

{rpc >
ip−−→S.qs _}

let qv = recv 𝑐 in
{𝑐 >

ip−−→S.rs rpc_prot S }
!qv qd ⟨qv⟩ {S.pre qv qd }.

{𝑐 >
ip−−→S.rs _ ∗ S.pre qv qd }

let rv = proc qv in
{𝑐 >

ip−−→S.rs _ ∗ S.post rv qd rd }
send 𝑐 rv

{𝑐 >
ip−−→S.rs rpc_prot S }

recv rpc
?rv rd ⟨rv⟩ {S.post rv qd rd }.

rpc_prot S

{rpc >
ip−−→S.qs _}

{
rv. rpc >

ip−−→S.qs rpc_prot S ∗
∃rd . S.post rv qd rd

}
{
rv. S.CanRequest ip rpc ∗

∃rd . S.post rv qd rd

}
Fig. 8. The reliable communication of the RPC library

along with the primitive Aneris resources FreeAddr(S.srv) and S.srv { (∅, ∅). Additionally, the
user must prove that the procedure proc satisfies the specification defined by rpc_process_spec.
Indeed, this specification ensures that the procedure function handles the incoming requests cor-

rectly. In particular, rpc_process_spec states that the procedure argument qv must satisfy the

provided precondition S.pre qv qd, and that the results rv must satisfy the provided postcondition

S.post rv qd rd. In other words, when starting the server, the user must prove rpc_process_spec
for the procedure function that they choose.

To connect to the RPC service using the rpc_connect operation, clients must use the Ht-rpc-

connect [S] rule, to give up the server socket interpretation S.srv Z⇒ 𝑆.𝛷srv, alongwith the primitive

Aneris resources FreeAddr(S.srv), S.srv { (∅, ∅), and Unallocated({sa}). The specification then

yields the S.CanRequest ip rpc resource for the returned RPC handle rpc. Finally, the Ht-rpc-

reqest [S] specification captures how the client can make requests when in possession of the

S.CanRequest ip rpc resource. Additionally, the argument qv must satisfy the provided precondition

S.pre qv qd, and qv must be serializable by the provided request serializer S.qs. In return the client

obtains the resources of the postcondition S.post rv qd rd for the returned value rv.

5.2 Verification of the RPC library
The main challenge of verifying the RPC library is to show that the specification of the client’s

rpc_make_request function follows from the user provided proof of the request handler at the

server side, cf. rpc_process_spec. We address this challenge by using a dependent separation

protocol which specifies the delegation of the handler call to the server:

rpc_prot (S :RPC_Resources UP) ≜
𝜇rec. ! (qv : Val) (qd : S.ReqData) ⟨qv⟩{S.pre qv qd}.

?(rv : Val) (rd : S.RepData) ⟨rv⟩{S.post rv qd rd}. rec
The protocol describes (from the clients point of view) the request-reply communication. The client

first sends a value qv, which is related to the request data qd by the provided S.pre qv qd predicate.

The server will then reply with a value rv, related to some reply data rd and the original request

data qd by the provided S.post rv qd rd predicate.

Figure 8 sketches the proof of how this protocol connects the specifications of the client’s local

and remote calls to verify Ht-rpc-reqest [S]. First, the abstract resource S.CanRequest ip rpc is

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:21

unfolded, to obtain the channel endpoint ownership rpc >
ip−−→S.qs (rpc_prot S). Then the resources

for the request value (S.pre qv qd) are transferred along the request. On the server side, when the

resources are received, they are supplied to the procedure proc, yielding the reply value rv and the

resources S.post rv qd rd, which are then sent back to the client (in accordance with the protocol).

On the client side, the processed request and resources are finally received and returned. As the

protocol completed one cycle of recursion and returns to the initial state, it is packed back into

the abstract resource S.CanRequest ip rpc, so that the postcondition of the rpc_make_request
holds. In summary, the dependent separation protocols of RCLib make it quite simple to verify the

implementation of the RPC library!

6 LAZY REPLICATIONWITH LEADER-FOLLOWERS
To illustrate the power of our approach to reason about reliable network components in a highly

modular way, we now show how to specify and verify an implementation of the leader-followers

key-value store KVS, which we build directly on top of the RPC library. As we will see, our modular

approach enables us to verify KVS without having to reason the UDP network (handled by the

RCLib) or the RCLib protocols and specifications (handled by the RPC library)!

