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Distributed systems are notoriously difficult to design, implement, and reason about. This is especially true

for liveness properties which state that a desired state of the system is guaranteed to eventually be reached. A

lot of complexity is found in systems’ implementations as these often employ features such as higher-order

programming features and concurrency which are difficult to formally reason about even without the added

complexity introduced by the asynchronous communication present in distributed systems, or considering

liveness properties. In this paperwe present Fairneris, the first higher-order concurrent program logic for formal

and foundational verification of both safety and liveness properties of distributed systems’ implementations.

This work builds on the recent success of the Trillium program logic framework for refinement-based reasoning

about higher-order concurrent programs, including liveness reasoning, and that of the Aneris program logic

for reasoning about (only safety properties) of distributed systems. To demonstrate the capabilities of Fairneris

we verify both safety and liveness properties of an implementation of the Stenning sliding window reliable

transfer protocol on top of UDP-like unreliable networking primitives. Results presented in this paper are

mechanized on top of the Coq proof assistant.

Additional Key Words and Phrases: Distributed systems, separation logic, refinement, higher-order logic,

concurrency, formal verification

1 Introduction
Distributed systems are a natural target for formal verification, as they are notoriously difficult

to get right and to test exhaustively. Moreover, they often serve critical functions. Traditionally,

most works on studying correctness of distributed systems have focused on reasoning about

correctness of communication protocols, e.g., using model checking tools like SPIN [17] and TLA+

[22]. However, implementations of distributed systems often involve details not specified in high-

level specifications [7]. Hence, it is important to verify correctness of the implementation of

distributed systems.

Over the past decade many advances have been made in this direction, e.g., Aneris [20], Disel
[30], Grove [31], Igloo [32], IronFleet [16], and Verdi [35]. Virtually all these systems only support

reasoning about so-called safety [21] properties, i.e., properties that state nothing bad ever happens,
e.g., “the server never sends an invalid response”. The only exception is IronFleet which also

supports reasoning about liveness [21] properties, i.e., properties that state some desired state is

eventually reached, e.g., “the server responds to all requests”. These two families of properties,

safety and liveness, are complete in the sense that any property is the conjunction of a safety

property and a liveness property [3]. IronFleet manages to prove liveness by reducing it to solving

termination of sequential programs. In IronFleet each node of the distributed system must be

written as a single-threaded event loop. The high-level argument of the liveness proof of IronFleet

is that distributed systems implemented in IronFleet are live whenever all event handlers terminate,

because the event loop goes though actions in a round robin fashion — this is in turn possible

∗
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because all actions are always enabled as each handler must first check if its preconditions hold, and

if not do nothing. As pointed out by Chandra et al. [7], it is important for distributed systems’ nodes

to run concurrent threads. In addition to concurrency, higher-order programming features such as

higher-order functions, objects in object-oriented languages, etc., are also crucial for engineering

distributed software [6].

The key reason for the success of all these systems, Aneris [20], Disel [30], Grove [31], Igloo [32],

IronFleet [16], and Verdi [35], is modularity. That is, in all these systems each module (function,

method, class, thread, etc.), is proven correct against its own specification in isolation from other

modules, under the assumption that the other modules are correct with respect to their own

specification. Modular reasoning about liveness properties of concurrent programs is notoriously

difficult [10, 34] (and hence also for distributed programs, even when each node is single-threaded).

This is only exacerbated by higher-order programming features. In fact among the state of the art

program logics for reasoning about liveness of concurrent programs, Lili [23], TaDa-live [10], and

Fairis [34], only Fairis supports higher-order programming features.

1.1 The Fairneris Program Logic
In this paper we present Fairneris, the first program logic for foundational reasoning about both
safety and liveness properties of arbitrary higher-order and concurrent programs that have access

to network sockets. That is, not just programs with a fixed main event loop as in IronFleet [16]

or Verdi [35]. By foundational we mean that everything is checked by a proof assistant; the Coq

proof assistant in this case. Fairneris is built on top of two existing program logics: Fairis [34] and

Aneris [20] — hence, the suggestive name Fairneris. Fairis [34] is the state-of-the-art foundational

program logic based on the Trillium framework [34] which is in turn based on the Iris framework

[19] for modular reasoning about liveness of concurrent programs. Aneris [20] is the state-of-

the-art foundational program logic, also based on the Iris framework [19], for reasoning about

safety properties of higher-order and concurrent distributed systems. We note that the motivation

for this choice is beyond the mere convenience that both program logics are based on the Iris

framework. As mentioned earlier, Fairis is the only program logic for reasoning about liveness of

higher-order concurrent programs. Furthermore, the only program logics other than Aneris that

support reasoning about higher-order concurrent distributed systems are Grove [31] and Igloo [32].

As we will explain in §6, it is not clear how the extend the methodology of Igloo to reasoning about

liveness properties, at least not by following a methodology similar to that of Fairis. As for Grove,

its methodology is very close to that of Aneris, it is also based on the Iris framework. However,

Grove focuses on verifying crash recovery and reconfiguration of distributed systems.

1.2 Challenges
Unreliability of the Network. In the case of distributed systems, liveness is even more delicate

than for shared memory concurrency, because the unreliability of the network also needs to be

taken into account. This is a subtle question: on the one hand, a totally reliable network is not a

realistic assumption. On the other hand, it is impossible to have non-trivial live distributed systems

under a completely unreliable network [13]. Thus, we make the standard choice of assuming

fairness of the network, i.e., that the network satisfies the eventual delivery property: a message

sent infinitely often is eventually delivered. In other words, we do not consider systems where

a pair of nodes is disconnected forever. However, we do assume that messages can be dropped

(though no indefinitely), reordered, or duplicated. Hence, many distributed programs have to

retransmit messages and acknowledge received messages. Moreover, following and extending

Aneris, in addition to unreliability, we work with a realistic model of network programming in

the sense that packets are delivered by the network to the recipient node by being appended to
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the recipient socket’s FIFO buffer. Thus, the program must repeatedly use the recv operation to

retrieve newer network messages. As a result, the unreliability of the network greatly complicates

reasoning about liveness. In fact, to reason about liveness one must repeatedly switch between

reasoning about the program and reasoning about the network: the reason that the communication

can progress to sending some message𝑚𝑘+1 is that message𝑚𝑘 was received (and acknowledged,

if necessary) which can only happen if the thread calling recv is scheduled (depends on fairness

of scheduling) after the network delivers𝑚𝑘 (depends on network’s fairness) because the thread

sending𝑚𝑘 was scheduled enough times (depends on fairness of scheduling), etc. IronFleet sidesteps
this problem by working with single-threaded programs, and by considering retransmissions as

events handled by the node’s fixed event loop.

Network Abstraction. Arguably, the raison d’être of a program logic is to simplify reasoning

by abstracting (hiding) the less relevant details that can/should be treated once and for all by

the program logic for all programs, e.g., when reasoning about (safety or liveness) of concurrent

programs, we do not consider the internals of the memory allocator, different possible schedulings,

or the state of the scheduler. Similarly, as a good program logic, Fairneris should, and indeed does,
hide the details of the network like eventual delivery, details of the thread scheduler, and their

interaction. One of the core challenges of our work is to abstract away the details of the network

when combining Fairis and Aneris. The approach of Fairis to verifying liveness properties is via

establishing a refinement relation between the program 𝑒 and the user-picked high-level model

M, expressed as a labeled transition system (LTS), which intuitively captures the essence of the

computation of the program. More precisely, the program logic of Fairis, allows its users to prove

a refinement relation between the program 𝑒 and the user-picked high-level model M, under a

user-picked relation 𝜉 reflecting how the state of the program must relate to the state of the model.

A theorem, proven once and for all about the Fairis refinement relations, states that for any fair

(fairly scheduled) trace ex of the program there is a corresponding fair trace utr of the model such

that whenever the trace utr satisfies a liveness property 𝑃 , so does ex. Thus, using the methodology

of Fairis (and similarly Fairneris), to prove a liveness property 𝑃 for a program 𝑒 , one only needs to

show that there is a model M related to 𝑒 that satisfies 𝑃 (proven via the program logic of Fairis).

One obvious way to combine Fairis and Aneris is to reflect the entire state of the network in

the model. This is indeed what Timany et al. [34] do to obtain a version of Aneris which can

take advantage of refinement-based reasoning. However, they use this approach to show that a

distributed program correctly implements a TLA+ [22] model in the sense that all safety properties

enjoyed by the TLA+ model are also enjoyed by the program.

1.3 Overcoming Challenges in Fairneris
The approach taken by Fairneris to liveness reasoning is similar to Fairis: refinement-based reason-

ing. However, in order to abstract the details of the network from our liveness reasoning, we take

special care of reflecting the network in the high-level model of Fairneris. The overall idea is that

to prove liveness of a program 𝑒 , the user of Fairneris, picks a modelU and a relation 𝜉𝑈 . The user

then uses the program logic of Fairneris to show that 𝑒 refines U under the relation 𝜉𝑈 , which in

turn implies that for any trace ex of the program 𝑒 , there is a corresponding trace utr ofU, written

ex ≼𝜉𝑈 utr , such that liveness properties that hold for utr also hold for ex. Thus, Fairneris allows
analyzing the model U to prove that it satisfies the desired liveness property instead of the much

more complicated distributed program 𝑒 . We emphasize that the modelU only reflects high-level

network operation, i.e., it is completely oblivious to messages being dropped and retransmitted;

details will be explained later. To achieve this, we annotate the operational semantics of AnerisLang,

the OCaml-like programming language of Aneris, with so-called actions, and construct a fixed
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network model Net and relation 𝜉𝑁 relating the state of the network in the operational semantics

to that of Net — constructed once for all AnerisLang programs. The model Net captures all the
details of messages dropped, duplicated, etc.We then combine the modelU with Net, which we

write asU ⋉Net, in such a way that all sends and receives ofU are synchronized to match the

corresponding events in Net. The program logic of Fairneris, behind the scene and unbeknownst

to the user who is only dealing with U, constructs a refinement between the program 𝑒 , and the

model U ⋉Net under the relation 𝜉𝑈 ⋉ 𝜉𝑁 . Crucially, for any trace utr of U ⋉Net we have that if
ex ≼𝜉𝑈 ⋉𝜉𝑁 utr , then ex ≼𝜉𝑈 𝜋 (utr), where 𝜋 (utr) is a trace ofU obtained from utr by projecting

out the parts corresponding toU.
1

We note that it is far from obvious that the construction explained above regarding constructing

a network model Net is conducive to a usable, modular program logic suitable for high-level

reasoning. In other words, we need to answer the following question: can we obtain high-level

reasoning principles, in terms of Hoare-logic rules, that allow us to reason directly aboutNet when
we are in fact constructing a refinement relation relating the program to the modelU ⋉Net? To
answer this question in the affirmative requires changes to the program logic of Fairis, notably

introduction of a new model update logical connective.

1.4 Case Study
To demonstrate the applicability of our technique, we prove liveness and safety of the Stenning

protocol [33], an algorithm to reliably transfer a stream of data between two nodes in an unreliable

network. The Stenning protocol suitably exercises the challenges pertaining to safety and liveness

properties in distributed systems, regarding retransmissions and distributed synchronization using

sequence ids, and has thus previously been a target for verification. Ours is however the first work

proving liveness of a low-level implementation of the Stenning protocol; see §6 for more details.

The examples and the case study of the Stenning protocol presented in this paper focus on

addressing the core challenges as described above in §1.2. In particular, these examples do not

feature node-local concurrency, which is readily taken care of in both Fairis and Aneris: we believe

doing so would distract from the new ideas put forth in this paper.

