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Distributed systems are notoriously difficult to design, implement, and reason about. This is especially true
for liveness properties which state that a desired state of the system is guaranteed to eventually be reached. A
lot of complexity is found in systems’ implementations as these often employ features such as higher-order
programming features and concurrency which are difficult to formally reason about even without the added
complexity introduced by the asynchronous communication present in distributed systems, or considering
liveness properties. In this paper we present Fairneris, the first higher-order concurrent program logic for formal
and foundational verification of both safety and liveness properties of distributed systems’ implementations.
This work builds on the recent success of the Trillium program logic framework for refinement-based reasoning
about higher-order concurrent programs, including liveness reasoning, and that of the Aneris program logic
for reasoning about (only safety properties) of distributed systems. To demonstrate the capabilities of Fairneris
we verify both safety and liveness properties of an implementation of the Stenning sliding window reliable
transfer protocol on top of UDP-like unreliable networking primitives. Results presented in this paper are
mechanized on top of the Coq proof assistant.
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1 Introduction

Distributed systems are a natural target for formal verification, as they are notoriously difficult
to get right and to test exhaustively. Moreover, they often serve critical functions. Traditionally,
most works on studying correctness of distributed systems have focused on reasoning about
correctness of communication protocols, e.g., using model checking tools like SPIN [16] and TLA+
[21]. However, implementations of distributed systems often involve details not specified in high-
level specifications [6]. Hence, it is important to verify correctness of the implementation of
distributed systems.

Over the past decade many advances have been made in this direction, e.g., Aneris [19], Disel
[29], Grove [30], Igloo [31], IronFleet [15], and Verdi [34]. Virtually all these systems only support
reasoning about safety [20] properties, i.e., properties that state nothing bad ever happens, e.g.,
“the server never sends an invalid response”. The only exception is IronFleet which also supports
reasoning about liveness [20] properties, i.e., properties that state some desired state is eventually
reached, e.g., “the server responds to all requests”. These two families of properties, safety and
liveness, are complete in the sense that any property is the conjunction of a safety property and a
liveness property [3]. IronFleet manages to prove liveness by reducing it to solving termination of
sequential programs. In IronFleet each node of the distributed system must be written as a single-
threaded event loop. The high-level argument of the liveness proof of IronFleet is that distributed
systems implemented in IronFleet are live whenever all event handlers terminate, because the
event loop goes though actions in a round robin fashion — this is in turn possible because all
actions are always enabled as each handler must first check if its preconditions hold, and if not
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Fig. 1. Overview of this work and the work it is based on.

do nothing. As pointed out by Chandra et al. [6], it is important for distributed systems’ nodes to
run concurrent threads. In addition to concurrency, higher-order programming features such as
higher-order functions, objects in object-oriented languages, etc., are also crucial for engineering
distributed software.

The key reason for the success of all these systems, Aneris [19], Disel [29], Grove [30], Igloo [31],
IronFleet [15], and Verdi [34], is modularity. That is, in all these systems each module (function,
method, class, thread, efc.), is proven correct against its own specification in isolation from other
modules, under the assumption that the other modules are correct with respect to their own
specification. Modular reasoning about liveness properties of concurrent programs is notoriously
difficult [9, 33] (and hence also for distributed programs, even when each node is single-threaded).
This is only exacerbated by higher-order programming features. In fact among the state of the art
program logics for reasoning about liveness of concurrent programs, Lili [22], TaDa-live [9], and
Fairis [33], only Fairis supports higher-order programming features.

1.1 The Fairneris Program Logic

In this paper we present Fairneris, the first program logic for foundational reasoning about both
safety and liveness properties of arbitrary higher-order and concurrent programs that have access to
network sockets. That is, not just programs with a fixed main event loop as in IronFleet [15] or
Verdi [34]. By foundational we mean that everything is checked by a proof assistant; the Coq proof
assistant in this case. Fairneris is built on top of two existing program logics: Fairis [33] and Aneris
[19] — hence, the suggestive name Fairneris. Fairis [33] is the state-of-the-art foundational program
logic based on the Trillium framework [33] which is in turn based on the Iris framework [18]
for modular reasoning about liveness of concurrent programs. Aneris [19] is the state-of-the-art
foundational program logic, also based on the Iris framework [18], for reasoning about safety
properties of higher-order and concurrent distributed systems. We note that the motivation for this
choice is beyond the mere convenience that both program logics are based on the Iris framework.
An overview of this work and the work it is based on can be seen in Figure 1. As mentioned earlier,
Fairis is the only program logic for reasoning about liveness of higher-order concurrent programs.
Furthermore, the only program logics other than Aneris that support reasoning about higher-order
concurrent distributed systems are Grove [30] and Igloo [31]. As we will explain in §6, it is not
clear how to extend the methodology of Igloo to reasoning about liveness properties, at least not
by following a methodology similar to that of Fairis. As for Grove, its methodology is very close
to that of Aneris, and it is also based on the Iris framework. However, Grove focuses on verifying
crash recovery and reconfiguration of distributed systems.
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1.2 Challenges

Unreliability of the Network. In the case of distributed systems, liveness is even more delicate
than for shared memory concurrency, because the unreliability of the network also needs to be
taken into account. This is a subtle question: on the one hand, a totally reliable network is not a
realistic assumption. On the other hand, it is impossible to have non-trivial live distributed systems
under a completely unreliable network [12]. Thus, we make the standard choice of assuming
fairness of the network, i.e., that the network satisfies the eventual delivery property: a message
sent infinitely often is eventually delivered. In other words, we do not consider systems where
a pair of nodes is disconnected forever. However, we do assume that messages can be dropped
(though not indefinitely), reordered, or duplicated. Hence, many distributed programs have to
retransmit messages and acknowledge received messages. Moreover, following and extending
Aneris, in addition to unreliability, we work with a realistic model of network programming in
the sense that packets are delivered by the network to the recipient node by being appended to
the recipient socket’s FIFO buffer. Thus, the program must repeatedly use the recv operation to
retrieve newer network messages. As a result, the unreliability of the network greatly complicates
reasoning about liveness. In fact, to reason about liveness one must repeatedly switch between
reasoning about the program and reasoning about the network: the reason that the communication
can progress to sending some message my. is that message my was received (and acknowledged,
if necessary) which can only happen if the thread calling recv is scheduled (depends on fairness
of scheduling) after the network delivers m; (depends on network’s fairness) because the thread
sending my was scheduled enough times (depends on fairness of scheduling), etc. IronFleet sidesteps
this problem by working with single-threaded programs, and by considering retransmissions as
events handled by the node’s fixed event loop.