Concretely, the leader-followers KVS we present is a replicated KVS that provides different

guarantees for read and write operations. The entire system, i.e., the leader and all the followers, is

guaranteed to agree upon, and preserve, the order of write operations. This is achieved by having

a central server node, called the leader, which registers all the write operations. The state of the

leader is then lazily replicated by so-called follower servers which periodically poll the state of the

leader and store a local copy. The idea is that a client has to direct all write requests to the leader

while they have a choice to direct read operations at the leader or any of the followers. The read

operation directed at the leader is guaranteed to always return the most up-to-date value while

those directed at a follower may return a stale value.

6.1 Implementation of the Leader-Followers KVS
Leader and followers are implemented directly on top of the RPC library. Thus we only need to

implement handlers which, upon clients’ requests, write (at the leader) or read (at the leader or

follower) the local state of the server (here we use instantiate our RPC library with sum-types so as

encode a service that handles multiple procedure calls).

The local state of each node consists of a key-value table together with a log of all write events

observed by that server. The idea is that the primary state of the KVS is the log. The key-value

table is a memoization table to optimize read operations which simply look up the value in the

table instead of seeking the latest written value to the requested key in the log. Hence, the write

operation on the leader, in addition to adding the write event to the log, also updates the local table.

Similarly, when a follower receives a new write event from the leader, in addition to adding it to its

local log, it updates its local copy of the table.

The interaction between the leader and the followers is also implemented using the RPC library

where the leader assumes the role of the server for followers which periodically make a request to

the leader asking for the next available log entry they have not seen yet. The programs for both

the leader and followers are concurrent programs, e.g., the leader runs two different threads, one

for serving clients and another one for serving followers. These programs use locks to protect the

data structures shared between different threads running on each server.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

6.2 Specification of the Leader-Followers KVS
We first consider a simple version of the system with only one server: the leader. In this setting, we

can give simple specifications to read and write, similar to those for local heap-allocated references:

leader-only-write-spec

{𝑘 ↦→ldr vo} ⟨ip; write 𝑘 𝑣⟩ {𝑘 ↦→ldr Some 𝑣}
leader-only-read-spec

{𝑘 ↦→ldr
𝑞 vo} ⟨ip; read 𝑘⟩ {𝑥 . 𝑘 ↦→ldr

𝑞 vo ∗ 𝑥 = vo}

Here the 𝑘 ↦→ldr vo proposition, where vo is an optional value, asserts ownership over the key 𝑘 in

the KVS and indicates its value (None indicates that no writes have taken place on that particular

key). The proposition 𝑘 ↦→ldr
𝑞 vo is the fractional variant where ownership is only asserted for a

fraction 0 < 𝑞 ∈ Q ≤ 1.

The specs given above for reading and writing in fact remain sound for interacting with the

leader even in the presence of followers The values read from followers can correspond to old

write operations which have since been overwritten. In order to express this intuition formally

we introduce propositions in our logic for tracking the history of all write operations in the form

of a sequence of write events. A write event, we, is a tuple consisting of the target key in the

KVS, the written value, as well as its logical time, i.e., its index in the history of write events

observed by the system. We write we.key and we.value for the key and value of the write event

respectively. Furthermore, we write ℎ↓𝑘 for the optional value of the last (latest) write event in

history ℎ whose key is 𝑘 . We use the observation proposition Obs(DB, ℎ), defined in terms of Iris

resources, to indicate that the history ℎ has been observed at the server whose address is DB;
this server could either be the leader or a follower. The important intuition here is that write

operations are immediately observed on the leader while they are only observed on followers if

they have occurred before the point in time when said follower has last polled and copied the

state of the leader. Observation propositions only express the knowledge that a certain history

has been observed and are thus persistent in the technical Iris sense, which implies that they are

duplicable: Obs(DB, ℎ) ⊣⊢ Obs(DB, ℎ) ∗ Obs(DB, ℎ). In addition to introducing observations we

also let points-to predicates specify the optional write event corresponding to the key instead of

an optional value. That is, in the proposition 𝑘 ↦→kvs wo (our form of points-to proposition for the

system featuring followers), wo is an optional write event, which allows us to express stronger

guarantees for the write operation.

Following an approach similar to Gondelman et al. [2021], we use Iris invariants to express the

relationship between the logical state of each key on the leader, exposed to the client as 𝑘 ↦→kvs wo,
the logical state of what is observed by each server, exposed to the client as Obs(DB, ℎ), and the

physical state (stored in the memory) of each server, not exposed to the client. The following tables

give a summary of the building blocks used in the specification of leader and followers:

Proposition Intuitive meaning

𝑘 ↦→kvs wo

Asserts exclusive ownership over the key 𝑘 with

the last write event being wo. Note that wo is an
optional value and can be None which indicates

that no value has ever been written to 𝑘 .