1.5 Contributions
In this paper we make the following contributions:

(1) The Fairneris program logic for verifying trace refinement of distributed systems (§3)

(2) Verification of liveness of a low-level implementation of the Stenning protocol (§4)

(3) A labelled transition system for low-level UDP-based operational semantics (§5.2)

(4) A principle of model abstraction applied to network trace properties (§5.3)

(5) Fairneris as a shallow embedding on top of Trillium (§5.4)

All but one result of the paper have been mechanized in the Coq proof assistant. The only exception

is the liveness theorem of the Stenning model, for which we instead give a paper proof.

We start by giving an overview of the Fairneris approach to verifying liveness properties of

distributed systems (§2).

2 Overview
This section gives an overview of how Fairneris is used, and demonstrates how the main contri-

butions of this paper enable proving liveness properties of distributed programs using a simple

introductory example. The code for the two nodes, nodes 𝐴 and 𝐵, of our example is given on

1
In fact the model U ⋉ Net once more to the model Fuel(U ⋉ Net ) which hides details of the thread scheduler. However,

the so-called fuel construction, Fuel( ·) , is not new in our work; it is taken verbatim from Fairis.
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nodeA saA saB =
let sock = new_socket saA in
while true do
send sock saB "ping"

nodeB saB saA saB =
let sock = new_socket saB in
while recv sock = None do skip;
send sock saA "done!"

Start Rcvd Done

𝐵 : RecvS(𝑚𝐴𝐵) 𝐵 : Send(𝑚𝐵𝐴)

𝐴 : Send(𝑚𝐴𝐵) 𝐴 : Send(𝑚𝐴𝐵) 𝐴 : Send(𝑚𝐴𝐵)

𝐵 : RecvF(𝑠𝑎𝐵)

𝑚𝐴𝐵 ≜ (𝑠𝑎𝐴, "ping", 𝑠𝑎𝐵)
𝑚𝐵𝐴 ≜ (𝑠𝑎𝐵, "done!", 𝑠𝑎𝐴)

Fig. 1. Retransmit example consisting of the program Σretr (left), and the model Uretr (right)

the left-hand-side column of Figure 1. We will write Σretr for this distributed system. The liveness

property that we wish to show about Σretr is that node 𝐵 eventually sends the message "done!"

to node 𝐴. In Σretr node 𝐴 repeatedly sends message "ping" to node 𝐵. Node 𝐵, on the other hand,

repeatedly calls recv until it receives "ping" from 𝐴. And when it does, it sends back a message

"done!", and terminates. Hence, under fairness assumptions, node 𝐵 must eventually send "done!"

to node 𝐴.2

Recall that, as we explained in §1, in Fairneris we prove liveness properties by establishing a

refinement between the distributed program and a modelU picked by the user of Fairneris. For

our simple example the modelU is the modelUretr given in the right-hand-side column Figure 1.

Below, we will describe how we state fairness and liveness as trace properties both for program

traces and model traces, and discuss how we use these notions to prove that fair traces of the

program are live (in this case: that the node 𝐵 sends the message "done!" to node𝐴). We first define

fairness and liveness for the program execution in §2.1, and then show how this reasoning can be

lifted to the level ofUretr in §2.2. Finally, we briefly discuss our methodology of using Fairneris’s

program logic to prove that the program refines Uretr in §2.3.

2.1 Fairness and Liveness in the Program
All throughout this paper, we will use linear temporal logic (LTL) formulas to state properties about

potentially infinite executions of distributed systems or traces of abstract models. In a few words,

the LTL operators we will use are “eventually”, written F𝑃 , which states that the property 𝑃 must

become true at a point of the execution; and “always”, written G𝑃 , which states that 𝑃 holds at

every step of the execution. We describe events in terms of the actions Send, RecvS, and RecvF, for

sending, successfully receiving, or failing to receive, respectively. The Send and RecvS actions are

indexed by message triples, consisting of the source address, contents, and destination address of

the message. We can thus denote the sending of the message "done!" from B to A as Send(𝑚𝐵𝐴),
where𝑚𝐵𝐴 ≜ (𝑠𝑎𝐵, "done!", 𝑠𝑎𝐴). The RecvF action is indexed by the receiving socket address, e.g.

RecvF(𝑠𝑎𝐵), indicating that the program attempted to retrieve a message from the buffer of the

socket assigned to address 𝑠𝑎𝐵 but failed as the buffer was empty. The liveness property of interest

can then be stated as follows:

For all executions ex of Σretr , ex ⊨ F Send(mBA) (Live*)

2
Note that it is impossible to have two nodes simultaneously reach agreement. This phenomenon known as the two-general

problem [2, appendix] occurs even when the network is completely reliable, as soon as there is any delay in communication.

Hence, here we only show that one node, node 𝐵 reaches the end of communication.
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As we explained in §1, messages in Aneris and Fairneris can be non-deterministically dropped.

Thus, even when a program, like node 𝐴 in Σretr , sends the same message in an infinite loop, it is

not guaranteed that it will be delivered. That is, the following is a valid trace of network events

Send(𝑚𝐴𝐵) · Drop(𝑚𝐴𝐵) · RecvF (𝑠𝑎𝐵) · Send (𝑚𝐴𝐵) · Drop (𝑚𝐴𝐵) · RecvF (𝑠𝑎𝐵) · · ·
where each time the node 𝐴 sends a message, it is immediately dropped by the network, preventing

node 𝐵 from ever receiving it. Such an execution violates our liveness property: F Send(mBA).

Therefore, we consider following, usual, notion of network fairness expressed as an LTL formula:

G
(
GF Send(msg) =⇒ F Deliver(msg)

)
(NetFair)

which states that, for all messages, it is always the case that, if a message is sent infinitely often

(always eventually), then it is eventually delivered. Given (NetFair), the distributed system Σretr
seems to satisfy the property (Live*): since node 𝐴 sends its message infinitely often, according

to (NetFair), the message is delivered at some point. Node 𝐵 calls receive in a loop, so that it

eventually retrieves the message from the buffer where it was previously delivered, and then it

immediately sends the "done!" message.

This reasoning, and indeed the fact that Σretr satisfies (Live*), relies on the fact that both main

threads of nodes 𝐴 and 𝐵 run “enough” times. (Fairneris’s operational semantics, like Aneris’s,

consider one large thread pool consisting of all threads of all nodes.) We express fairness of the

thread scheduler as the following LTL property

G
(
thread_enabled(𝜁 ) =⇒ F (thread_steps(𝜁 ) ∨ ¬thread_enabled(𝜁 ))

)
(SchedFair)

where the predicate thread_enabled(𝜁 ) means that the thread 𝜁 is not finished, and is ready to

take an execution step, and thread_steps(𝜁 ) expresses that 𝜁 does take an execution step. In other

words, if a thread can run, then it eventually runs.

We are now able to state the correct result about Σretr , which makes explicit the fairness hypothe-

ses we require about the scheduler and the network:

For all executions ex of Σretr , ex ⊨
(
SchedFair ∧ NetFair

)
⇒ F Send(mBA) (Live)

This is the statement that we eventually prove about the system Σretr using our program logic, but

before that, we will lift it to Uretr in §2.2.

Remark 2.1 (Locallity of Liveness). The property (Live) above is local in the sense that it is trace-

wise, i.e., it states that for any trace ex, if ex is fair, then eventually Send(mBA). This is key in Fairis’s

approach, and thus in that of Fairneris. It means that the program logic need not be concerned with

fairness — the program logic neither enforces, nor relies upon fairness conditions. The program

logic allows us to establish a refinement relation between programs and models, including both

fair and unfair executions of the program. As we will discuss below, care must only be taken to

ensure that fair traces of the program correspond to fair traces of the model.

Remark 2.2 (Fairness and Delivery in the Presence of Acknowdgements). The formulation of

(NetFair) above is subtle: it is in fact not necessary to send the message infinitely often for the

entire execution of the program to be sure that it is delivered. As we will see in the case study in

§4, where a message, once acknowledged, is no longer retransmitted. That is, it suffices to only

retransmit until the acknowledgement is received to guarantee that under (NetFair), all messages

are eventually delivered, or indeed even stronger that all messages have their acknowledgements

received by the sender. This is despite the fact that in all such fair executions of the system messages

are only ever sent finitely many times, which might appear strange at first. To understand why

this is the case, note that if the acknowledgement of a message is not eventually received, that

message is sent infinitely often. Thus, by (NetFair) it must also be delivered infinitely often, and
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hence, also received infinitely often. But then, since the recipient receives the message infinitely

often, it sends acknowledgements back infinitely often, which again by (NetFair) implies that the

acknowledgement is eventually delivered and hence received. This contradicts our assumption that

the acknowledgement is not received, and so we can conclude that progress is eventually made.

2.2 Fairness and Liveness in the Abstract Model Uretr

Here, following the methodology of Fairis we simplify the reasoning about the program by instead

reasoning about the model Uretr . The idea, which we will make formal in §3, is that whenever we

have ex ≼𝜉retr utr for a trace ex of the program and a trace utr of Uretr , then (Live) holds whenever

(ModLive) below holds.

For all traces utr ofUretr , utr ⊨
(
ModSchedFair ∧ModNetFair

)
⇒ F Send(mBA) (ModLive)

Here,ModSchedFair andModNetFair are respectivelymodel counterparts to SchedFair andNetFair

above. Below, we will give a brief discussion of the model Uretr , present ModSchedFair and

ModNetFair, followed by arguments as to why (ModLive) holds.

The modelUretr has three states, corresponding to the three stages of progress of the distributed

system Σretr : Start, the initial stage where node 𝐴 is sending its message, Rcvd, where node 𝐵

has received at least one of the messages from node 𝐴 but has not yet replied, and, finally, Done

where node 𝐵 has sent the message "done!" to node 𝐴. Note how the modelUretr is significantly

simpler than that of Σretr , considering operational semantics as an LTS. In particular, due to the

non-deterministic behavior of the network dropping and duplicating messages, the loop in node 𝐴

repeatedly sending a message, etc., the state space of the Σretr is not even finite — this is also the

case for the modelUretr ⋉Net that we are not dealing with in this section. By contrast,Uretr has

only three states.

The transitions of Uretr denote how actions from each node update the current stage of the

distributed system. They are labeled with two pieces of information, separated by a colon: the

role, to the left of the colon, and the action, to the right of the colon. For instance, the label

𝐵 : RecvS(𝑚𝐴𝐵) states that the transition corresponds to the action of receiving the message from

A (with socket address 𝑠𝑎𝐴) to B (with socket address 𝑠𝑎𝐵), with the contents "ping" (denoted as

the triple𝑚𝐴𝐵 ≜ (𝑠𝑎𝐴, "ping", 𝑠𝑎𝐵)), and that the role performing this transition be 𝐵. Roles, a

concept we adopt from Fairis [34], are the logical counterpart to thread identifiers, denoting who
is performing the action. This allows us to state scheduler fairness for models using a definition

similar to (SchedFair), as follows:

G
(
role_enabled(𝜌) =⇒ F (role_steps(𝜌) ∨ ¬role_enabled(𝜌))

)
(ModSchedFair)

where 𝜌 , universally quantified ranges over all roles in Uretr , i.e., either 𝐴 or 𝐵, which correspond

to the main threads of the two nodes 𝐴 and 𝐵, respectively.