Network Abstraction. Arguably, the raison d’étre of a program logic is to simplify reasoning
by abstracting (hiding) the less relevant details that can/should be treated once and for all by
the program logic for all programs, e.g., when reasoning about (safety or liveness) of concurrent
programs, we do not consider the internals of the memory allocator, different possible schedulings,
or the state of the scheduler. Similarly, as a good program logic, Fairneris should, and indeed does,
hide the details of the network like eventual delivery, details of the thread scheduler, and their
interaction. One of the core challenges of our work is to abstract away the details of the network
when combining Fairis and Aneris. The approach of Fairis to verifying liveness properties is via
establishing a refinement relation between the program e and the user-picked high-level model
M, expressed as a labeled transition system (LTS), which intuitively captures the essence of the
computation of the program. More precisely, the program logic of Fairis, allows its users to prove
a refinement relation between the program e and the user-picked high-level model M, under a
user-picked relation ¢ reflecting how the state of the program must relate to the state of the model.
A theorem, proven once and for all about the Fairis refinement relations, states that for any fair
(fairly scheduled) trace ex of the program there is a corresponding fair trace utr of the model such
that whenever the trace utr satisfies a liveness property P, so does ex. Thus, using the methodology
of Fairis (and similarly Fairneris), to prove a liveness property P for a program e, one only needs to
show that there is a model M related to e that satisfies P (proven via the program logic of Fairis).

One obvious way to combine Fairis and Aneris is to reflect the entire state of the network in
the model. This is indeed what Timany et al. [33] do to obtain a version of Aneris which can
take advantage of refinement-based reasoning. However, they use this approach to show that a
distributed program correctly implements a TLA+ [21] model in the sense that all safety properties
enjoyed by the TLA+ model are also enjoyed by the program.
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1.3 Overcoming Challenges in Fairneris

The approach taken by Fairneris to liveness reasoning is similar to Fairis: refinement-based reason-
ing. However, in order to abstract the details of the network from our liveness reasoning, we take
special care of reflecting the network in the high-level model of Fairneris. The overall idea is that
to prove liveness of a program e, the user of Fairneris, picks a model U and a relation & between
program and model states. The user then uses the program logic of Fairneris to show that e refines
U under the relation &y, which in turn implies that for any trace ex of the program e, there is a
corresponding trace utr of U, written ex <y, utr, such that liveness properties that hold for utr
also hold for ex. Thus, Fairneris allows analyzing the model U to prove that it satisfies the desired
liveness property instead of the much more complicated distributed program e. We emphasize that
the model U only reflects high-level network operation, i.e., it is completely oblivious to messages
being dropped and retransmitted; details will be explained later. To achieve this, we annotate
the operational semantics of AnerisLang, the OCaml-like programming language of Aneris, with
so-called actions, and construct a fixed network model Net and relation &y relating the state of
the network in the operational semantics to that of Net — constructed once for all AnerisLang
programs. The model Net captures all the details of messages dropped, duplicated, etc. We then
combine the model U with Net, which we write as U < Net, in such a way that all sends and
receives of U are synchronized to match the corresponding events in Net. The program logic of
Fairneris, behind the scenes and unbeknownst to the user who is only dealing with U, constructs a
refinement between the program e, and the model U < Net under the relation & = &y. Crucially,
for any trace utr of U = Net we have that if ex <,z utr, then ex <y, m(utr), where 7(utr) is a
trace of U obtained from utr by projecting out the parts corresponding to U."

We note that it is far from obvious that the construction explained above regarding constructing
a network model Net is conducive to a usable, modular program logic suitable for high-level
reasoning. In other words, we need to answer the following question: can we obtain high-level
reasoning principles, in terms of Hoare-logic rules, that allow us to reason directly about Net when
we are in fact constructing a refinement relation relating the program to the model U = Net? To
answer this question in the affirmative requires changes to the program logic of Fairis, notably
introduction of a new model update logical connective.

1.4 Case Study

To demonstrate the applicability of our technique, we prove liveness and safety of the Stenning
protocol [32], an algorithm to reliably transfer a stream of data between two nodes in an unreliable
network. The Stenning protocol suitably exercises the challenges pertaining to safety and liveness
properties in distributed systems, regarding retransmissions and distributed synchronization using
sequence ids, and has thus previously been a target for verification. Ours is however the first work
proving liveness of a low-level implementation of the Stenning protocol; see §6 for more details.

The examples and the case study of the Stenning protocol presented in this paper focus on
addressing the core challenges as described above in §1.2. In particular, these examples do not
feature node-local concurrency, which is readily taken care of in both Fairis and Aneris: we believe
doing so would distract from the new ideas put forth in this paper.

1.5 Contributions
In this paper we make the following contributions:

(1) The Fairneris program logic for verifying trace refinement of distributed systems (§3)

n fact the model U = Net once more refines to the model Fuel(7/ = Net) which hides details of the thread scheduler.
However, the so-called fuel construction, Fuel(-), is not new in our work; it is taken verbatim from Fairis.
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A : Send(mAB) A : Send(mAB) A : Send(mAB)
nodeA saA saB =
let sock = new_socket saA in B : RecvS(mAB) B : Send(mBA)
while true do Start Revd Done
send sock saB "ping"
nodeB saB saA saB = B : RecvF(saB)

let sock = new_socket saB in
while recv sock = None do skip;
send sock saA "done!" mAB = (saA, "ping", saB)

mBA £ (saB, "done!", saA)

Fig. 2. Retransmit example consisting of the program X ¢ (left), and the model Uy, (right)

(2) Verification of liveness of a low-level implementation of the Stenning protocol (§4)
(3) A labelled transition system for low-level UDP-based operational semantics (§5.2)

(4) A principle of model abstraction applied to network trace properties (§5.3)

(5) Fairneris as a shallow embedding on top of Trillium (§5.4)
All but one result of the paper have been mechanized in the Coq proof assistant. The only exception
is the liveness theorem of the Stenning model, for which we instead give a paper proof.

We start by giving an overview of the Fairneris approach to verifying liveness properties of

distributed systems (§2).