Obs (DB, ℎ)
This persistent proposition asserts the knowledge

that history ℎ has been observed by the server

whose address is DB.

GlobalInv
N

Relates the resources underlying 𝑘 ↦→kvs 𝑣 and

Obs (DB, ℎ) and enables tying these to physical

states through local invariants (one invariant per

server) which are not exposed to the client.

Symbol Meaning

we Ranges over write events.

wo Ranges over optional write events, i.e., it is either
None or Some we.

write The write function.

read The read function for leader.

readfl The read function for follower fl.

DB Ranges over server addresses: leader or follower.

DBld The addresses of the leader.

DBfl The address of follower fl.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:23

write-spec

{𝑘 ↦→kvs wo ∗ Obs (DBld , ℎ) ∗ ℎ↓𝑘 = wo} ⟨ip; write 𝑘 𝑣⟩ {∃hf ,we.we.key = 𝑘 ∗ we.value = 𝑣 ∗ hf ↓𝑘 = None ∗
Obs (DBld , ℎ ++hf ++ [we]) ∗ 𝑘 ↦→kvs Some we}

leader-read-spec

{𝑘 ↦→kvs
𝑞 wo} ⟨ip; read 𝑘 ⟩ {𝑥. 𝑘 ↦→kvs

𝑞 wo ∗ ((𝑥 = None ∧ wo = None) ∨ (∃we. 𝑥 = Some we.value ∧ wo = Some we)) }
follower-read-spec

{Obs (DBfl, ℎ) } readfl 𝑘 {𝑥. ∃ℎ′. ℎ ≤𝑝 ℎ′ ∗ Obs (DBfl, ℎ
′) ∗(

(𝑥 = None ∧ ℎ′y
𝑘
= None) ∨ (∃we. 𝑥 = Some we.value ∧ ℎ′y

𝑘
= Some we)

) }
Fig. 9. The specification for the write operation and the read operation for both the leader and followers.

These are the important properties of observations (the full list can be found in the accompanying

Coq formalization):

GlobalInv
N ∗ 𝑘 ↦→kvs

𝑞 wo ≡∗ 𝑘 ↦→kvs
𝑞 wo ∗ ∃ℎ. Obs(DBld, ℎ) ∗ ℎ↓𝑘 = wo (observe-at-leader)

GlobalInv
N ∗ Obs(DB, ℎ) ≡∗ ∃ℎ′. Obs(DBld, ℎ

′) ∗ ℎ ≤𝑝 ℎ′
(leader-observes-first)

Obs(DB, ℎ) ∗ Obs(DB′, ℎ′) ⊢ ℎ ≤𝑝 ℎ′ ∨ ℎ′ ≤𝑝 ℎ (linear-order)

The property (observe-at-leader) states that the current value stored by the leader is always observed

by the leader; the history where this write event is the last write event with key 𝑘 is observed on the

leader. Note how this property is stated using the update modality, ≡∗, which allows for accessing

invariants to obtain the necessary information since points-to propositions, observations, and the

physical states of servers are all tied together using such invariants. The property (linear-order)

captures that all servers, the leader and the followers, agree on the order of observed write events;

as such one history is always a prefix of the other.

The specifications for writing to the KVS, reading from the leader, and reading from the followers

are given in Figure 9. Note how the specification for reading a key on the leader, leader-read-spec,

is exactly the same as the leader-only situation, leader-only-read-spec. On the other hand, the

write spec, write-spec, is strengthened compared to leader-only-write-spec. It states that having

𝑘 ↦→kvs wo, the write event added as the result of this call, is the first write event after wo.
The specification for reading from a follower, follower-read-spec, states that after reading we

get the knowledge that the observed history on that follower is possibly extended in a way such

that the returned optional write event is consistent with this observed history — the extended

history is the one observed at the moment the read operation was carried out on the follower.

Note how the specifications for the read and write operations, despite the implementation of

the KVS being based on that of the RPC library and in turn on the reliable communication library

and ultimately Aneris’s network primitives, do not mention any of these dependencies or their

specs. This demonstrates that our modular verification approach enables proper encapsulation of

modules (what Krogh-Jespersen et al. [2020] refer to as vertical modularity). Note also that the

leader-only specifications can be derived from the general specs (see Appendix A).

Client Example. Figure 10 shows an example of the program using the KVS. It consists of two

clients running in parallel on two different nodes (written with three parallel vertical lines). We

assume that the leader and the followers have been initialized prior to running these clients.