The notion of actions is a contribution of this work. Actions allow us to tie the network to

the abstract model in a lightweight fashion. In particular, while the model mentions messages

being sent or received, which reflect actions performed by the program itself, the abstract model

Uretr is oblivious to the actions performed by the network itself, such as delivering or dropping

a message. The absence of delivery actions (and hence also receive buffers) from Uretr is crucial

for managing the complexity of formal reasoning about the network and its fairness. Had delivery

actions been part of Uretr , we would have had to track the position of messages of interest in

the buffer whenever we reasoned about the network. On the other hand, the lack of delivery

actions in the Uretr necessitates changing the notion of network fairness compared to (NetFair).

The intuition is simple: if a sender (re)transmits messages infinitely often (or as argued earlier

until acknowledgement), and the recipient repeatedly calls recv, then the recipient must eventually
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receive the message. This is stated formally as an LTL formula as follows:

G
(
GF Send(msg) ⇒ GF Recv_from(msg.dest) ⇒ F RecvS(msg)

)
(ModNetFair)

where Recv_from is a shorthand describing the action of calling recv on a socket bound to the

destination address of the message msg, regardless of whether it succeeds or fails.
Now that we have defined both (ModSchedFair) and (ModNetFair), we proceed to argue why

(ModLive) holds. As per scheduling fairness, it is clear that it is sufficient to reach the Rcvd state, as

we cannot repeatedly take the transition 𝐴 : Send(𝑚𝐴𝐵) in that state, and hence must eventually

take the transition by the role 𝐵 which sends the "done!" message. In turn, proving that Rcvd is

reached amounts to proving that the transition labeled with RecvS(𝑚𝐴𝐵) is eventually taken. This

follows directly from (ModNetFair). Assume that this transition is never taken. In that case, we stay

in the state Start forever. However, staying in Start forever, by fairness of scheduling, satisfies the

two premises of (ModNetFair). And hence, the transition RecvS(𝑚𝐴𝐵) must eventually be taken,

which contradicts our assumption.

2.3 A Program Logic for Refinement
In this section we present the basic, high-level ideas underlying how the program logic of Fairneris

can be used to conclude that the program Σretr refines the modelUretr . Here, we will only discuss the

specifications for the distributed program Σretr in terms of Hoare triples, and discuss the intuition

and high-level ideas of the proof. We leave the formal, more detailed proof, which we will present

in §3.3, for after we have presented the program logic and its inference rules in more details. Note

that the specifications presented in this section, apart from including actions, are virtually identical

to what one would write in Fairis. Our contribution, in terms of the program logic of Fairneris, is

the novel proof rules and how they are proven sound which we will present and discuss in §3 and

§5.4 respectively.

As we will discuss in more detail in §3.3, the crux of the proof that Σretr refines Uretr is to show

the following two Hoare triples (defined in terms of weakest preconditions in the usual way):

{𝐼retr ∗ 𝜁𝐴 Z⇒ {𝐴 := 42} ∗ . . .}𝜁𝐴 nodeA saA saB {𝜁𝐴 Z⇒ ∅}

{𝐼retr ∗ 𝜁𝐵 Z⇒ {𝐵 := 42} ∗ ◦𝛾𝐵 (Start) ∗ . . .}𝜁𝐵 nodeB saA saB {𝜁𝐵 Z⇒ ∅}
where the invariant 𝐼retr is as follows (in Iris’s notation we write 𝑃 to say that 𝑃 must always hold

throughout the proof):

𝐼retr ≜ ∃𝑚, ◦𝛾M (𝑚) ∗ •𝛾𝐵 (𝑚)
We omit some details for now (denoted . . .), but will revisit the full specification and proof in §3.3.

Let us unpack and explain these specifications. The logical connective ∗ is the separating con-
junction, the special resource-aware conjunction of separation logic. The logical statement 𝑃 ∗𝑄
states that both 𝑃 and 𝑄 hold, but resources they assert ownership over are disjoint. The predicate

𝜁 Z⇒ {𝜌 B f }, as in Fairis, indicates the locale 𝜁 is associated to the role 𝜌 and that this role has

fuel f . This is to be understood as both a permission, and an obligation to perform 𝜌 actions. It is a

permission in the sense that a thread can only perform a 𝜌 action if it is assigned that role. On the

other hand, in Fairneris just as in Fairis, when a thread is assigned a role 𝜌 , it can only postpone

performing a 𝜌-action for f steps, as each stutter step decreases its fuel. The only way to increase

it is to perform a 𝜌-action. This restriction of finite postponement, as we will explain in §5.3, is

key in ensuring that (SchedFair) implies (ModSchedFair). In this sense, the main thread of node 𝐴

having role 𝐴 assigned to it, must infinitely often perform a send operation as described byUretr ,

because inUretr all states have such send loops. Similarly, the postcondition 𝜁 Z⇒ ∅ indicates the

thread may only terminate if it has fulfilled all its obligations. The main thread of node 𝐴 satisfies
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this condition because it never terminates. The main thread of node 𝐵 on the other hand only

terminates when we are in state Done which has no 𝐵-transitions, and hence no 𝐵-obligations. The

invariant 𝐼retr states that we are, at all times in some state𝑚 of Uretr , indicated by the resource

◦𝛾M (𝑚) in 𝐼retr . The resource •𝛾𝐵 (𝑚) in 𝐼retr and ◦𝛾𝐵 (Start) in the precondition above, as we will

explain, allow the thread 𝜁𝐵 to keep track of the current state ofUretr , even though it is shared with

thread 𝜁𝐴 via the invariant. The construction of •𝛾𝐵 (𝑚) and ◦𝛾𝐵 (𝑚) in terms of Iris resources, the

so-called agreement resource algebra [19], ensures that these two predicates always agree on the

state they track. This is codified in the logic as the following two rules:

own-agree

•𝛾𝐵 (𝑚) ∗ ◦𝛾𝐵 (𝑚
′) ⊢𝑚 =𝑚′

own-update

•𝛾𝐵 (𝑚) ∗ ◦𝛾𝐵 (𝑚) ⊢ |⇛•𝛾𝐵 (𝑚
′) ∗ ◦𝛾𝐵 (𝑚

′)

where |⇛ is the so-called update modality, |⇛𝑃 holds whenever 𝑃 holds after updating resources,

which is allowed throughout the proof.

For node 𝐴, we see that it simply performs a send operation in a loop; hence, each send follows

the previous one after finitely many steps. Thus, we only need to show that each send operation

performs an 𝐴-action. For this we need to know that we have the permission/obligation to do so.

This is reflected in the fact that we are assigned role 𝐴. By the invariant 𝐼retr we know that we

are in some state𝑚, indicated by ◦𝛾M (𝑚). Since all states have an 𝐴 : Send(𝑚𝐴𝐵) transition, we
always can/should perform the send operation. Furthermore, all these transitions are loops and

hence never change the state tracked by ◦𝛾M (𝑚), always maintaining the invariant.

For node 𝐵, initially, we know that we are in state Start, because we have ◦𝛾𝐵 (Start), and by

own-agree, the𝑚 in the invariant 𝐼retr must be Start. In this state, taking the loop 𝐵 : RecvF(𝑠𝑎𝐵)
is completely analogous to taking 𝐴 : Send(𝑚𝐴𝐵), we discussed above. However, when the Recv

operation succeeds, we go from Start to Rcvd in Uretr . That is, after taking that step we will

have ◦𝛾M (Rcvd). At this point, we will update resources using the rule own-update to obtain

•𝛾𝐵 (Rcvd) and ◦𝛾𝐵 (Rcvd) which maintains the invariant 𝐼retr . Finally, in state Rcvd we have only

one permission/obligation, i.e., to take the transition 𝐵 : Send(𝑚𝐵𝐴). We perform this action, and

update our state to •𝛾𝐵 (Done) and ◦𝛾𝐵 (Done). In this final state there are no 𝐵-obligations left and

hence the thread must terminate, because there is no action left in its assigned role.

3 Fairneris Program Logic
The primary goal of Fairneris is to verify that a ≼𝜉𝑈 refinement holds between a program and a

given user model. This includes the user picked refinement relations 𝜉𝑈 that must hold between

the program and model states for any step of the program.

The primary benefit of the Fairneris logic is that it internalises the parts of the global model

that does not relate to the user model. That is, it hides the irrelevant model aspects of the fuel and

network model instrumentations, and relegate these (still crucial) parts of the verification to the

program logic. We hide the fuel instrumentation by leveraging pre-existing ideas from Fairis [34].

To interface with the network instrumentation—updating the user model non-deterministically
based on the action that it emits—we introduce a novel so-called “model update” construction,

alongside a pre-existing approach to reasoning about distributed systems from Aneris [20].

In this sectionwe present the Fairneris program logic.We first present the adequacy theorem (§3.1),

defined entirely in terms of the user model. We then present the rules of Fairneris (§3.2), which

are used to prove the weakest precondition and that the user-picked refinement relation holds

invariably. Finally, we remark on how the Fairneris logic is used to verify the refinement of the

retransmit example from Figure 1 (§3.3).
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3.1 Fairneris Adequacy
The Fairneris adequacy theorem formalises that the refinement ≼𝜉𝑈 holds, if we can prove that (1)

weakest preconditions for all initial threads: wp
𝜁

E 𝑒
{
𝛷
}
; and (2) the user-picked refinement relation

𝜉𝑈 always holds: AlwaysHolds(𝜉𝑈 ), under the assumption of initial separation logic resources for

(i) the model state (à la Trillium); (ii) the fuel instrumentation (à la Fairis); (iii) the network state (à
la Aneris); and (iv) initially allocated invariants.

The weakest precondition wp
𝜁

E 𝑒
{
𝛷
}
denotes that the expression 𝑒 is safe to execute, and if it

terminates with value𝑤 , then𝛷 𝑤 holds. The weakest precondition is instrumented with its locale

𝜁 ∈ Ip×N, denoting the ip address of the node in the distributed system that the expression belongs

to, along with its thread id on that node. Finally, the weakest precondition has a “mask” E, that
denotes which invariants it can open. We sidestep the technical details of masks for now.

The proof of the weakest precondition and the user-picked refinement relation can rely on

initially consistent resources that respectively assert properties about the model state, the fuel

instrumentation, and the network. Based on these initial resources, we can additionally allocate

invariants that are then guaranteed to hold throughout the entire execution of the program (via

the weakest preconditions) inside of the separation logic. These initially allocated invariants are

imperative, as they allow us to prove the user-picked refinement relations between the program

and model states. Formally, this works out as we can access any properties stored in invariants,

when proving the desired user-picked refinement relations AlwaysHolds(𝜉𝑈 ).
The formal statement of the adequacy theorem is as follows:

Theorem 3.1 (Fairneris-Adeqacy). Let tp be a node-threadpool ((Ip ∗N) ⇀ Expr) of the initial
program threads. Letm ∈ U be a model state, and 𝜉𝑈 be a relation between program and model states.
Let Finit be an initial fuel map ((Ip ∗ N) → (role → N)) with all 𝜁 ∈ dom(tp) assigned to respective
role maps 𝑓 𝑠 mapping the roles ofm to a user picked concrete fuel limit Fcap . All roles ofm are uniquely
covered in the initial fuel map. If(

◦𝛾M (m) ∗ (∗𝜁 ↦→𝑓 𝑠∈Finit 𝜁 Z⇒ 𝑓 𝑠) ∗ NetRes(𝐴)
)
−∗

|∼≡⇛⊤AlwaysHolds(𝜉𝑈 ) ∗∗𝜁 ↦→𝑒∈tp
wp𝜁⊤ 𝑒

{
𝑤. 𝜁 Z⇒ ∅

})
then for all fair executions ex of 𝑐 there exists a fair trace utr of m where ex ≼𝜉𝑈 utr holds in the
meta-logic.