2 Overview

This section gives an overview of how Fairneris is used, and demonstrates how the main contri-
butions of this paper enable proving liveness properties of distributed programs using a simple
introductory example. The code for the two nodes, nodes A and B, of our example is given on
the left-hand-side column of Figure 2. We will write X, for this distributed system. The liveness
property that we wish to show about ¥, is that node B eventually sends the message "done!"
to node A. In X, node A repeatedly sends message "ping" to node B. Node B, on the other hand,
repeatedly calls recv until it receives "ping" from A. And when it does, it sends back a message
"done!", and terminates. Hence, under fairness assumptions, node B must eventually send "done!"
to node A.2

Recall that, as we explained in §1, in Fairneris we prove liveness properties by establishing a
refinement between the distributed program and a model U picked by the user of Fairneris. For
our simple example the model U is the model U, given in the right-hand-side column Figure 2.

Below, we will describe how we state fairness and liveness as trace properties both for program
traces and model traces, and discuss how we use these notions to prove that fair traces of the
program are live (in this case: that the node B sends the message "done!" to node A). We first define
fairness and liveness for the program execution in §2.1, and then show how this reasoning can be
lifted to the level of U, in §2.2. Finally, we briefly discuss our methodology of using Fairneris’s
program logic to prove that the program refines U, in §2.3.

2.1 Fairness and Liveness in the Program

All throughout this paper, we will use linear temporal logic (LTL) formulas to state properties about
potentially infinite executions of distributed systems or traces of abstract models. In a few words,
ZNote that it is impossible to have two nodes simultaneously reach agreement. This phenomenon known as the two-general

problem [2, appendix] occurs even when the network is completely reliable, as soon as there is any delay in communication.
Hence, here we only show that one node, node B reaches the end of communication.
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the LTL operators we will use are “eventually”, written FP, which states that the property P must
become true at a point of the execution; and “always”, written GP, which states that P holds at
every step of the execution. We describe events in terms of the actions Send, RecvS, and RecvF, for
sending, successfully receiving, or failing to receive, respectively. The Send and RecvS actions are
indexed by message triples, consisting of the source address, contents, and destination address of
the message. We can thus denote the sending of the message "done!" from B to A as Send(mBA),
where mBA = (saB, "done!", saA). The RecvF action is indexed by the receiving socket address, e.g.
RecvF(saB), indicating that the program attempted to retrieve a message from the buffer of the
socket assigned to address saB but failed as the buffer was empty. The liveness property of interest
can then be stated as follows:

For all executions ex of 2., ex E F Send(mBA) (Live™)

As we explained in §1, messages in Aneris and Fairneris can be non-deterministically dropped.
Thus, even when a program, like node A in X, sends the same message in an infinite loop, it is
not guaranteed that it will be delivered. That is, the following is a valid trace of network events

Send(mAB) - Drop(mAB) - RecvF (saB) - Send (mAB) - Drop (mAB) - RecvF (saB) ---

where each time the node A sends a message, it is immediately dropped by the network, preventing
node B from ever receiving it. Such an execution violates our liveness property: F Send(mBA).
Therefore, we consider following, usual, notion of network fairness expressed as an LTL formula:

G(GF Send(msg) = F Deliver(msg)) (NetFair)

which states that, for all messages, it is always the case that, if a message is sent infinitely often
(always eventually), then it is eventually delivered. Given (NetFair), the distributed system X,
seems to satisfy the property (Live®): since node A sends its message infinitely often, according
to (NetFair), the message is delivered at some point. Node B calls receive in a loop, so that it
eventually retrieves the message from the buffer where it was previously delivered, and then it
immediately sends the "done!" message.

This reasoning, and indeed the fact that X, satisfies (Live™), relies on the fact that both main
threads of nodes A and B run “enough” times. (Fairneris’s operational semantics, like Aneris’s,
consider one large thread pool consisting of all threads of all nodes.) We express fairness of the
thread scheduler as the following LTL property

G(thread_enabled({) == F (thread_steps({) V —thread_enabled({))) (SchedFair)

where the predicate thread_enabled({) means that the thread ¢ is not finished, and is ready to
take an execution step, and thread_steps({) expresses that { does take an execution step. In other
words, if a thread can run, then it eventually runs.

We are now able to state the correct result about %, which makes explicit the fairness hypothe-
ses we require about the scheduler and the network:

For all executions ex of £,ey, ex E (SchedFair A NetFair) = F Send(mBA) (Live)

This is the statement that we eventually prove about the system ¥, using our program logic, but
before that, we will lift it to U, in §2.2.

Remark 2.1 (Locallity of Liveness). The property (Live) above is local in the sense that it is trace-
wise, i.e., it states that for any trace ex; if ex is fair, then eventually Send(mBA). This is key in Fairis’s
approach, and thus in that of Fairneris. It means that the program logic need not be concerned with
fairness — the program logic neither enforces, nor relies upon fairness conditions. The program
logic allows us to establish a refinement relation between programs and models, including both
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fair and unfair executions of the program. As we will discuss below, care must only be taken to
ensure that fair traces of the program correspond to fair traces of the model.

Remark 2.2 (Fairness and Delivery in the Presence of Acknowdgements). The formulation of
(NetFair) above is subtle: it is in fact not necessary to send the message infinitely often for the
entire execution of the program to be sure that it is delivered. As we will see in the case study in
§4, where a message, once acknowledged, is no longer retransmitted. That is, it suffices to only
retransmit until the acknowledgement is received to guarantee that under (NetFair), all messages
are eventually delivered, or indeed even stronger that all messages have their acknowledgements
received by the sender. This is despite the fact that in all such fair executions of the system messages
are only ever sent finitely many times, which might appear strange at first. To understand why
this is the case, note that if the acknowledgement of a message is not eventually received, that
message is sent infinitely often. Thus, by (NetFair) it must also be delivered infinitely often, and
hence, also received infinitely often. But then, since the recipient receives the message infinitely
often, it sends acknowledgements back infinitely often, which again by (NetFair) implies that the
acknowledgement is eventually delivered and hence received. This contradicts our assumption that
the acknowledgement is not received, and so we can conclude that progress is eventually made.

2.2 Fairness and Liveness in the Abstract Model U,;,

Here, following the methodology of Fairis we simplify the reasoning about the program by instead
reasoning about the model U,;,. The idea, which we will make formal in §3, is that whenever we
have ex <¢,, utr for a trace ex of the program and a trace utr of U, then (Live) holds whenever
(ModLive) below holds.