One client, client0, performs two write operations, 37 to 𝑥 followed by 1 to 𝑦. The other client,

client1, perform two read operations directed at a follower. It first waits until it observes the value

1 on 𝑦 and then asserts that 𝑥 has value 37. Note that the program order in do_writes implies

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

let do_writes () =
write "x" 37; write "y" 1

let rec wait_on_read k v =
let res = read_fl k in
if res = Some v
then ()
else wait_on_read k v

let do_reads () =
wait_on_read "y" 1;
let vx = read_fl "x" in
assert (vx = Some 37)

let client0 () = do_writes ()
let client1 () = do_reads ()
client0 () ||| client1 ()

Fig. 10. Example Client of Leader-Followers.

that the second write causally depends on the first write. See the accompanying Coq formalization

for a formal proof of this example client; the proof guarantees that the assert in do_reads will

not fail. The example above demonstrates that reading from a follower satisfies monotonic reads,
monotonic writes, and writes follow reads guarantees [Terry et al. 1994], but does not provide the

read-your-writes guarantee, as the leader does not synchronize with followers during the writes.

6.3 Verification of the Leader-Followers KVS
The crux of the verification is to (a) give concrete definitions of the abstract predicates, e.g.,
Obs(DB, ℎ) and 𝑘 ↦→kvs wo, (b) instantiate the specifications of the RPC library for handlers, and (c)
show the Hoare triples for the handlers as ascribed by the RPC library. We omit a description of

those steps (see Appendix A and accompanying Coq formalization) and just mention one nuance

that we have elided so far, namely that the specifications we have presented for the read and write

operations do not capture the fact that these operations are logically atomic. To verify the example

above, one needs to use logical atomicity (in order to be able to open invariants around read and

write operations). And indeed, in our Coq formalization, our specifications for read and write do

capture the logical atomicity; technically the specifications are given in the so-called HOCAP-style,

from which the read and write specifications presented in Figure 9 can easily be derived.

7 RELATEDWORK
Verification of Reliable Transport Layer Protocols. There has been several works focusing on

showing correctness of protocols for reliable communication. Smith [1996]’s work is one of the

earliest on formal verification of communication protocols. Bishop et al. [2006] provide HOL

specification and symbolic-evaluation testing for TCP implementations. Compton [2005] presents

Stenning’s protocol verified in Isabelle. Badban et al. [2005] presents verification of a sliding window

protocol in 𝜇CRL. None of those works however capture the reliability guarantees in a logic in a

modular way that facilitates reasoning about clients of those protocols. In contrast, our work both

verifies the reliable transport layer as a library and provides a modular high-level specification for

reasoning about distributed libraries and applications that require reliable communication.

Reliable Transport Protocols in Verification of Distributed Systems. In recent years, there have

been several verification frameworks to reason about implementations and/or high-level models of

distributed systems. Some of these works focus on high-level properties of distributed applications

assuming that the underlying transport layer of the verification framework is reliable, e.g., [Koh
et al. 2019; Sergey et al. 2018; Zhang et al. 2021] and the first version of Aneris framework [Gondel-

man et al. 2021; Krogh-Jespersen et al. 2020]. Other works that focus on high-level properties of

distributed applications [Hawblitzel et al. 2017; Nieto et al. 2022; Wilcox et al. 2015] also treat the

reliable communication as a part of the verification process to some extent.

Nieto et al. [2022] implement a reliable causal broadcast library on top of Aneris’s UDP primitives

which they use to implement conflict-free replicated data types (CRDTs). Their implementation

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:25

uses timestamps as sequence ids to achieve causal reliable delivery of broadcast UDP messages and

focuses on applications that are more suited for symmetric group communication e.g., CRDTs.
The Verdi framework [Wilcox et al. 2015] proposes a methodology to verify distributed systems

that relies on a notion of verified transformers. One such transformer is a Sequence Numbering

Transformer that allows ensuring that messages are delivered at most once, similar to the guar-

antees provided by our RCLib. However, in Verdi verified transformers are stated in a high-level

domain-specific language which abstracts over implementation details such as node-local con-

currency or message serialization, and the reasoning is done in terms of traces on the high-level

semantics. In contrast, developing RCLib in Aneris enables both the modular verification of a

realistic implementation of a reliable transport communication layer (horizontal modularity) and

the modular verification of the clients of the RCLib (vertical modularity).