Here ◦𝛾M (m) reflects the state of the user model, (∗𝜁 ↦→𝑓 𝑠∈Finit 𝜁 Z⇒ 𝑓 𝑠) the state of the fuel

instrumentation of Fairis, and NetRes(𝐴) is the initial network resources of Aneris. The modality

|∼≡⇛⊤ allow us to allocate invariants, which are then enforced by the proofs of the individual WPs,

and thereby available when proving AlwaysHolds(𝜉𝑈 ). We cover each of these constructs in more

detail in the following section.

We remark that in the original Trillium [34] adequacy theorem, 𝜉𝑈 is a history-sensitive refinement,

indexed by the full traces of the program and model. This is also the case in Fairneris although we

do not cover that in the adequacy theorem here for brevity sake.

3.2 Verification in Fairneris
The crux of applying the Fairneris logic is to verify the global refinement relation AlwaysHolds(𝜉𝑈 ),
and the weakest preconditions of Fairneris. In this section we first cover how the former is achieved

via the invariants of Fairneris and then discuss how the latter is achieved via the Fairneris rules for

the weakest preconditions.



M

A
N
U
S
C
R
IP
T

Verifying Liveness Properties of Distributed Systems via Trace Refinement in Higher-Order CSL 11

Fuel & model rules (outer program logic)

wp-step

E|∼≡⇛E′
wp

𝜁

E′ 𝑒

〈
𝑒′;𝛼?. mu

𝜁 ;𝛼?

E′
E′
|∼≡⇛E

wp
𝜁

E 𝑒
′ {𝛷}〉

wp
𝜁

E 𝑒
{
𝛷
}

wp-role-dealloc

◦𝛾M (m) m
𝜌 : _−−→/ _ 𝜁 Z⇒ {𝜌 := _} ⊎ fs

(◦𝛾M (m) ∗ 𝜁 Z⇒ fs) −∗ wp𝜁E 𝑒
{
𝛷
}

wp
𝜁

E 𝑒
{
𝛷
}

Mdl-step-fuel

𝜁 Z⇒ fs++ fs ≠ ∅
(𝜁 Z⇒ fs −∗ 𝑃)

mu
𝜁

E 𝑃

Mdl-step-model

◦𝛾M (m) m
𝜌 : 𝛼?−−−→ m

′

𝜁 Z⇒ {𝜌 := _} ⊎ (fs++)
((◦𝛾M (m′) ∗ 𝜁 Z⇒ {𝜌 := Fcap} ⊎ fs) −∗ 𝑃)

mu
𝜁 ;𝛼?

E 𝑃

Socket-interp-alloc

Unallocated({𝑠𝑎})

|∼≡⇛𝑠𝑎 Z⇒ 𝛷

Program rules (inner program logic; an excerpt)

sswp-create-socket

𝜁 .ip = 𝑠𝑎.ip Unbound(𝑠𝑎)

wp
𝜁

E new_socket 𝑠𝑎
〈
𝑤. ∃sh.𝑤 = sh ∗ sh ↩−→ 𝑠𝑎

〉
sswp-send

𝜁 .ip = msg.src.ip sh ↩−→ msg.src
msg.dst Z⇒ 𝛷 msg.src { (𝑅,𝑇 ) (msg ∉ 𝑇 ⇒ 𝛷 msg)

wp
𝜁

E send sh msg.str msg.dst
〈
𝑤 ;𝛼.

𝑤 = |msg.str| ∗ 𝛼 = Send(msg) ∗
msg.src { (𝑅,𝑇 ∪ {msg}) ∗ sh ↩−→ msg.src

〉
sswp-recv

𝜁 .ip = 𝑠𝑎.ip sh ↩−→ 𝑠𝑎 𝑠𝑎 { (𝑅,𝑇 ) 𝑠𝑎 Z⇒ Φ

wp
𝜁

E recv sh〈
𝑤 ;𝛼.

(𝑤 = None ∗ 𝛼 = RecvF(𝑠𝑎) ∗ sh ↩−→ 𝑠𝑎 ∗ 𝑠𝑎 { (𝑅,𝑇 )) ∨
(∃msg.𝑤 = Some (msg.str,msg.src) ∗ 𝛼 = RecvS(msg) ∗msg.dst = 𝑠𝑎 ∗

sh ↩−→ 𝑠𝑎 ∗ 𝑠𝑎 { (𝑅 ∪ {msg},𝑇 ) ∗ (msg ∉ 𝑅 ⇒ 𝛷 msg))

〉

Fig. 2. The Fairneris Program Logic

Invariants and User Relation Refinement Properties. Fairneris like Trillium and Iris before

it makes use of separation logic invariants to determine global properties 𝑃
N
that hold in between

any step of execution. In separation logic invariants are primarily used for safely sharing otherwise

exclusive resources between threads. In Trillium, and thereby Fairneriswe can additionally leverage

the global properties enforced by the invariants to verify global (safety) properties about the user-

picked refinement relation 𝜉𝑈 . In particular, the user has to prove |∼≡⇛⊤AlwaysHolds(𝜉𝑈 ), which
allows opening all invariants, and discerning the state of the program and model via the available

separation logic resources, such as the local view of the user model state ◦𝛾M (𝑚).

FairnerisWeakest Precondition Rules. The weakest precondition of Fairneris captures that a

program is safe to execute, and that the program refines the user model. Following the principles of

Trillium, the role of the program logic is to prove an initial lockstep refinement; that the program

is in one-to-one correspondence with the model. The lockstep refinement is further refined into

the ≼𝜉𝑈 refinement yielded by the adequacy theorem, after the fact, as will be explained in §5.3.
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The proof of the weakest precondition mimicks the lockstep structure. At every step of the

program, we must (1) prove that the program step is safe to execute, and (2) that we can update the

model correspondingly. To achieve this reasoning principle we employ two constructions:

• The single-step weakest precondition (SSWP): wp
𝜁

E 𝑒 ⟨𝛷⟩
• The model update construction (MU): mu

𝜁 ;𝛼?

E 𝑃

The SSWP is inspired by the Fairis logic [34]. It captures that the expression 𝑒 is safe to execute for

one step, after which the predicate𝛷 holds for the resulting expression 𝑒′. In Fairneris it additionally

optionally emits any exhibited action 𝛼?. The MU is novel, and captures that the model is currently

out-of-sync with the program by one step. It is parametric in optional actions 𝛼?, which lets us

update the model based on the non-deterministic results of the SSWP, which we leverage when

resolving receives, which can either fail or succeed. The decomposition is imperative as it lets us

define and prove rules for each construction orthogonally of each other, ultimately avoiding rule

duplication. With the decomposition in place, we obtain the rules of Fairneris shown in Figure 2.

We often use the following syntactic sugar:

wp
𝜁

E 𝑒
{
𝑤.𝑄

}
≜ wp

𝜁

E 𝑒
{
𝜆𝑤.𝑄

}
wp

𝜁

E 𝑒
〈
𝑤 ;𝛼?.𝑄

〉
≜ wp

𝜁

E 𝑒
〈
𝜆(𝑤, 𝛼?). 𝑄

〉
wp

𝜁

E 𝑒
{
𝑄
}
≜ wp

𝜁

E 𝑒
{
𝜆𝑤.𝑤 = () ∗𝑄

}
wp

𝜁

E 𝑒 ⟨𝑤.𝑄⟩ ≜ wp
𝜁

E 𝑒
〈
𝜆(𝑤, 𝛼?). 𝛼? = ⊥ ∗𝑄

〉
mu

𝜁

E 𝑃 ≜ mu
𝜁 ;⊥
E 𝑃 wp

𝜁

E 𝑒 ⟨𝑄⟩ ≜ wp
𝜁

E 𝑒
〈
𝜆(𝑤, 𝛼?).𝑤 = () ∗ 𝛼? = ⊥ ∗𝑄

〉
The rules of Fairneris combine and extend the prior reasoning principles of Fairis [34] and

Aneris [20], with the action exhibiting behaviour. In particular, we borrow the ideas for handling

fuel from Fairis, while borrowing the ideas for reasoning about networks from Aneris.

The crux of the decomposition is the wp-step rule. The rule states that to prove a WP, we can

(1) prove a single step of the program via the SSWP, and (2) reestablish consistency with the

model via the MU, and (3) prove the rest of the program via the residual WP. The rule permits

opening invariants around the SSWP/MU step via the
E|∼≡⇛E′

before the SSWP and the
E′
|∼≡⇛E

after

the MU. This is crucial as the properties enforced by invariants might apply to both the safety proof

(governed by SSWP) and the corresponding model update (governed by MU).

The SSWP rules are directly inspired by Aneris, and are based on Aneris resources, extracted

from the initial network resources yielded by the adequacy theorem:

NetRes(𝐴) ≜ Unallocated(𝐴) ∗ Unbound(𝐴) ∗∗𝑠𝑎∈𝐴
sa { (∅, ∅)

Most notably, the sswp-send and sswp-recv rules have been instrumented to emit their respective

actions. The rules follow the Aneris structure, where resources𝛷 are only attached to the initial

message that is sent/received. We refer the interested reader to prior papers on Aneris [14, 20].

The MU rules are directly inspired by Fairis. The Mdl-step-fuel allow resolving non-model

(unlabeled) “stuttering” steps, by burning fuel for the respective locale 𝜁 . The Mdl-step-model allow

resolving model steps, where the model transition has to reflect the optional action of the MU.

That is, if the MU has a send label, then the model must take a send transition. If the MU does not

have a label, the model must take an unlabeled transition. This means any network transition of

the program must be reflected by the user model. While it is theoretically possible to extend the

system to support non-model network transitions, we deemed that the increased complexity was

not worth it. Finally, the wp-role-dealloc rule allow for deallocation of roles once they have no

transitions (and thus have concluded their lifetime), which is used to reach the post-condition of

terminating programs, such as node B of the retransmit example.
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The |∼≡⇛E modality is a variant of the |⇛E update modality covered in §2.3 which additionally

has access to the program state. It obeys all of the relevant rules of |⇛E , while also enabling the
allocation of Aneris “socket interpretations” via the Socket-interp-alloc rule, which was previously

only possible in the presence of weakest preconditions. Most notably, the modality allow us to

allocate socket interpretations at the start of a proof, which can then be added to the initial invariants

used in the adequacy theorem, or be shared by the individual weakest precondition subproofs.

3.3 Verification of Retransmit Example
With the Fairneris logic in hand, we can now verify the model refinement of the retransmit example.

We first prove the weakest preconditions of the individual nodes:

{𝐼retr ∗ 𝜁𝐴 Z⇒ {𝐴 := 42} ∗ Unbound(𝑠𝑎𝐴) ∗
sa𝐵 Z⇒ (_ =𝑚𝐴𝐵) ∗ 𝑠𝑎𝐴 { (∅, ∅) }𝜁𝐴 nodeA saA saB {𝜁𝐴 Z⇒ ∅}

{𝐼retr ∗ 𝜁𝐵 Z⇒ {𝐵 := 42} ∗ ◦𝛾𝐵 (Start) ∗ Unbound(𝑠𝑎𝐵) ∗
sa𝐵 Z⇒ (_ =𝑚𝐴𝐵) ∗ sa𝐴 Z⇒ (_ =𝑚𝐵𝐴) ∗ 𝑠𝑎𝐵 { (∅, ∅)}𝜁𝐵 nodeB saA saB {𝜁𝐵 Z⇒ ∅}

The proofs follow almost immediately from symbolic execution using the decomposition rules

and the SSWP rules of Fairneris. The auxiliary steps (such as the reduction of the while-loops) are

simply resolved via burning fuel. The model steps are resolved by opening the invariant to obtain

the model state resource, and then taking the corresponding transitions in the model. Finally, the

while loops are resolved using Löb induction, as is standard in step-indexed separation logics.