For all traces utr of Uyer, utr E (ModSchedFair A ModNetFair) = F Send(mBA) (ModLive)

Here, ModSchedFair and ModNetFair are respectively model counterparts to SchedFair and NetFair
above. Below, we will give a brief discussion of the model U,, present ModSchedFair and
ModNetFair, followed by arguments as to why (ModLive) holds.

The model U, has three states, corresponding to the three stages of progress of the distributed
system X, Start, the initial stage where node A is sending its message, Rcvd, where node B
has received at least one of the messages from node A but has not yet replied, and, finally, Done
where node B has sent the message "done!" to node A. Note how the model U, is significantly
simpler than that of X, considering operational semantics as an LTS. In particular, due to the
non-deterministic behavior of the network dropping and duplicating messages, the loop in node A
repeatedly sending a message, etc., the state space of the X, is not even finite — this is also the
case for the model U, < Net that we are not dealing with in this section. By contrast, U, has
only three states.

The transitions of U, denote how actions from each node update the current stage of the
distributed system. They are labeled with two pieces of information, separated by a colon: the
role, to the left of the colon, and the action, to the right of the colon. For instance, the label
B : RecvS(mAB) states that the transition corresponds to the action of receiving the message from
A (with socket address saA) to B (with socket address saB), with the contents "ping" (denoted as
the triple mAB £ (saA, "ping", saB)), and that the role performing this transition be B. Roles, a
concept we adopt from Fairis [33], are the logical counterpart to thread identifiers, denoting who
is performing the action. This allows us to state scheduler fairness for models using a definition
similar to (SchedFair), as follows:

G(role_enabled(p) = F (role_steps(p) V —role_enabled(p))) (ModSchedFair)
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where p, universally quantified, ranges over all roles in Uy, i.e., either A or B, which correspond
to the main threads of the two nodes A and B, respectively.

Our approach to actions is a contribution of this work. Actions allow us to tie the network to
the abstract model in a lightweight fashion. In particular, while the model mentions messages
being sent or received, which reflect actions performed by the program itself, the abstract model
U,err is oblivious to the actions performed by the network itself, such as delivering or dropping
a message. The absence of delivery actions (and hence also receive buffers) from U, is crucial
for managing the complexity of formal reasoning about the network and its fairness. Had delivery
actions been part of U, we would have had to track the position of messages of interest in
the buffer whenever we reasoned about the network. On the other hand, the lack of delivery
actions in the U, necessitates changing the notion of network fairness compared to (NetFair).
The intuition is simple: if a sender (re)transmits messages infinitely often (or as argued earlier
until acknowledgement), and the recipient repeatedly calls recv, then the recipient must eventually
receive the message. This is stated formally as an LTL formula as follows:

G(GF Send(msg) = GF Recv_from(msg.dest) = [F RecvS(msg)) (ModNetFair)

where Recv_from is a shorthand describing the action of calling recv on a socket bound to the
destination address of the message msg, regardless of whether it succeeds or fails.

Now that we have defined both (ModSchedFair) and (ModNetFair), we proceed to argue why
(ModLive) holds. As per scheduling fairness, it is clear that it is sufficient to reach the Revd state, as
we cannot repeatedly take the transition A : Send(mAB) in that state, and hence must eventually
take the transition by the role B which sends the "done!" message. In turn, proving that Revd is
reached amounts to proving that the transition labeled with RecvS(mAB) is eventually taken. This
follows directly from (ModNetFair). Assume that this transition is never taken. In that case, we stay
in the state Start forever. However, staying in Start forever, by fairness of scheduling, satisfies the
two premises of (ModNetFair). And hence, the transition RecvS(mAB) must eventually be taken,
which contradicts our assumption.

2.3 A Program Logic for Refinement

In this section we present the basic, high-level ideas underlying how the program logic of Fairneris
can be used to conclude that the program X, refines the model U, . Here, we will only discuss the
specifications for the distributed program X . in terms of Hoare triples, and discuss the intuition
and high-level ideas of the proof. We leave the formal, more detailed proof, which we will present
in §3.3, for after we have presented the program logic and its inference rules in more details. Note
that the specifications presented in this section, apart from including actions, are virtually identical
to what one would write in Fairis. Our contribution, in terms of the program logic of Fairneris, is
the novel proof rules and how they are proven sound which we will present and discuss in §3 and
§5.4 respectively.

As we will discuss in more detail in §3.3, the crux of the proof that X, refines U, is to show
the following two Hoare triples (defined in terms of weakest preconditions in the usual way):

{Ietr * {4 = {A = 42} % .. }*4 nodeA saA saB {{4 = 0}
{I,et, * (g = {B =42} * oyB(Start) % .. .}5’3 nodeB saA saB {{p = 0}

where the invariant I, is as follows (in Iris’s notation we write |P| to say that P must always hold

throughout the proof):

Letr = ‘Elm, oy (m) * .YB(m)‘

We omit some details for now (denoted . ..), but will revisit the full specification and proof in §3.3.
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Let us unpack and explain these specifications. The logical connective * is the separating con-
junction, the special resource-aware conjunction of separation logic. The logical statement P * Q
states that both P and Q hold, but resources they assert ownership over are disjoint. The predicate
{ = {p =f}, as in Fairis, indicates the locale { is associated to the role p and that this role has
fuel f. This is to be understood as both a permission, and an obligation to perform p actions. It is a
permission in the sense that a thread can only perform a p action if it is assigned that role. On the
other hand, in Fairneris just as in Fairis, when a thread is assigned a role p, it can only postpone
performing a p-action for f steps, as each stutter step decreases its fuel. The only way to increase
it is to perform a p-action. This restriction of finite postponement, as we will explain in §5.3, is
key in ensuring that (SchedFair) implies (ModSchedFair). In this sense, the main thread of node A
having role A assigned to it, must infinitely often perform a send operation as described by U,
because in U, all states have such send loops. Similarly, the postcondition ¢ =» 0 indicates the
thread may only terminate if it has fulfilled all its obligations. The main thread of node A satisfies
this condition because it never terminates. The main thread of node B on the other hand only
terminates when we are in state Done which has no B-transitions, and hence no B-obligations. The
invariant I, states that we are, at all times in some state m of Uy, indicated by the resource
0y, (m) in Ie. The resource L (m) in I, and s (Start) in the precondition above, as we will
explain, allow the thread (g to keep track of the current state of U, even though it is shared with
thread {4 via the invariant. The construction of e (m) and o, (m) in terms of Iris resources, the
so-called agreement resource algebra [18], ensures that these two predicates always agree on the
state they track. This is codified in the logic as the following two rules:

OWN-AGREE OWN-UPDATE
o) (m) %0, (m') b m = 0 (M) 0, (m) + B, (m') 0, (nr)

where B is the so-called update modality, | P holds whenever P holds after updating resources,
which is allowed throughout the proof.