Moreover, some of the existing verification systems assume that the shim connecting the analysis

framework to executable code is reliable [Lesani et al. 2016; Wilcox et al. 2015]. That can limit

guarantees about the verified code and lead to the discrepancies between the high-level specification,

verification tool, and shim of such verified distributed systems [Fonseca et al. 2017].

Session Types in Distributed Systems. Session types, since their inception by Honda [1993], have

primarily been concernedwith idealised reliable communication, wheremessages are never dropped,

duplicated, or received out of order. Castro-Perez et al. [2019] developed a toolchain for “transport-

independent” multi-party session typed endpoints in Go. They show how their theory applies to

channel endpoints that may communicate locally (via shared memory) and in a distributed setting

(via TCP). Miu et al. [2021] developed a toolchain for generating TypeScript WebSocket code for

session type-checked TCP-based reliable communication in a distributed setting. Their system

guarantees communication safety and deadlock freedom, for which they provide a paper proof.

Recent work considers variations of unreliable communication, focused on constructing new

session type variants for handling the setting in question. Kouzapas et al. [2019] develops a session

type variant for such an unreliable setting where messages can be lost (although they are never

duplicated or arrive out of order). Their system handles message loss by tagging messages with a

sequence id where, when a failure is detected, the session catches up to the protocol through some

parametric failure handling mechanism. They provide such a mechanism, where a default value of

the expected type is returned, after which the sequence id is increased.

8 CONLUSION AND FUTUREWORK
In this paper we have demonstrated the maturity of the Aneris distributed separation logic and the

genericity of the Actris dependent separation protocol framework, by combining them to implement

and verify a suite of reliable network components on top of low-level unreliable semantics. Each

component specification is encapsulated as an abstraction; no details about their building blocks

are exposed, even when these consist of other libraries. While we deem our low-level unreliable

semantics to be a step towards verification of more realistic languages, we find that the RCLib

implementation could be further improved from future extensions.

The implementation of the reliable communication library includes a mechanism for retransmit-

ting messages until an acknowledgement is received. This is crucial, as messages could otherwise

be lost in the network, never to be retransmitted, resulting in any blocking receive halting indefi-

nitely. The Aneris logic however does not give us any formal guarantees about progress, and so

cannot verify that our implementation of retransmission actually ensures progress. It would thus

be interesting to investigate whether one can obtain any such progress guarantees for the library

by using the Trillium refinement logic [Timany et al. 2021]. Trillium allows for proving refinements

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

between the executions of the program and a user-defined model, and has been used to prove

eventual consistency for a Conflict-Free Replicated Data Type (CRDT) in conjunction with Aneris.

Currently, the RCLib assumes that established connections are never closed, neither graciously,

nor because of an abrupt connection loss, e.g.due to a remote’s crash. Lifting those assumptions

would allow obtaining an even more realistic implementation, e.g. with the possibility of closing

the channel endpoints and connection reestablishment. For the latter, it would also be interesting

to consider how our specifications could be adapted to consider the possibility of crashes, e.g. by
integrating a crash-sensitive logic such as Perennial [Chajed et al. 2019]) into our framework.

The implementation is currently not partition-tolerant, as any partitioning between the server

and one of its client would prevent further communication between them. It would be interesting to

investigate methods for achieving fault-tolerance in Aneris, e.g. by having a cluster of nodes acting

as the server, so the clients can broadcast to the entire cluster, rather than communicating with a

singular node. This would effectively handle partitions, as other nodes in the cluster could relay the

message to the server, and help in the development of fault-tolerant libraries (e.g., multi-consensus).

Finally, our system does not consider network security. It would be interesting to investigate

the verification of secure reliable channels, where the initial connection step includes a secure

handshake, after which the connection is provably secure.

ACKNOWLEDGMENTS
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research ins Program Verification (CPV), from the VILLUM Foundation. During parts of this project

Amin Timany was a postdoctoral fellow of the Flemish research fund (FWO).

REFERENCES
Anonymous Author(s). 2022. Supplementary material.

Bahareh Badban, Wan J. Fokkink, Jan Friso Groote, Jun Pang, and Jaco van de Pol. 2005. Verification of a sliding window

protocol in 𝜇CRL and PVS. Formal Aspects Comput. 17, 3 (2005), 342–388. https://doi.org/10.1007/s00165-005-0070-0

Lars Birkedal and Aleš Bizjak. 2017. Lecture Notes on Iris: Higher-Order Concurrent Separation Log. http://iris-project.org/

tutorial-pdfs/iris-lecture-notes.pdf. (2017).