With the proven weakest preconditions, we can simply use the Fairneris adequacy theorem.

The theorem provides all of the necessary initial resources to satisfy the preconditions of the

WP proofs. The retransmit example does not rely on any user-picked refinement relation (thus

𝜉𝑈 (𝜎,𝑚) := True), and thereby AlwaysHolds(𝜉𝑈 ) is trivial.
We thus obtain the refinement ≼𝜉𝑈 between the distributed system and the retransmit model

show in Figure 1.

4 Case Study: Stenning Protocol
To demonstrate the expressive power of Fairneris, we implement the Stenning protocol [33], and

we verify the eventual progress of that implementation. The Stenning protocol is a reliable transfer

protocol, used to transmit a stream, in order, from one node (the sender) to another (the receiver).

The protocol uses a sliding window of 1, meaning that a new message is only sent once the prior

message is acknowledged. The sliding window is achieved using sequence and acknowledgement

ids for the sender and receiver, respectively. To focus on the liveness part of the verification effort,

we simplify the protocol by only transferring the sequence ids (with no payload), and to loop

endlessly. The property that we want to prove is thus that for any sequence id 𝑖 , the receiver

eventually sends an acknowledgement.

In this section we first cover the (simplified) Stenning protocol, its implementation in AnerisLang,

and the formal liveness property that we want to prove (§4.1). We then give a formal model of the

protocol and the corresponding liveness property in the model, and provide a paper proof of the

property (§4.2). We finally conclude the proof of the liveness property at the implementation level,

through a refinement between the implementation and the model via Fairneris (§4.3).

4.1 Stenning Protocol and its Implementation
The goal of the sender is to send the sequence 0, 1, 2, . . .. Since the network is unreliable, it waits

for an acknowledgment (ACK) for 𝑖 before sending 𝑖 + 1. In the sender side the situation is quite

simple: as long as it does not receive the ACK for the current number —either because it received
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stenningA saA saB =
let shA = new_socket saA in
socket_bind shA saA;
(rec f i =
send shA saB i;
match (recv shA) with
| None => f i
| Some m => if m.2 = saB

then
let j = m.1 in
if i = j
then f (i+1)
else f i

else
f i) 0

stenningB saB saA =
let shB = new_socket saB in
socket_bind shB saB;
(rec f j =
match (recv shB) with
| None => f j
| Some m => if m.2 = saA

then
let i = m.1 in
if j+1 = i
then send shB saA i; f i
else send shB saA j; f j

else
f j) -1

𝑚𝐴𝐵 𝑖 ≜ (𝑠𝑎𝐴, i, 𝑠𝑎𝐵) 𝑚𝐵𝐴 𝑗 ≜ (𝑠𝑎𝐵, j, 𝑠𝑎𝐴)

. . . i,⊤ i,⊥ i+1,⊤ i+1,⊥ . . .
𝐴 : Send(𝑚𝐴𝐵 𝑖)

𝐴 : Recv(−)

𝐴 : RecvS(𝑚𝐵𝐴 𝑖) 𝐴 : Send(𝑚𝐴𝐵 (𝑖+1))

𝐴 : Recv(−)

. . . j,⊤ j,⊥ j+1,⊤ j+1,⊥ . . .
𝐵 : Send(𝑚𝐵𝐴 𝑗)

𝐵 : Recv(−)

𝐵 : RecvF(𝑠𝑎𝐵)

𝐵 : RecvS(𝑚𝐴𝐵 ( 𝑗+1) 𝐵 : Send(𝑚𝐵𝐴 ( 𝑗+1))

𝐵 : Recv(−)

𝐵 : RecvF(𝑠𝑎𝐵)

Fig. 3. The implementation and model of the Stenning protocol

one for the wrong id or because it received nothing after a timeout— it sends the current id again.

If it receives the right ACK, it proceeds to send the next number. The receiver is almost dual to the

sender: it repeatedly sends an ACK for the highest id 𝑗 it has received yet. When it receives the

next id, 𝑗 + 1, it sends an ACK and continues. The subtlety is that it only resends an ACK when it

receives an outdated message (whose id is ≤ 𝑗 ). This way, the number of ACKs sent is much lower.

The implementation of the Stenning protocol is shown in Figure 3.

Similar to the retransmission example, the Stenning protocol only makes progress when we

consider fair scheduling and a fair network. Formally, the property that we want to prove is:

For all executions ex of Σsten, ex ⊨
(
SchedFair ∧ NetFair

)
⇒ (∀𝑖 . F Send(mBA i))

4.2 Stenning Protocol Model, Liveness Property, and Proof
To formally model the Stenning protocol we model the sender and receiver individually, and

construct the user model as the cartesian product of the two. The individual models can be found

in Figure 3. We model the state of the sender as its current sequence id 𝑖 , and whether it is in

sending (⊤) or receiving (⊥) state. Similarly, we model the state of the receiver as its current

acknowledgement id 𝑗 , and whether it is in sending (⊤) or receiving (⊥) state. The initial state of
the model is ((0,⊤), (−1,⊥)).

The model transitions directly correspond to the transitions of the protocol. For example, when

the sender in state (𝑖,⊥) receives the expected acknowledgement 𝑖 , it transitions to (𝑖 + 1,⊤).
Conversely, when the receiver in state ( 𝑗,⊥) receives the expected sequence id 𝑗 +1, it transitions to
( 𝑗 + 1,⊤). We use Recv(−) to denote wildcard receive transitions matching any uncovered receive

transition.
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A caveat of this model is that it does not rule out invalid states, where the sender and receiver

are out of sync; i.e. where the sequence id and acknowledgement id are more than one apart, this is

because user models do not give any semantics to the send and receive labels they carry. Traces that

reach these invalid states do not, in general, satisfy the liveness property we want, we therefore

need to rule them out. To do so, we need an additional assumption

For all trace utr ofMsten, utr ⊨ G(𝑖 = 𝑗 ∨ 𝑖 + 1 = 𝑗) (At-Most-One-Off)

This assumption needs not be trusted: we will prove using the program logic that any execution of

the program in Figure 3 refines a trace ofUsten that satisfies (At-Most-One-Off). In summary, we

prove the following property about the model Usten

Lemma 4.1. For all trace utr of Msten,

utr ⊨
(
ModSchedFair ∧ModNetFair ∧ At-Most-One-Off

)
⇒ (∀𝑖 . F Send(mBA i)) .

With the assumptions and model in hand, proof of the liveness property can be carried out. We

only sketch the first case, to show how the safety property is crucial in the proof.

Proof. Suppose the current state satisfies 𝑖 + 1 = 𝑗 , as for the initial state. Let us show that

eventually 𝑗 is incremented by exactly one. According to (At-Most-One-Off) and because there are

no transitions that either decrease the values of 𝑖 or 𝑗 , or increase both of them, there are two cases:

either 𝑗 is incremented by one (and we conclude), or the values of 𝑖 and 𝑗 stay constant forever. In

that case, it is easy to see that, according to (ModSchedFair), the message 𝑖 is sent infinitely often,

and 𝐵 receives infinitely often. We can also conclude, as (ModNetFair) implies that the transition

receiving 𝑖 must be eventually be taken, increasing 𝑗 . We therefore reach a state where 𝑖 = 𝑗 , and

we can prove that 𝑖 eventually increases by a similar, if slightly more involved, argument. □

4.3 Stenning Protocol Refinement in Fairneris
To transport the liveness property for the model to the implementation, we need to prove a refine-

ment between them,with a user-picked refinement relation that lets us derive the (At-Most-One-Off)

safety property for the model trace. We achieve both of these via the Fairneris program logic. In

particular, we first pick a refinement relation that lets us derive the At-Most-One-Off property:

𝜉sten (_, ((𝑖, 𝑠𝑡𝐴), ( 𝑗, 𝑠𝑡𝐵))) ≜ (𝑖 = 𝑗 ∨ 𝑖 + 1 = 𝑗)

Since the first argument is not used here, this amounts to the fact that 𝑖 = 𝑗 ∨ 𝑖 = 𝑗 − 1 is an

invariant of the model trace, which is precisely (At-Most-One-Off).

We then pick an invariant that subsumes this relational property:

𝐼sten ≜ ∃𝑖, 𝑠𝑡𝐴, 𝑗, 𝑠𝑡𝐵. ◦𝛾M ((𝑖, 𝑠𝑡𝐴), ( 𝑗, 𝑠𝑡𝐵)) ∗ •𝛾𝐴 (𝑠𝑡𝐴) ∗ •𝛾𝐵 (𝑠𝑡𝐵) ∗
•𝛾𝑖 (𝑖) ∗ •𝛾 𝑗 ( 𝑗) ∗ (𝑖 = 𝑗 ∨ 𝑖 + 1 = 𝑗)

Similar to the retransmit example, the invariant owns the model state via ◦𝛾M ((𝑖, 𝑠𝑡𝐴), ( 𝑗, 𝑠𝑡𝐵)),
and exposes the individual parts of the state via the remaining ghost state. Finally, the invariant

directly enforces the 𝜉sten refinement relation. What remains to be done is to prove the weakest

preconditions of the sender and receiver in the presence of the invariant, and to apply the Fairneris

adequacy theorem.

The crux of verifying the Stenning implementation using this invariant is to appropriately

delegate the local views of the state between the sender and receiver, so that they can adequately

make progress, while preserving the synchronicity property. Notably, the sender and receiver need

to deduce that any increment to their counter does not invalidate the invariant. They thus need
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a part of the view of the other participant, whenever they are about to make progress. This is

achieved via so-called fractional ownership, which has the following rules:

own-frac-split

◦𝛾 (𝑚) ⊣⊢ ◦1/2𝛾 (𝑚) ∗ ◦1/2𝛾 (𝑚)
own-frac-agree

◦1/2𝛾 (𝑚) ∗ ◦1/2𝛾 (𝑚′) ⊢𝑚 =𝑚′

That is, we can split the local view in two, and unify values between them. With this we can enforce

that the sender and receiver “take turns” incrementing their respective part of the state, effectively

enforcing the (At-Most-One-Off) property. In particular, we let the current node borrow half of the

other node’s local view in order to make progress. When it has incremented its counter, it “yields”

the progress permission by sending its borrowed local view along with half of its own view when

sending a fresh sequence/acknowledgement id. We can achieve this delegation of the resources via

the Aneris socket interpretation, using the following protocols:

𝛷𝐴 msg ≜ ◦1/2𝛾𝑖 (msg.str) ∗ ◦1/2𝛾 𝑗 (msg.str)

𝛷𝐵 msg ≜ ◦1/2𝛾𝑖 (msg.str) ∗ ◦1/2𝛾 𝑗 (msg.str − 1)

Note that the fractional ownership prohibits one from updating the ownership in the invariant.