For node A, we see that it simply performs a send operation in a loop; hence, each send follows
the previous one after finitely many steps. Thus, we only need to show that each send operation
performs an A-action. For this we need to know that we have the permission/obligation to do so.
This is reflected in the fact that we are assigned role A. By the invariant I,.;, we know that we
are in some state m, indicated by o, (m). Since all states have an A : Send(mAB) transition, we
always can/should perform the send operation. Furthermore, all these transitions are loops and
hence never change the state tracked by oy, (m), always maintaining the invariant.

For node B, initially, we know that we are in state Start, because we have o, (Start), and by
OWN-AGREE, the m in the invariant I,.;, must be Start. In this state, taking the loop B : RecvF(saB)
is completely analogous to taking A : Send(mAB), we discussed above. However, when the Recv
operation succeeds, we go from Start to Revd in U, That is, after taking that step we will
have o, (Rcvd). At this point, we will update resources using the rule own-urpATE to obtain
e, (Revd) and o, (Revd) which maintains the invariant Ir,r. Finally, in state Rcvd we have only
one permission/obligation, i.e., to take the transition B : Send(mBA). We perform this action, and
update our state to e, (Done) and o, (Done). In this final state there are no B-obligations left and
hence the thread must terminate, because there is no action left in its assigned role.

3 Fairneris Program Logic

The primary goal of Fairneris is to verify that a <y, refinement holds between a program and a
given user model. This includes the user picked refinement relations £y that must hold between
the program and model states for any step of the program.
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The primary benefit of the Fairneris logic is that it hides the parts of the global model that does
not relate to the user model. In particular, it hides the irrelevant model aspects of the fuel and
network model instrumentations, and relegate these (still crucial) parts of the verification to the
program logic. We hide the fuel instrumentation by leveraging pre-existing ideas from Fairis [33].
To interface with the network instrumentation—updating the user model non-deterministically
based on the action that it emits—we introduce a novel so-called “model update” construction,
alongside a pre-existing approach to reasoning about distributed systems from Aneris [19].

In this section we present the Fairneris program logic. We first present the adequacy theorem (§3.1),
defined entirely in terms of the user model. We then present the rules of Fairneris (§3.2), which
are used to prove the weakest precondition and that the user-picked refinement relation holds
invariably. Finally, we remark on how the Fairneris logic is used to verify the refinement of the
retransmit example from Figure 2 (§3.3).

3.1 Fairneris Adequacy

The Fairneris adequacy theorem formalises that the refinement <, holds, if we can prove that (1)
weakest preconditions for all initial threads: wp¢ e {@}; and (2) the user-picked refinement relation
&y always holds: AlwaysHolds(&y), under the assumption of initial separation logic resources for
(i) the model state (d la Trillium); (ii) the fuel instrumentation (a la Fairis); (iii) the network state (a
la Aneris); and (iv) initially allocated invariants.

The weakest precondition wp? e {@} denotes that the expression e is safe to execute, and if it
terminates with value w, then @ w holds. The weakest precondition is instrumented with its locale
{ € Ipx N, denoting the ip address of the node in the distributed system that the expression belongs
to, along with its thread id on that node.

The proof of the weakest precondition and the user-picked refinement relation can rely on
initially consistent resources that respectively assert properties about the model state, the fuel
instrumentation, and the network. Based on these initial resources, we can additionally allocate
invariants that are then guaranteed to hold throughout the entire execution of the program (via
the weakest preconditions) inside of the separation logic. These initially allocated invariants are
imperative, as they allow us to prove the user-picked refinement relations between the program
and model states. Formally, this works out as we can access any properties stored in invariants,
when proving the desired user-picked refinement relations AlwaysHolds(&y).

The formal statement of the adequacy theorem is as follows:

THEOREM 3.1 (FAIRNERIS-ADEQUACY). Let tp be a node-threadpool (Ip = N) — Expr) of the initial
program threads. Let m € U be a model state, and &y be a relation between program and model states.
Let Finiz be an initial fuel map ((Ip * N) — (role — N)) with all { € dom(tp) assigned to respective
role maps fs mapping the roles of m to a user picked concrete fuel limit F.y,. All roles of m are uniquely
covered in the initial fuel map. Let A be a map (Address — SProt) from all known socket addresses of
the network to their static protocols for inbound messages (SProt = Message — Prop). If

OyM(m) * (*{r—»fseﬁm-[ = fs) = -
Ko ¢4 Unbound(sa) * sa = Py + sa~> (0,0)

B AlwaysHolds(&y) * >x< ] wp§ e {§ = (b})

then for all fair executions ex of ¢ there exists a fair trace utr of m where ex <z, utr holds in the
meta-logic.

{eet

Here oy, (m) reflects the state of the user model, (%, fser,, { = fs) the state of the fuel
instrumentation of Fairis, and (% y,,, ¢ _c4 Unbound(sa) * sa = & * sa ~ (0,0)) the initial
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network resources of Aneris. The modality B allow us to allocate invariants, which are then
enforced by the proofs of the individual WPs, and thereby available when proving AlwaysHolds(&y).
We cover each of these constructs in more detail in the following sections.

We remark that in the original Trillium [33] adequacy theorem, & is a history-sensitive refinement,
indexed by the full traces of the program and model. This is also the case in Fairneris although we
do not cover that in the adequacy theorem here for brevity sake. We further remark that we restrict
ourselves to static Aneris protocols for brevity sake, as we do not make use of dynamically allocated
protocols. The full version of Fairneris, like Aneris, support dynamically allocated protocols.

3.2 Verification in Fairneris

The crux of applying the Fairneris logic is to verify the global refinement relation AlwaysHolds(&y),
and the weakest preconditions of Fairneris. In this section we first cover how the former is achieved
via the invariants of Fairneris and then discuss how the latter is achieved via the Fairneris rules for
the weakest preconditions.