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith Wansbrough. 2006. Engineering

with logic: HOL specification and symbolic-evaluation testing for TCP implementations. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 55–66. https://doi.org/10.1145/1111037.

1111043

David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed programming

using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated communication

structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1–29:30. https://doi.org/10.1145/3290342

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe systemswith

Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM, 243–258. https://doi.org/10.1145/3341301.3359632

Michael Compton. 2005. Stenning’s Protocol Implemented in UDP and Verified in Isabelle. In Theory of Computing 2005,
Eleventh CATS 2005, Computing: The Australasian Theory Symposium, Newcastle, NSW, Australia, January/February
2005 (CRPIT, Vol. 41), Mike D. Atkinson and Frank K. H. A. Dehne (Eds.). Australian Computer Society, 21–30. http:

//crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html

Alan Fekete, Nancy Lynch, Yishay Mansour, and John Spinelli. 1993. The Impossibility of Implementing Reliable Communi-

cation in the Face of Crashes. J. ACM 40, 5 (nov 1993), 1087–1107. https://doi.org/10.1145/174147.169676

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An Empirical Study on the Correctness of

Formally Verified Distributed Systems. In Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). Association for Computing Machinery, New York, NY, USA, 328–343. https://doi.org/10.1145/

3064176.3064183

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal. 2021. Distributed causal

memory: modular specification and verification in higher-order distributed separation logic. Proc. ACM Program. Lang. 5,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/s00165-005-0070-0
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/1111037.1111043
https://doi.org/10.1145/1111037.1111043
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3341301.3359632
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV41Compton.html
https://doi.org/10.1145/174147.169676
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/3064176.3064183

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:27

POPL (2021), 1–29. https://doi.org/10.1145/3434323

James N Gray. 1979. A discussion of distributed systems. (1979).

Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan, Madan Musuvathi, Zheng Zhang,

and Lidong Zhou. 2013. Failure Recovery: When the Cure Is Worse Than the Disease. In 14th Workshop on Hot Topics in
Operating Systems, HotOS XIV, Santa Ana Pueblo, New Mexico, USA, May 13-15, 2013. https://www.usenix.org/conference/

hotos13/session/guo

J Y Halpern. 1987. Using Reasoning About Knowledge to Analyze Distributed Systems. Annual Review of Computer Science
2, 1 (1987), 37–68. https://doi.org/10.1146/annurev.cs.02.060187.000345

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian

Zill. 2017. IronFleet: Proving Safety and Liveness of Practical Distributed Systems. Commun. ACM 60, 7 (June 2017),

83–92. https://doi.org/10.1145/3068608

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in separation

logic. Proc. ACM Program. Lang. 4, POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. Log. Methods Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/lmcs-18(2:16)2022

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.). Springer,
509–523. https://doi.org/10.1007/3-540-57208-2_35

Naghmeh Ivaki, Nuno Laranjeiro, and Filipe Araujo. 2018. A Survey on Reliable Distributed Communication. Journal of
Systems and Software 137 (03 2018), 713–. https://doi.org/10.1016/j.jss.2017.03.028

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. 256–269.
https://doi.org/10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain. 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 234–248. https://doi.org/10.1145/3293880.3294106

Dimitrios Kouzapas, Ramunas Gutkovas, A. Laura Voinea, and Simon J. Gay. 2019. A Session Type System for Asynchronous

Unreliable Broadcast Communication. CoRR abs/1902.01353 (2019). arXiv:1902.01353 http://arxiv.org/abs/1902.01353

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems -
29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. 336–365. https://doi.org/10.1007/978-3-

030-44914-8_13

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: certified causally consistent distributed key-value stores.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016. 357–370. https://doi.org/10.1145/2837614.2837622

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022. RustHornBelt: a semantic foundation for

functional verification of Rust programs with unsafe code. In PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig

(Eds.). ACM, 841–856. https://doi.org/10.1145/3519939.3523704

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In Programming
Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 3–29. https://doi.org/10.1007/978-3-030-17184-1_1

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. 2021. Communication-safe web programming in

TypeScript with routed multiparty session types. In CC ’21: 30th ACM SIGPLAN International Conference on Compiler
Construction, Virtual Event, Republic of Korea, March 2-3, 2021, Aaron Smith, Delphine Demange, and Rajiv Gupta (Eds.).

ACM, 94–106. https://doi.org/10.1145/3446804.3446854

Abel Nieto, Léon Gondelman, Alban Reynaud, and Lars Birkedal. 2022. Modular Verification of Op-Based CRDTs in

Separation Logic. Proc. ACM Program. Lang. OOPSLA (2022). Accepted for publication..