With the invariant and socket interpretations we only need to prove the following weakest

preconditions (presented as Hoare triples):

{𝐼sten ∗ sa𝐴 Z⇒ 𝛷A ∗ sa𝐵 Z⇒ 𝛷B ∗ 𝑠𝑎𝐴 { (∅, ∅) ∗ Unbound(𝑠𝑎𝐴) ∗
𝜁𝐴 Z⇒ {𝐴 := 42} ∗ ◦𝛾𝑖 (0) ∗ ◦

1/2
𝛾 𝑗 (−1) ∗ ◦𝛾𝐴 (⊤) }𝜁𝐴 stenningA saA saB {𝜁𝐴 Z⇒ ∅}

{𝐼sten ∗ sa𝐴 Z⇒ 𝛷𝐴 ∗ sa𝐵 Z⇒ 𝛷𝐵 ∗ 𝑠𝑎𝐵 { (∅, ∅) ∗ Unbound(𝑠𝑎𝐵) ∗
𝜁𝐵 Z⇒ {𝐵 := 42} ∗ ◦1/2𝛾 𝑗 (−1) ∗ ◦𝛾𝐵 (⊥) }𝜁𝐵 stenningB saA saB {𝜁𝐵 Z⇒ ∅}

The proof of the weakest preconditions are relatively straightforward, and mostly follows symbolic

execution. The primary proof effort is to consolidate the fractional views to unify and update the

model state at the appropriate times, to stay consistent with the invariant.

With the weakest preconditions in hand, we can finally apply the adequacy theorem. As for

the retransmit example, we can allocate all the necessary ghost state up front, and use it when

allocating the invariant. From this, it is trivial to observe that the assumptions of the weakest

preconditions follow directly from the initial resources of the adequacy theorem.

With the refinement and the AlwaysHolds property in hand, along with the proof of the liveness

property at the model level, we can derive the liveness property for the implementation of the

Stenning protocol, completing the proof.

5 Inner Workings of Fairneris
This section explains how the Fairneris logic is constructed, and how its adequacy theorem is

established. As such, it is the most technical section of the paper, and is not necessary to read to

understand how Fairneris is used.
The adequacy theorem of Fairneris, Theorem 3.1 establishes that given any trace ex of the

program, we obtain a trace utr in the user modelU such that ex ≼𝜉𝑈 utr . As we briefly explained in
§1 the trace utr is not constructed directly. Rather, the program logic, behind the scene, constructs

a trace ftr in the model Fuel(U ⋉Net), and then extracts utr out of ftr . Below, we will first explain
the details of the construct Fuel(U ⋉Net) and how the trace utr is obtained from ftr . Afterwards,
we explain how the program logic of Fairneris constructs the trace ftr . While we keep these

explanation self-contained, we will mainly focus on the innovations that were necessary for this

process compared to Fairis and the Trillium framework.
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5.1 Obtaining User Model Trace
Recall the user model of the retransmit example in Figure 1 from §2. The transitions in user models

are annotatedwith two pieces of information a role and a an action. (In general, user model transition

could also only have a role and no action corresponding to state changes that do not correspond to

any network action.) These two pieces of information, roles and actions, are respectively there to

facilitate hiding details of the scheduler and those of the network, respectively. To better understand,

and appreciate the subtlety of obtaining a trace in U from a trace of Fuel(U ⋉Net), let us first for
now ignore the Fuel construction and focus on the difference between traces of U ⋉Net andU.

The Subtle Relation Between Traces of U ⋉ Net and U. Let use consider a very simple

program consisting of two nodes each with a single thread where one performs a single send
operation and the other performs a single recv operation. This distributed program obviously

terminates after performing exactly one send and one receive operation (which may fail or succeed).

Let us consider the following simple user model for this distributed program:

Start

SR

RS

End

𝐴 : Se
nd(msg)

𝐵 : RecvF(𝑠𝑎𝐵)

𝐵 : RecvF(𝑠𝑎𝐵)

𝐵 : RecvS(msg)

𝐴 : Sen
d(msg)

msg ≜ (𝑠𝑎𝐴, "x", 𝑠𝑎𝐵)

As expected, the use model above has finitely many traces with the maximum length of two.

However, the model Net, and therefore also U ⋉ Net, has infinitely many states and infinitely

many traces of arbitrary length including infinite traces. This is because Net must reflect all the

non-deterministic behavior of the network. Below, are a few of these traces (we omit states):

·
Send(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

RecvS(msg)
−−−−−−−−→ · (1)

·
Send(msg)
−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

RecvS(msg)
−−−−−−−−→ · (2)

·
Send(msg)
−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

Drop(msg)
−−−−−−−→ ·

RecvS(msg)
−−−−−−−−→ · (3)

·
Send(msg)
−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

RecvS(msg)
−−−−−−−−→ ·

Drop(msg)
−−−−−−−→ · (4)

·
Send(msg)
−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

RecvS(msg)
−−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Deliver(msg)
−−−−−−−−→ ·

Dup(msg)
−−−−−−−→ ·

Drop(msg)
−−−−−−−→ · · · (5)

In fact all of these traces correspond to the following U trace:

Start

Send(msg)
−−−−−−−→ SR

RecvS(msg)
−−−−−−−−→ End (6)

Observe the difference between the U trace (6) and traces (1–5). The difference is in actions

performed by the network (no program involvement): dropping, delivering, and duplicating msg.
We call these system actions. There are two kinds of system actions: relevant ones, those after

which there is a program step, and irrelevant ones, those that appear at the end of the trace. In (1),

(2), and (3) all system actions are relevant while in (4) and (5) the system actions that happen after

RecvS(msg) are irrelevant; infinitely many in case of (5).

Refinement Tower. The refinement between a program execution ex and a trace utr of the
user model U is defined in several steps, which are depicted in Figure 4. Going bottom up, the

Trillium adequacy theorem ensures there is a lockstep forward simulation between the program

execution ex and a trace ftr of Fuel(U ⋉Net), where the Fuel-construction, described in Fairis [34],

provides finite stuttering and scheduler fairness preservation, in the sense that if ex is fair (w.r.t.

thread ids), then ftr is fair w.r.t. roles. This step will be discussed in §5.4.

Removing finite stutter from ftr yields a trace jtr of the “joint model” U ⋉ Net. Extracting a

trace utr of the user modelU from jtr is done in two steps: first the trailing network step (irrelevant

system actions) are removed in a process we call trimming, resulting in a trace ttr of U ⋉ Net.
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user trace utr
≼st

trimmed user + network trace ttr
≼trim

user + network trace jtr
≼st

fuel-instrumented user + network trace ftr
≼lockstep

program execution ex

T
r
i
l
l
i
u
m

F
a
i
r
n
e
r
i
s

Fig. 4. The trace refinements involved in Fairneris

Finally, the resulting trimmed trace ttr is projected onto U, yielding the user model trace utr , that
the user can use to reason about the distributed system — during this step we also remove all the

relevant system actions.

The important properties of all these refinements is that:

(i) They preserve (scheduler and network) fairness in the upward direction (according to

Figure 4) so that if the execution ex is fair, then so is utr , and
(ii) They all downwards-preserve liveness properties of interest, such as LTL formulas of the

form F𝑃 , where 𝑃 only depends on the current network action.

For example, this allows us to conclude that the program of Figure 1 eventually sends the "done!"

message from the fact that the model does.

Here, we describe the two types of refinement that are involved in the light pink region of

Figure 4 (the outer square), and how they are obtained in a generic way without any additional

proof burden on the user.

Trimming Refinement. The traces we consider contain both transitions coming from the

user modelU and transitions coming from the network model Net. The first step to extract the

underling user trace is to remove all trailing network steps, a process we call trimming. The reason
is that, in a trimmed trace, there are necessarily finitely many network transitions before the next

user transition. This allows us to define a productive function that removes network transitions, as

described below.

Among the three kinds of refinement we use, trimming is the worst-behaved with respect to

preservation of properties, as it is very asymmetric. For example, if tr1 ≼trim tr2, and if tr2 ⊩ F𝑃 ,
then tr1 ⊩ F𝑃 , but the converse is false. However, this property is sufficient for property (ii) above.

Fairness preservation is proved with an ad-hoc reasoning which depends on the nature of the

atomic predicates involved.

Stutter Refinement. According to the standard definition, the trace 𝑡1 stutter-refines 𝑡2 if 𝑡2 can
be obtained from 𝑡1 by removing finite stutter, where a finite stutter is a finite sequence of repeated

states. For instance, the sequence 122333 · · · stutter-refines 123 · · · . In our setting however, where

the two traces are equipped with states and labels of different nature, the definition sketched above

is not applicable. Our solution is to consider a heterogeneous notion of stutter-equivalence, between

traces with different states 𝑆1, 𝑆2 and labels 𝐿1, 𝐿2. This notion of refinement is parameterized by a

map 𝜋𝑆 : 𝑆1 → 𝑆2 between states and a partial map 𝜋𝐿 : 𝐿1 ⇀ 𝐿2 between labels. The idea is that a

step 𝑠1
ℓ−→ 𝑠′

1
in a trace 𝑡1 is a stutter step iff 𝜋𝑆 (𝑠1) = 𝜋𝑆 (𝑠2) and if 𝜋𝐿 (ℓ) is not defined. Formally, it
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is defined as follows, where only the rightmost rule can be used infinitely many times in a row.
3

𝜋𝑆 (𝑠1 ) = 𝑠2

⟨𝑠1 ⟩ ≼st ⟨𝑠2 ⟩

𝜋𝑆 (𝑠1 ) = 𝜋𝑆 (hd(𝑡1 ) ) = hd(𝑡2 ) 𝜋𝐿 (ℓ1 ) = ⊥ 𝑡1 ≼st 𝑡2

𝑠1
ℓ1−→ 𝑡1 ≼st 𝑡2

𝜋𝑆 (𝑠1 ) = 𝑠2 𝜋𝐿 (ℓ1 ) = ℓ2 𝑡1 ≼st 𝑡2

𝑠1
ℓ1−→ 𝑡1 ≼st 𝑠2

ℓ2−→ 𝑡2

In practice, we only have the trace 𝑡1 and we wish to obtain a trace 𝑡2 such that 𝑡1 ≼st 𝑡2. This
is possible when the set of traces with states in 𝑆1 and labels in 𝐿1 is equipped with a “potential”

function Ψ : Trace(𝑆1, 𝐿1) → N that decreases along stutter transitions.

We use this technique twice: once for removing the fuel instrumentation, as in Fairis, and once

for obtaining the user trace from the trimmed trace ttr . In the latter case, network transitions are

the stutter transitions, as they cannot modify the user state — see the construction of U ⋉ Net
explained below. To define the potential Ψ, we rely on the fact that the traces we consider are

trimmed and satisfy scheduling fairness, which means that there can only be finitely many network

transitions in a row. Thus, we define Ψ(ttr) to be the number of network transitions before the

first program step.

To reason about property preservation along stutter refinement, we defined the predicate

𝑃 ∼st 𝑄 ⇐⇒ ∀tr1, tr2 . tr1 ≼st tr2 ⇒ (tr1 ⊩ 𝑃 ⇔ tr2 ⊩ 𝑄)
which, intuitively, states that 𝑃 corresponds to𝑄 when going through a stutter refinement in either

direction. It is a congruence with respect to LTL modalities we use for example, 𝑃 ∼st 𝑄 implies

F𝑃 ∼st F𝑄 , and G𝑃 ∼st G𝑄 . However, for point predicates 𝑃 and 𝑄 , for example those which only

depend on the current label of the trace, it is not obvious how to relate them under ∼st . Nevertheless,

the F modality alleviates this issue because we can show the following:

(∀ℓ, 𝑃 (ℓ) ⇔ (𝜋𝐿 (ℓ) ≠ ⊥ ∧𝑄 (𝜋𝐿 (ℓ)))) =⇒ F𝑃 ∼st F𝑄

As it turns out, this simpler result is sufficient to prove the properties (i) and (ii) for ≼st .