Invariants and User Relation Refinement Properties. Fairneris, like Trillium and Iris before
it, makes use of separation logic invariants to determine global properties |P| that hold in between
any step of execution. In separation logic invariants are primarily used for safely sharing otherwise
exclusive resources between threads. In Trillium, and thereby Fairneris we can additionally leverage
the global properties enforced by the invariants to verify global (safety) properties about the
user-picked refinement relation &y. In particular, the user has to prove AlwaysHolds(¢), which
allows opening all invariants, and discerning the state of the program and model via the available
separation logic resources, such as the local view of the user model state o), (m).

For brevity sake we omit details about opening nested invariants via so-called “masks”, as we
do not make use of nested invariants in this paper. We remark that the full mechanized version
of Fairneris do support nested invariants, similarly to Iris. For more details, we refer the curious
reader to existing literature on Iris invariants (§7 of [18]), and our artifact.

Fairneris Weakest Precondition Rules. The weakest precondition of Fairneris captures that a
program is safe to execute, and that the program refines the user model. Following the principles of
Trillium, the role of the program logic is to prove an initial lockstep refinement; that the program
is in one-to-one correspondence with the model. The lockstep refinement is further refined into
the <, refinement yielded by the adequacy theorem, after the fact, as will be explained in §5.3.

The proof of the weakest precondition mimicks the lockstep structure. At every step of the
program, we must (1) prove that the program step is safe to execute, and (2) that we can update the
model correspondingly. To achieve this reasoning principle we employ two constructions:

e The single-step weakest precondition (SSWP): wp¢ e (&)
e The model update construction (MU): muéie’ p

The SSWP is inspired by the Fairis logic [33]. It captures that the expression e is safe to execute for
one step, after which the predicate @ holds for the resulting expression e’. In Fairneris it additionally
optionally emits any exhibited action a’. The MU is novel, and captures that the model is currently
out-of-sync with the program by one step. It is parametric in optional actions &', which lets us
update the model based on the non-deterministic results of the SSWP, which we leverage when
resolving receives, which can either fail or succeed. The decomposition is imperative as it lets us
define and prove rules for each construction orthogonally of each other, ultimately avoiding rule
duplication. With the decomposition in place, we obtain the rules of Fairneris shown in Figure 3.
We often use the following syntactic sugar:

wp® e {w.0} = wp® e {Aw. 0} wpt e (w a?.Q> £ wpbe (A(w, a). Q)
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Fuel & model rules (outer program logic)
WP-ROLE-DEALLOC

We-STE? 7 (M) mZs_ (E{p= juf
wp® e <e';a?. mu®® wp? e’ {@}> ¢ {@}
. (o (M) * I =» f5) + wp® e
wpg e {dﬁ} wpg e {d)}
MDL-STEP-FUEL MDL-STEP-MODEL |
(= f5™ fs20 op(m)  mESmt o I {pi=_}w ()
(= fs=P) (o (m") % = {p 1= Fegp} W f5) + P)
*® ?
mué P mué® p
Program rules (inner program logic; an excerpt)
SSWP-CREATE-SOCKET
WP-BETA L.ip = sa.ip Unbound(sa)
kS k

ng (Ax. e)v{e'.e’ =e[v/x]) ng“ new_socket sa <w. dsh.w = sh* sh — sa>

SSWP-SEND

{.ip = msg.src.ip sh < msg.src
msg.dst = @ msg.src ~ (R, T) (msg ¢ T = & msg)

*

w = |msg.str| * @ = Send(msg) * >

4 .
wp® send sh msg.str msg.dst <w,a. msg.src ~» (R T U {msg}) * sh < msg.src

SSWP-RECV
{.ip = sa.ip sh = sa sa~> (RT) sa=

wp® recv sh
(w = None * a = RecvF(sa) * sh < saxsa~ (R,T)) V
w; . (Amsg. w = Some (msg.str, msg.src) * a = RecvS(msg) * msg.dst = sa *>
sh < saxsa~> (RU {msg},T) « (msg ¢ R = ® msg))

Fig. 3. The Fairneris Program Logic. Note, % desugarsto + ((P * Q) = R).

wpé e {0} = wpte{iw.w=() =0} wp e (w.Q) = wpb e (A(w,a’).a’ = L+ Q)
mué P £ muétp wpge Q) = wpg e </1(w, a)w=0%a’ =Lx Q>

The rules of Fairneris combine and extend the prior reasoning principles of Fairis [33] and
Aneris [19], with the action exhibiting behaviour. In particular, we borrow the ideas for handling
fuel from Fairis, while borrowing the ideas for reasoning about networks from Aneris.

The crux of the decomposition is the we-step rule. The rule states that to prove a WP, we can (1)
prove a single step of the program via the SSWP, and (2) reestablish consistency with the model
via the MU, and (3) prove the rest of the program via the residual WP. The SSWP construction
allow opening all invariants, while the MU conversely requires closing all opened invariants. This
effectively permits opening invariants around the combined SSWP/MU step. This is crucial as the
properties enforced by invariants might apply to both the safety proof (governed by SSWP) and
the corresponding model update (governed by MU).

The presented SSWP rules are directly inspired by Aneris, and are based on Aneris resources
obtained from the adequacy theorem. Most notably, the sswp-senp and sswe-recv rules have been
instrumented to emit their respective actions. The rules follow the Aneris structure, where resources
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@ are only attached to the initial message that is sent/received. We refer the interested reader to
prior papers on Aneris [13, 19].

The MU rules are directly inspired by Fairis. The Mpr-step-rueL allow resolving non-model
(unlabeled) “stuttering” steps, by burning non-zero (denoted by fs** £ map (+1) f5) fuel for the
respective locale {. The Mpr-sTer-moDEL allow resolving model steps, where the model transition
has to reflect the optional action of the MU at a role p of the respective locale . That is, if the MU
has a send label, then the model must take a send transition. If the MU does not have a label, the
model must take an unlabeled transition. This means any network transition of the program must
be reflected by the user model. While it is theoretically possible to extend the system to support
non-model network transitions, we deemed that the increased complexity was not worth it. The
model step rule requires burning non-zero fuel for all other roles at the respective locale {, while
refueling the step-taking role p to the fuel limit F,. Finally, the wr-roLE-DEALLOC rule allow for
deallocation of roles once they have no transitions (and thus have concluded their lifetime), which
is used to reach the post-condition of terminating programs, such as node B of the retransmit
example.