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3434323
https://www.usenix.org/conference/hotos13/session/guo
https://www.usenix.org/conference/hotos13/session/guo
https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1016/j.jss.2017.03.028
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3293880.3294106
http://arxiv.org/abs/1902.01353
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1145/3446804.3446854

1:28 Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving with distributed protocols. Proc. ACM
Program. Lang. 2, POPL (2018), 28:1–28:30. https://doi.org/10.1145/3158116

M. A. S. Smith. 1996. Formal Verification of Communication Protocols. In FORTE.
Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022.

Later credits: resourceful reasoning for the later modality. Proc. ACM Program. Lang. 6, ICFP (2022), 283–311. https:

//doi.org/10.1145/3547631

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent B. Welch. 1994. Session

Guarantees for Weakly Consistent Replicated Data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS 94), Austin, Texas, USA, September 28-30, 1994. 140–149. https://doi.org/10.1109/

PDIS.1994.331722

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel Nieto, and Lars Birkedal. 2021. Trillium:

Unifying Refinement and Higher-Order Distributed Separation Logic. CoRR abs/2109.07863 (2021). arXiv:2109.07863

https://arxiv.org/abs/2109.07863

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, David
Grove and Stephen M. Blackburn (Eds.). ACM, 357–368. https://doi.org/10.1145/2737924.2737958

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, William Mansky, Benjamin C.

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th
International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference)
(LIPIcs, Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:19.

https://doi.org/10.4230/LIPIcs.ITP.2021.32

A LAZY REPLICATIONWITH LEADER-FOLLOWERS
A.1 Deriving the Leader-Only Spec
The leader-only specifications, leader-only-write-spec and leader-only-read-spec, can be derived

from the general specs, write-spec and leader-read-spec, by defining the leader-only version of the

points-to proposition as follows:

𝑘 ↦→ldr vo ≜

{
𝑘 ↦→kvs None if vo = None
∃wo. 𝑘 ↦→kvs Some we ∗ we.value = 𝑣 if vo = Some 𝑣 for some value 𝑣

Note how the leader-only read function returns the value of the write event returned by the read

function. The leader-only-read-spec spec follows straightforwardly from leader-read-spec. To see

how leader-only-write-spec follows from write-spec note how we can use (observe-at-leader) to

obtain that there exists a history ℎ such that ℎ↓𝑘 = wo whenever we have 𝑘 ↦→kvs wo, which we

get by unfolding the definition of 𝑘 ↦→ldr vo, and a case analysis on whether vo is None or Some 𝑣 .

A.2 Concrete definitions of the abstract predicates used in leader-followers
We start by defining two sets of propositions in terms of Iris resources using Iris’s so-called

authoritative resource algebra and fractional resource algebras. These resource constructions are

standard and hence we will not get into the details of these constructions; see Jung et al. [2018]

for similar constructions, e.g., the resource construction for relating the contents of the physical

heap to separation logic’s standard points-to propositions. Iris’s authoritative resource algebra

allows us to construct resources that can be split into two parts, a so-called full part and a so-called

fragment part. The idea is that the fragments must always be included in the full part — the notion

of included depends on the precise construction of the resource as we will explain below. These

two sets of propositions are as follows:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3158116
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
https://arxiv.org/abs/2109.07863
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.4230/LIPIcs.ITP.2021.32

Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 1:29

Table-lookup

KWT (𝑀) ∗ 𝑘 ↦→kvs wo ⊢ 𝑀 (𝑘) = wo
Table-update

KWT (𝑀) ∗ 𝑘 ↦→kvs wo ≡∗ KWT
(
𝑀 [𝑘 ↦→ wo′]

)
∗ 𝑘 ↦→kvs wo′

Logs-agree

𝑋,𝑌 ∈ {G, S, L} 𝑋 ≠ 𝑌

Log𝑋 (DB, ℎ) ∗ Log𝑌 (DB, ℎ′) ⊢ ℎ = ℎ′

Obs-prefix

𝑋 ∈ {G, S, L}
Log𝑋 (DB, ℎ) ∗ Obs(DB, ℎ′) ⊢ ℎ′ ≤𝑝 ℎ

Obs-update

ℎ ≤𝑝 ℎ′

LogG (DB, ℎ) ∗ LogS (DB, ℎ) ∗ LogL (DB, ℎ) ≡∗ LogG (DB, ℎ′) ∗ LogS (DB, ℎ′) ∗ LogL (DB, ℎ′) ∗ Obs(DB, ℎ′)

Fig. 11. Rules governing the internal leader-followers library propositions.