5.2 Concrete Operational Semantics of Distributed Systems
The Trillium framework [34], just like the Iris framework it is based on does not fix the programming

language — hence, both Fairis and Fairneris can be constructed on top of it. In practice, this means

that the Trillium framework introduces its own notion what a programming language is. This

allows instantiations to instantiate Trillium by constructing an instance of this notion. In this work,

we have made a simple adjustment to this notion of a programming language: we have introduced

actions. This simple addition allows us to appropriately abstract network’s behavior as we will

discuss below.

A programming language for Trillium is defined fixing a set of terms, Term, a set of states, State,
a set of locales, Locale, a set of user actions, Usract, and a set of system actions, Sysact, together
with the following two relations for program steps and system steps:

−→prg ⊆ (Term × State) × Usract? × (Term × State × Term★)
−→sys ⊆ State × Sysact × State

Terms are program expressions (AnerisLang expressions in case of AnerisLang). States describe

the state of the entire system (for AnerisLang: a memory heap and a map of socket handles for

each node, together with a so-called message soup of messages in transit). Locales are conceptual

locations where programs run (a pair of an IP address together with a thread id for AnerisLang). A

tuple (𝑒, 𝜎, 𝛼?, 𝑒′, 𝜎 ′, ®𝑒𝑓 ) ∈ −→prg describes a single step of the program reducing the term 𝑒 to the

term 𝑒′ and updating the state from 𝜎 to 𝜎 ′ while forking threads in the sequence ®𝑒𝑓 of expressions
— in AnerisLang ®𝑒𝑓 is only non-empty for the fork operation. The 𝛼 label is optional (denoted by

3
This definition should be understood as an inductive relation nested in a co-inductive relation.
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?), to allow for internal transitions of the program, which do not involve the network. A tuple

(𝜎, 𝛽, 𝜎 ′) ∈ −→sys describes systems’ autonomous updates; dropping, delivering, or duplicating

in-transit messages in AnerisLang.

Based on these, Trillium defines so-called configurations as a pair of a thread pool (a mapping

from locales to terms) and a state, Cfg ≜ ThPool × State, and defines a global step relation

−→glob ⊆ Cfg × ((Locale × Usract?) ∪ Sysact) × Cfg

The relation −→glob is defined by non-deterministically picking a locale and running it for one step, or

by non-deterministically picking a system step. This describes all behaviors of the system including

fair and unfair behaviors of the scheduler and the network.

For AnerisLang, the program steps and system steps are defined in the standard way for an

OCaml-like programming language with UDP-like networking primitive that it is [20]. Here, we

only describe the state in AnerisLang as it is relevant to the discussion in this paper. See Krogh-

Jespersen et al. [20] for more details. In AnerisLang, the global state of a distributed system is of the

form ((S,M),H), whereH is a map associating each node ip ∈ Ipwith a program heap ℎ = H(ip).
The message soupM is a multiset of messages in transit. The socket state map S is a mapping from

IP addresses to local socket state 𝑆 , which itself is a map from socket handlers to pairs (skt, buf ) of the
receive buffer buf , and the socket itself skt, which contains the socket address skt .sa. Additionally,
there are some well-formedness conditions, for example: S[ip] = 𝑆 and 𝑆 [sh] = (skt, buf ) imply

that the IP address of the socket address of skt is equal to ip.

5.3 Model Abstraction for Network Traces
Fairneris adequacy, Theorem 3.1, states the existence of a refinement between fair executions of the

distributed system and traces of the user provided model U. As we will see in §5.4, the adequacy

theorem of the underlying Trillium logic constructs a refinement between the distributed system

and a more complicated model, that contains both the user model U and an abstract description of

the network. This section explains how this abstract network is combined with the user modelU,

and how the refinement ≼𝜉𝑈 is defined.

Synchronized Product. The global model we use is the combination (obtained using the

operation ⋉) of the user model, chosen by the user, and the network model, which is fixed. For the

sake clarity, we first explain how operation ⋉ is defined in general for an arbitrary instantiation of

Trillium. That is, we define the composition of a user model with a system model, which abstracts

the system from the previous section. The two notions of model differ slightly, in that only user

models keep track of roles, as the fairness of the network and of the scheduler are of different

nature.

Definition 5.1 (Enviroment model). Consider a Trillium language instantiation with set of states

State and set of system actions Sysact. A system model is a LTS N labeled Sysact, together with a

relation

env_match ⊆ State × N
and a map

appSys : N → Sysact → N
The relation env_match expresses that the concrete state of the system 𝜎 ∈ State, refines an
abstract state 𝑛 ∈ N . The appSys specifies how the system state evolves when the system makes

an autonomous action, i.e., it reflects the relation −→sys. The above data also needs to satisfy some

properties which we elude here.
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The purpose of the appSys function is to preserve the refinement env_match between the

distributed system and the abstract model when the network takes an autonomous step. This

function is fixed because system steps are not under the control of the program, and so should be

invisible to the user of the logic. A user model is essentially an LTS with specific labels:

Definition 5.2 (User model). Given a Trillium language instantiation with set of user actions

Usract, a user model U is the data of a set role of roles, together with an LTS N labeled with pairs

(𝜌, 𝛼?) ∈ role × Usract?.

The motivation for these two definitions is that we can combine them together to yield a model

that can be “tightly” refined by a distributed system, in the sense that their states are related by a

concrete relation that is amenable to be prove refinements with respect to using a program logic

such as Trillium.

Definition 5.3. Given a user modelU and a system model N over the same Trillium language

instantiation, their synchronized product U ⋉N is an LTS labeled with (role× (Usract?)) ∪ Sysact,
whose states are pairs (𝑚,𝑛) of states of U and of N , respectively, together with the following

transitions:

𝑚1

(𝜌,⊥)
−−−−→𝑚2

(𝑚1, 𝑛)
(𝜌,⊥)
−−−−→ (𝑚2, 𝑛)

𝑚1

(𝜌,𝛼 )
−−−−→𝑚2 𝑛1

𝛼−→ 𝑛2

(𝑚1, 𝑛1 )
(𝜌,𝛼 )
−−−−→ (𝑚2, 𝑛2 )

𝑛1
𝛽
−→ 𝑛2

(𝑚,𝑛1 )
𝛽
−→ (𝑚,𝑛2 )

They correspond, respectively, to a step of the user model without any actions, a step of the user

model that has an action which triggers a step in the system model, and an autonomous step of the

system.

In summary, internal program steps, i.e.when the action is not present,𝛼? = ⊥, do not synchronize
with the system, and neither do the autonomous system steps with the program. The two sides

synchronize through the program actions, which correspond to both a program step and a system

step.

5.3.1 The Abstract Network Model. In Fairneris, we instantiate the system model with the

network model Net. This network model is more abstract than the one used in the operational

semantics of AnerisLang, as it eschews socket handlers. The states (sm,M) of Net are simply

maps sm from socket addresses to lists of messages, representing the receive buffers, as well as the

global message soupM. The labels are the system actions of AnerisLang, described in §5.2. The

transitions of this LTS are defined in a very similar way as the low-level network semantics. Thus,

we omit them in the paper. The appSys function is defined in the obvious way, for example the

case of message deliveries is the following:

appSys((sm,M),Deliver(msg)) = (sm[𝑠𝑎 := msg::sm[sa]],M \ {msg})
where sa is the destination socket address of msg, the message being delivered, and :: is the cons
operation on lists.

To build the refinement between the program and the model, we maintain a relationship

env_match between the two representations of the network: an AnerisLang network (S,M′)
refines a model network (sm,M′) when

M = M′
(7)

S[ip] = 𝑆 ∧ 𝑆 [sh] = (skt, buf ) =⇒ sm[skt .sa] = buf (8)

sm[sa] = buf =⇒ ∃sh, skt . S[ip] [sh] = (skt, buf ) ∧ skt .sa = sa (9)

Intuitively, the message soups have to match exactly, and the receive buffers have to contain the

same messages. Note that there could be an empty receive buffer in the AnerisLang network state



M

A
N
U
S
C
R
IP
T

22 Hinrichsen + Stefanesco, Timany, Birkedal

that is not allocated at all in the model network state, this allows −→prg transitions such as creating

a new socket to not be reflected in the abstract model.

5.4 Model of the Logic
We conclude this section with a discussion of how the Fairneris logic is defined. First we explain

the concept of trace interpretation [34] and define that of Fairneris. This allows us to explicate the

definitions of the predicateswpE 𝑒 ⟨𝛷⟩ andmu
𝜁 ;𝛼?

E , that were explained in §3, and which manipulate

this trace interpretation. Finally, we sketch how the first refinement in Figure 4 is obtained using

the Trillium logic.

Trace Interpretation. The general weakest precondition of Trillium is parameterized by a

so-called trace interpretation predicate, an Iris predicate relating traces of the program to the traces

of the model. (This is a generalization of what Iris calls a state interpretation.) We write 𝑆 (𝜏, 𝜅).
In our instantiation of Trillium with AnerisLang, the arguments 𝜏 and 𝜅 are respectively, a finite

execution of the program (a sequence of Cfg’s to be more precise), and a finite trace of the global

model Fuel(U ⋉Net). These are the histories of the program and of the model, and are intuitively

prefixes of the full executions ex and user model traces utr we considered above. Intuitively, 𝑆 (𝜏, 𝜅)
states that the current state of the program is last (𝜏), the current state of the model is last (𝜅), and
that they match, in the sense determined by the person instantiating Trillium who picks the trace

interpretation relation. Note that, since Trillium is designed to build lockstep simulations, the two

histories 𝜏 and 𝜅 must always have the same length. For the Fairneris instantiation of Trillium, the

trace interpretation is defined as follows:

𝑆 (𝜏, 𝜅) ≔ traces_match(𝜏, 𝜅) ∗ aneris_interp(𝜏) ∗ model_interp(last (𝜏), last (𝜅))

where aneris_interp is the existing Aneris state/trace interpretation, reflecting the state of node

heaps, sockets, and the message soup in Iris resources. The traces_match predicate is a straightfor-

ward modification of that same predicate from Fairis, adding support for actions in the operational

semantics of the programming language and in the model. Here, traces_match also adds the re-

quirement that actions must match exactly in the two traces, allowing us to transport knowledge

about the network actions back-and-forth between the distributed system and the abstract model

(U ⋉Net). Finally, the relation model_interp((tp, 𝜎), �̃�) asserts that the current state of the model

is �̃�, and that it is well-formed. The state �̃� ∈ Fuel(U ⋉Net) can be decomposed into three parts,

that are each treated differently:

• The fuel instrumentation is handled as in Fairis [34]

• The state m of the user modelU is owned by the predicate 𝑆4

• The network part n ∈ Net is novel: the trace interpretation 𝑆 asserts env_match(𝜎, n) holds.

The Single Step Weakest Precondition. One of the main innovation of Fairneris over Fairis

in terms of their program logics is the logical rules governing the single step weakest precondition
wpE 𝑒 ⟨𝛷⟩ (abbreviated SSWP), which was introduced by Fairis, and its companion, the model

update mu
𝜁 ;𝛼?