3.3 Verification of Retransmit Example
With the Fairneris logic in hand, we can now verify the model refinement of the retransmit example.
We first prove the weakest preconditions of the individual nodes:
Lietr {4 = {A := 42} * Unbound(say) *
sag = (_= mAB) xsay ~ (0,0)
Lietr * {p =» {B := 42} * o, (Start) * Unbound(sap) *
sag = (_=mAB) % sax = (_= mBA) = sag ~ (0,0)

]QVA nodeA saA saB {{4 = 0}

}QVB nodeB saA saB {{p => 0}

The proofs follow almost immediately from symbolic execution using the decomposition rules
and the SSWP rules of Fairneris. The auxiliary steps (such as the reduction of the while-loops) are
simply resolved via burning fuel. The model steps are resolved by opening the invariant to obtain
the model state resource, and then taking the corresponding transitions in the model. Finally, the
while loops are resolved using Léb induction, as is standard in step-indexed separation logics.

With the proven weakest preconditions, we can simply use the Fairneris adequacy theorem.
The theorem provides all of the necessary initial resources to satisfy the preconditions of the
WP proofs. The retransmit example does not rely on any user-picked refinement relation (thus
&y (o, m) := True), and thereby AlwaysHolds(&y) is trivial.

We thus obtain the refinement <z, between the distributed system and the retransmit model
show in Figure 2.

4 Case Study: Stenning Protocol

To demonstrate the expressive power of Fairneris, we implement the Stenning protocol [32], and
we verify the eventual progress of that implementation. The Stenning protocol is a reliable transfer
protocol, used to transmit a stream, in order, from one node (the sender) to another (the receiver).
The protocol uses a sliding window of 1, meaning that a new message is only sent once the prior
message is acknowledged. The sliding window is achieved using sequence and acknowledgement
ids for the sender and receiver, respectively. To focus on the liveness part of the verification effort,
we simplify the protocol by only transferring the sequence ids (with no payload), and to loop
endlessly. The property that we want to prove is thus that for any sequence id i, the receiver
eventually sends an acknowledgement.

In this section we first cover the (simplified) Stenning protocol, its implementation in AnerisLang,
and the formal liveness property that we want to prove (§4.1). We then give a formal model of the
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stenningA saA saB = stenningB saB saA =
let shA = new_socket saA in let shB = new_socket saB in
socket_bind shA saA; socket_bind shB saB;
(rec f i = (rec f j =
send shA saB i; match (recv shB) with
match (recv shA) with | None => f j
| None =>f i | Some m => if m.2 = saA
| Some m => if m.2 = saB then
then let i = m.1 in
let j =m.1 in if j+1 =1
if i =3 then send shB saA i; f i
then f (i+1) else send shB saA j; f j
else f i else
else fj) -1
fi)o
mAB i £ (saA, i,saB) mBA j £ (saB, j, saA)
A : Recv(-) A : Recv(-)

A:Send(mAB i) A : RecvS(mBA i) : Send(mAB (i+1)),

.......... w @ EEEREED
B : Recv(-) B : Recv(-)
B: Send(mBA j) . B: RecvS(mAB (j+1) [ : Send(mBA (j+1)),
.......... j L U I G

B : RecvF(saB) B : RecvF(saB)

Fig. 4. The implementation and model of the Stenning protocol

protocol and the corresponding liveness property in the model, and provide a paper proof of the
property (84.2). We finally conclude the proof of the liveness property at the implementation level,
through a refinement between the implementation and the model via Fairneris (§4.3).

4.1 Stenning Protocol and its Implementation

The goal of the sender is to send the sequence 0,1, 2, .. .. Since the network is unreliable, it waits
for an acknowledgment (ACK) for i before sending i + 1. In the sender side the situation is quite
simple: as long as it does not receive the ACK for the current number —either because it received
one for the wrong id or because it received nothing after a timeout— it sends the current id again.
If it receives the right ACK, it proceeds to send the next number. The receiver is almost dual to the
sender: it repeatedly sends an ACK for the highest id j it has received yet. When it receives the
next id, j + 1, it sends an ACK and continues. The subtlety is that it only resends an ACK when it
receives an outdated message (whose id is < j). This way, the liveness of the receiver (server) is
bounded by the sender (client). The implementation of the Stenning protocol is shown in Figure 4.
Similar to the retransmission example, the Stenning protocol only makes progress when we
consider fair scheduling and a fair network. Formally, the property that we want to prove is:

For all executions ex of S, ex k (SchedFair A NetFair) = (Vi.F Send(mBA i))

4.2 Stenning Protocol Model, Liveness Property, and Proof

To formally model the Stenning protocol we model the sender and receiver individually, and
construct the user model as the cartesian product of the two. The individual models can be found
in Figure 4. We model the state of the sender as its current sequence id i, and whether it is in
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sending (T) or receiving (L) state. Similarly, we model the state of the receiver as its current
acknowledgement id j, and whether it is in sending (T) or receiving (L) state. The initial state of
the model is ((0, T), (=1, 1)).

The model transitions directly correspond to the transitions of the protocol. For example, when
the sender in state (i, L) receives the expected acknowledgement i, it transitions to (i + 1, T).
Conversely, when the receiver in state (j, L) receives the expected sequence id j + 1, it transitions to
(j+ 1, T). We use Recv(—) to denote wildcard receive transitions matching any uncovered receive
transition.

A caveat of this model is that it does not rule out invalid states, where the sender and receiver
are out of sync; i.e. where the sequence id and acknowledgement id are more than one apart, this is
because user models do not give any semantics to the send and receive labels they carry. Traces that
reach these invalid states do not, in general, satisfy the liveness property we want, we therefore
need to rule them out. To do so, we need an additional assumption

For all trace utr of Mge,, utre  G(i=jVi+1=j) (At-Most-One-Off)

This assumption needs not be trusted: we will prove using the program logic that any execution of
the program in Figure 4 refines a trace of Uy, that satisfies (At-Most-One-Off). In summary, we
prove the following property about the model U

LEMMA 4.1. For all trace utr of Mgen,
utr £ (ModSchedFair A ModNetFair A At-Most-One-Off) = (Vi.F Send(mBA i)).

With the assumptions and model in hand, proof of the liveness property can be carried out. We
only sketch the first case, to show how the safety property is crucial in the proof.