Proposition Intuition

KWT (𝑀) Tracks global view of the mapping from keys to their latest write events maintained by the leader.

𝑘 ↦→kvs wo As before; the write event always agrees with, i.e., is included in,𝑀 in KWT (𝑀) .

LogG (DB, ℎ) Tracks the writes observed on server DB in the global invariant. Agrees with LogS and LogL .

LogS (DB, ℎ) Tracks the writes observed on server DB in the local invariant of the server. Agrees with LogG and LogL .

LogL (DB, ℎ) Tracks the writes observed on server DB in the proof of correctness of RPC handlers. Agrees with LogG and LogS .

Obs (DB, ℎ) As before; the history ℎ is a prefix of, i.e., is included in, the history tracked in LogG , LogS , and LogL .

Here the propositions KWT (𝑀) and 𝑘 ↦→kvs wo are defined as an instance of the authoritative

resource algebra where the former is defined the full part and the latter defined as a fragment.

Similarly, the propositions LogG (DB, ℎ), LogS (DB, ℎ), and LogL (DB, ℎ) are defined as the full part

of an instance of the authoritative resource algebra (split into three different parts) while the

proposition Obs(DB, ℎ) is defined as a fragment in the same resource algebra.

The rules governing these propositions are shown in Figure 11. The rules capture how the

inclusions of the underlying authoritative resource algebras are reflected for the propositions

(notably in rules Table-lookup, Logs-agree, and Obs-prefix), and how they are preserved when

resources are updated (notably in rules Table-update and Obs-update).

Given these propositions we can define the global and local invariants as follows:
6

GlobalInv ≜ ∃𝑀,ℎ. KWT (𝑀) ∗ LogG (DBld, ℎ) ∗ LogMapConsistent (ℎ,𝑀) ∗∗fl∈Fs∃ℎ′. LogG (DBfl, ℎ
′) ∗ ℎ′ ≤𝑝 ℎ

LocalInvDB ≜ ∃𝑀,ℎ, 𝑣, 𝑣 ′. LogS (DB, ℎ) ∗ LogMapConsistent (ℎ,𝑀) ∗
ℓtblDB

DB↦−−→ 𝑣 ∗ isMap(𝑣,𝑀) ∗ ℓlogDB
DB↦−−→ 𝑣 ′ ∗ isSeq(𝑣 ′, ℎ)

The global invariant states that there is a map𝑀 that is our global view of the state of the leader. It

is consistent with the history observed by the leader. Also, the history observed by each follower is

a prefix of the history of the leader. The local invariant on the other hand states that there is a map

that is consistent with the history observed by the server and that this map is physically stored, as

the value 𝑣 , in the memory location ℓtblDB . Similarly, it asserts that the server physically stores the

sequence that is the history ℎ, as the value 𝑣 ′, in the memory location ℓlogDB .

6
The local invariant is essentially stated as a lock invariant. See [Birkedal and Bizjak 2017] for locks in Iris.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	1.1 Formally Verifiable Implementation of a Reliable Communication Library
	1.2 Modular Specifications of RCLib using Dependent Separation Protocols
	1.3 Modular Verification of RCLib and the Session Escrow Pattern
	1.4 Verified Reliable Distributed Components on top of the RCLib
	1.5 Contributions

	2 Prior Work and its Limitations
	2.1 Aneris: Distributed Separation Logic
	2.2 Actris: Dependent Separation Protocols
	2.3 Limitations of Prior Work

	3 Reliable Communication Library API and Specification
	3.1 Reliable Communication Library API
	3.2 Reliable Communication API and Specifications
	3.3 A Simple Example: Verifying a String Length Server

	4 Implementing and Verifying the Reliable Communication Library
	4.1 Implementation of the RCLib Channel Descriptor
	4.2 Unreliable Dependent Resource Transfer with the Session Escrow Pattern
	4.3 Verifying the Reliable Communication Library

	5 Remote Procedure Call Library
	5.1 Specifications of the RPC library
	5.2 Verification of the RPC library

	6 Lazy Replication with Leader-Followers
	6.1 Implementation of the Leader-Followers KVS
	6.2 Specification of the Leader-Followers KVS
	6.3 Verification of the Leader-Followers KVS

	7 Related Work
	8 Conlusion and Future Work
	Acknowledgments
	References
	A Lazy Replication with Leader-Followers
	A.1 Deriving the Leader-Only Spec
	A.2 Concrete definitions of the abstract predicates used in leader-followers