E , which we have introduced in this paper. In Fairis[34], SSWP was intuitively defined

as follows: during a single step of the program, given the current trace interpretation 𝑆 (𝜏, 𝜅), we
can update the ghost state in such a way that the trace interpretation for the extended histories

𝑆 (𝜏
𝜁
−−→ (tp′, 𝜎 ′), 𝜅 ℓ−→𝑚′)holds. As such, logically, and in terms of user experience, updating the

ghost state for the program and for the model M had to be done at the same time.

4
For readers familiar with Iris, 𝑆 asserts ownership of the authoritative part of the resource algebra Auth(Ex(U) )
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Trillium SSWP

wpE 𝑒 ⟨𝛷⟩ ≜
(
𝑒 ∉ Val ∗ ∀𝜏, 𝜅, 𝜎, 𝐾, tp. last (𝜏) = (tp[𝜁 ↦→ 𝐾 [𝑒]], 𝜎) ∗ 𝑆 (𝜏, 𝜅) −∗ |⇛E ∅

reducible(𝑒, 𝜎) ∗ ⊲∀𝛼?, 𝑒′, 𝜎 ′, ®𝑒. (𝑒, 𝜎) 𝛼?

−−→prg (𝑒′, 𝜎 ′; ®𝑒) −∗ |⇛∅ E

𝑆 ′ (𝜏 (𝜁 , 𝛼?)−−−−→ (tp[𝜁 ↦→ 𝐾 [𝑒′]], 𝜎 ′), 𝜅, 𝜁 , 𝛼?) ∗𝛷 (𝑒′, 𝛼?) ∗ ®𝑒 = 𝜖
)

Trillium Model Update

mu
𝜁 ;𝛼?

E 𝑃 ≜
(
∀𝜏, 𝜅. 𝑆 ′ (𝜏, 𝜅, 𝜁 , 𝛼?) −∗ |⇛E E ∃m ∈ M, 𝜌 . last (𝜅) 𝜌−→ m ∗ 𝑆 (𝜏, 𝜅 𝜌−→ m) ∗ 𝑃

)
System weakest precondition

system_wp ≜ ∀𝜏, 𝜅, 𝛽, tp, 𝜎 . last (𝜏)
𝛽
−→sys (tp, 𝜎) ∗ 𝑆 (𝜏, 𝜅) −∗ |⇛⊤ ⊤∃m, ℓ . 𝑆 (𝜏 𝛽−→ (tp, 𝜎), 𝜅 ℓ−→ m)

Fig. 5. Definitions of basic constructs

The new definition of the SSWP, and that of model update, given in Figure 5, decouple these two

concerns. Here, make use of a so-called torn trace interpretation 𝑆 ′ (𝜏, 𝜅, 𝜁 , 𝛼?), which expresses that

the program history 𝜏 is one step ahead of the model history 𝜅 , for a step that is labeled by (𝜁 , 𝛼?).
Formally, it is defined as:

𝑆 ′ (𝜏, 𝜅, 𝜁 , 𝛼?) ≜ ∃𝜏 ′, tp, 𝜎 . 𝜏 = 𝜏 ′
(𝜁 ,𝛼? )
−−−−−−→ (tp, 𝜎) ∗

traces_match(𝜏 ′, 𝜅) ∗ aneris_interp(𝜏 ′) ∗ model_interp(last (𝜏 ′), last (𝜅))

The Aneris part of the ghost state corresponds to extended trace 𝜏 of the program, whereas the

current model history corresponds to the immediate prefix 𝜏 ′ of the program history. Thus, the

SSWP moves the program execution by one step, tearing the relationship between the traces of the

program and the the model. The model update then moves the model trace one step so that they

match again. This explains the inference rule wp-step, which decomposes a weakest precondition

into (1) an SSWP handling the next step of the program, (2) a model update handling the next

step of the model, and (3) a weakest precondition handling the remainder of the steps of both the

program and the model.

The SystemWeakest Precondition. The intuitive reason wp 𝑒
{
𝛷
}
guarantees safety of the

program 𝑒 is that it states that every step of the program is safe, in the sense that the program

should not crash (should not get stuck), and that it preserves the trace interpretation. In the case of

distributed systems that is not enough, as the network also takes autonomous steps. These steps
need to not only should not cause a crash, but they must also preserve the trace interpretation.

The solution in Trillium [34] was to introduce the system weakest precondition (system WP),

which simply states that all steps 𝜎 −→sys 𝜎
′
of the network preserve the trace interpretation, as

shown in Figure 5. Unlike weakest preconditions that are proved by the users of a program logic

like Fairneris based on the Trillium framework, the system WP is proved once and for all by the

person instantiating Trillium, and does not appear at all to the user.

In the case of Fairneris this step is more difficult than for the previous Aneris instantiation of

Trillium by Timany et al. [34], as we additionally need to prove that each network step refines the

corresponding step in the abstract network model Net. This is one of the places the gap between

the concrete network and abstract model of the network needs to be bridged, by proving that

properties (7–9) are preserved.
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Fairneris (this work) Aneris [20] Disel [30] Grove [31] Igloo [32] IronFleet [16] Verdi [35]

Higher-Order ✓ ✓ ✓ ✓ ✓ ✓ ✗
Concurrency ✓ ✓ ✗ ✓ ✓ ✗ ✗

Safety properties ✓ ✓ ✓ ✓ ✓ ✓ ✓
Liveness properties ✓ ✗ ✗ ✗ ✗ ✓∗ ✗

Refinement-based ✓ ✓† ✗ ✗ ✓ ✓ ✗‡

Foundational ✓ ✓ ✓ ✓ ✗§ ✗ ✓¶

Crash Recovery &

Reconfiguration
✗ ✗ ✗ ✓ ✗ ✗ ✗

∗
Requires a special program shape: a main event loop.

†
The version by Timany et al. [34] is refinement-based; albeit only for safety properties.

‡
Refinement between programs; initially programs are written against an idealized network model and then automatically refined to

programs that assume a less reliable network model.

§
Meta theory proven correct in the Isabelle proof assistant [1]; programs proven correct in Verifast [18] and Negini [12].

¶
Relies on a not-so-small shim to run programs written in Verdi’s DSL.

Table 1. Comparison of different approaches to reasoning about distributed systems’ implementations.

The Lockstep Refinement Using Trillium. Fairneris is based on Trillium[34], and thus inherits

its weakest precondition wp
𝜁

E 𝑒
{
𝛷
}
. The first step of the proof of Fairneris adequacy (Theorem 3.1)

is to apply Trillium’s adequacy, Theorem 5.4. Below, we will present and explain this theorem and

sketch how it is used in proving the adequacy theorem of Fairneris.

Theorem 5.4 (Trillium adeqacy). Let 𝑒 be a program, 𝜎 a program state, 𝜁 the locale of 𝑒 , and𝛷
an Iris predicate on values. Letm ∈ M be a model state and 𝜉 a relation on finite traces of the program
and the model. Let ({𝜁 ↦→ 𝑒} , 𝜎) be the initial configuration of the program. If 𝜉 (({𝜁 ↦→ 𝑒} , 𝜎),m)
holds for the initial singleton traces, and furthermore we have

|⇛⊤ 𝑆 (𝑐,m) ∗ wp𝜁⊤ 𝑒
{
𝛷
}
∗ AlwaysHolds

T
(𝜉, 𝑐,m)

then ({𝜁 ↦→ 𝑒} , 𝜎) ≾𝜉 m holds in the meta-logic.

The predicate ({𝜁 ↦→ 𝑒} , 𝜎) ≾𝜉 m states that there exists a lockstep forward simulation that

preserves the relation 𝜉 , and which relates ({𝜁 ↦→ 𝑒} , 𝜎) and m. The AlwaysHolds
T
predicate is

analogous to the corresponding predicate in Theorem 3.1. The refinement ≼lockstep at the bottom of

Figure 4 is obtained from ≾𝜉 using a general result stating that such simulation relations induce a

refinement relation between possibly-infinite traces [34]. All that remains is to apply Theorem 5.4

with of M B Fuel(U ⋉ Net), where U is the model chosen by the user of Fairneris and with

a well-chosen relation 𝜉 , which incorporates the user chosen relation 𝜉𝑈 . The Fuel construction,

which is taken essentially verbatim from Fairis [34], together with 𝜉 ensure that ≾𝜉 preserves

fairness. We remark that this is more difficult than for the other refinement relations, because

fairness of the program execution is defined in terms of locales, whereas the fairness for traces of
Fuel(U ⋉Net) is defined in terms of the roles ofU.

6 Related and Future Work
Verification of Distributed Systems’ Implementations. We have already discussed the

works most closely related to ours, i.e., Aneris [20], Disel [30], Grove [31], Igloo [32], IronFleet [16],
and Verdi [35], in §1. Table 1 gives a summary of comparison of these systems.

Regarding Igloo, we remark that it proves correctness of distributed systems by establishing a

rather weak refinement relation between the program and a transition systemwhich only establishes

that the program and the transition system perform the same I/O operations. The weakness of

Igloo’s refinement relation enables great flexibility with respect program structure thus enabling it

to reason about concurrent programs that use higher-order programming features which are not
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written as simple event loops. However, it is not clear how the methodology of Igloo [32] can be

extended to support reasoning about liveness properties.

The approach of Grove [31] to verifying distributed systems is very close to that of Aneris

[20] upon which we have based our work — Grove is also based on the Iris framework [19]. It

pushes the limits of this methodology by verifying (safety properties of) crash recovery (some

nodes may spontaneously fail and restart) and reconfiguration (nodes can dynamically join or leave

the distributed system). An interesting and important future work is to prove liveness properties

of such distributed systems. Indeed, one of the main reasons for implementing crash recovery

and dynamic reconfiguration in distributed systems is to improve availability. We believe that the

Fairneris methodology developed here should also scale to supporting reasoning about these more

advanced features of distributed systems.

Verification of Liveness Proeprties of Distributed Protocols. Several works [4, 5, 11, 24,
25, 27, 28, 36] have considered proving liveness properties of distributed systems at the protocol

level by studying these protocols as state transition systems at various levels of detail. Most of

these approaches focus on specifically proving correctness of consensus protocols. They often [11]

even require the program to be constructed in terms of rounds of reaching consensus. Even though

these approaches would be able to verify the stenning protocol as we have, they do net seem able

to handle our simpler retransmit example in §2. In many cases [4, 5, 24, 25, 27] these works verify

liveness properties by reducing liveness properties to safety properties which they then automate.

Compared to our approach of verifying liveness properties of concrete implementations, these

approaches scale better, e.g., to proving liveness in the presence of byzantine faults [4, 5, 24, 28].

Proving liveness of distributed systems in the presence of byzantine faults is another important

and interesting future work. We believe that the state-transition-systems style protocols studied by

these works are interesting candidates to consider as high-level models in Fairneris. This would

allow us to scale Fairneris’s approach to reasoning about liveness in the presence of byzantine

faults.

Verification of Stenning Protocol. Both safety and liveness properties of the Stenning protocol
have been verified at different levels of details [8, 9, 15, 26, 29]. Among these, only Compton [8]

considers a concrete implementation, in OCaml, on top of UDP sockets. However, Compton [8]

only proves safety properties, whereas we prove both safety and liveness of the protocol.

7 Conclusion
We have presented Fairneris, the first higher order concurrent separation logic that is capable of

reasoning about both the safety and liveness of concrete implementations of distributed systems, by

following the methodology of Fairis and Trillium, i.e., via constructing and exploiting a refinement

relation between the distributed program and an abstract model of the distributed algorithm

it implements. Using this method, the program logic handles what it does best — the complex

semantics of the language and the safety properties — while the liveness reasoning happens on a

hight level representation of the system.
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