Proor. Suppose the current state satisfies i + 1 = j, as for the initial state. Let us show that
eventually j is incremented by exactly one. According to (At-Most-One-Off) and because there are
no transitions that either decrease the values of i or j, or increase both of them, there are two cases:
either j is incremented by one (and we conclude), or the values of i and j stay constant forever. In
that case, it is easy to see that, according to (ModSchedFair), the message i is sent infinitely often,
and B receives infinitely often. We can also conclude, as (ModNetFair) implies that the transition
receiving i must be eventually be taken, increasing j. We therefore reach a state where i = j, and
we can prove that i eventually increases by a similar, if slightly more involved, argument. O

4.3 Stenning Protocol Refinement in Fairneris

To transport the liveness property for the model to the implementation, we need to prove a refine-
ment between them, with a user-picked refinement relation that lets us derive the (At-Most-One-Off)
safety property for the model trace. We achieve both of these via the Fairneris program logic. In
particular, we first pick a refinement relation that lets us derive the At-Most-One-Off property:

Esten(_, (1, stA), (j,stB))) = (i=jVi+1=])

Since the first argument is not used here, this amounts to the fact thati = j Vi = j—11is an
invariant of the model trace, which is precisely (At-Most-One-Off).
We then pick an invariant that subsumes this relational property:

Isten = |30, stA, j, stB. oy, ((i,stA), (j,stB)) * °. (stA) = L (stB) =
o ()%, () s (i=jVit1=))

Similar to the retransmit example, the invariant owns the model state via oy, ((i, stA), (j, stB)),
and exposes the individual parts of the state via the remaining ghost state. Finally, the invariant
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directly enforces the &g, refinement relation. What remains to be done is to prove the weakest
preconditions of the sender and receiver in the presence of the invariant, and to apply the Fairneris
adequacy theorem.

The crux of verifying the Stenning implementation using this invariant is to appropriately
delegate the local views of the state between the sender and receiver, so that they can adequately
make progress, while preserving the synchronicity property. Notably, the sender and receiver need
to deduce that any increment to their counter does not invalidate the invariant. They thus need
a part of the view of the other participant, whenever they are about to make progress. This is
achieved via so-called fractional ownership, which has the following rules:

OWN-FRAC-SPLIT OWN-FRAC-AGREE
o, (m) 4 o/ (m) x o)/* (m) oy (m) * o}/ *(m') k- m = m’

That is, we can split the local view in two, and unify values between them. With this we can enforce
that the sender and receiver “take turns” incrementing their respective part of the state, effectively
enforcing the (At-Most-One-Off) property. In particular, we let the current node borrow half of the
other node’s local view in order to make progress. When it has incremented its counter, it “yields”
the progress permission by sending its borrowed local view along with half of its own view when
sending a fresh sequence/acknowledgement id. We can achieve this delegation of the resources via
the Aneris socket interpretation, using the following protocols:

1/2

&4 msg = o,;"(msg.str) * oy 12 ;. (msg.str)

1/2

@p msg = oy, " (msg.str) * o / (msg.str— 1)

Note that the fractional ownership prohibits one from updatmg the ownership in the invariant.
With the invariant and socket interpretations we only need to prove the following weakest
preconditions (presented as Hoare triples):

Lsten * sag 5 $p * sag = Pg * sag ~> (0,0) * Unbound(saa) =*
{a = {A =42}« oyi(()) * 01/2( 1) = °, A (T)
Lsten * saa = P4 * sag = Pg * sag ~> (0,0) = Unbound(sag) *
{5 = {B =142} x o))’ (=1) x0, (1)

}gA stenningA saA saB {{4 = 0}

}gB stenningB saA saB {{p = 0}

The proof of the weakest preconditions are relatively straightforward, and mostly follows symbolic
execution. The primary proof effort is to consolidate the fractional views to unify and update the
model state at the appropriate times, to stay consistent with the invariant.

With the weakest preconditions in hand, we can finally apply the adequacy theorem. As for
the retransmit example, we can allocate all the necessary ghost state up front, and use it when
allocating the invariant. From this, it is trivial to observe that the assumptions of the weakest
preconditions follow directly from the initial resources of the adequacy theorem.

With the refinement and the AlwaysHolds property in hand, along with the proof of the liveness
property at the model level, we can derive the liveness property for the implementation of the
Stenning protocol, completing the proof.

5 Inner Workings of Fairneris

This section explains how the Fairneris logic is constructed, and how its adequacy theorem is
established. As such, it is the most technical section of the paper, and is not necessary to read to
understand how Fairneris is used.

The adequacy theorem of Fairneris, Theorem 3.1 establishes that given any trace ex of the
program, we obtain a trace utr in the user model U such that ex <z, utr. As we briefly explained in



Verifying Liveness Properties of Distributed Systems via Trace Refinement in Higher-Order CSL 17

§1 the trace utr is not constructed directly. Rather, the program logic, behind the scenes, constructs
a trace ftr in the model Fuel(U =< Net), and then extracts utr out of fir. Below, we will first explain
the details of the construct Fuel (2 =< Net) and how the trace utr is obtained from ftr. Afterwards,
we explain how the program logic of Fairneris constructs the trace ftr. While we keep these
explanations self-contained, we will mainly focus on the innovations that were necessary for this
process compared to Fairis and the Trillium framework.

5.1 Obtaining User Model Trace

Recall the user model of the retransmit example in Figure 2 from §2. The transitions in user models
are annotated with two pieces of information: a role and an action. (In general, user model transition
could also only have a role and no action corresponding to state changes that do not correspond to
any network action.) These two pieces of information, roles and actions, are respectively there to
facilitate hiding details of the scheduler and those of the network, respectively. To better understand,
and appreciate the subtlety of obtaining a trace in U from a trace of Fuel(U = Net), let us first for
now ignore the Fuel construction and focus on the difference between traces of U = Net and U.

The Subtle Relation Between Traces of U =< Net and U. Let use consider a very simple
program consisting of two nodes each with a single thread where one performs a single send
operation and the other performs a single recv operation. This distributed program obviously
terminates after performing exactly one send and one receive operation (which may fail or succeed).
Let us consider the following simple user model for this distributed program:

msg = (saA, "x",saB)

As expected, the use model above has finitely many traces with the maximum length of two.
However, the model Net, and therefore also U = Net, has infinitely many states and infinitely
many traces of arbitrary length including infinite traces. This is because Net must reflect all the
non-deterministic behavior of the network. Below, are a few of these traces (we omit states):

Send(msg) Deliver(msg) RecvS(msg)

@
@
®
©
®)

Send(msg) Dup(msg) Deliver(msg) Deliver(msg) RecvS(msg)

Send(msg) Dup(msg) Deliver(msg) Drop(msg) RecvS(msg)

Send(msg) Dup(msg) Deliver(msg) Dup(msg) RecvS(msg) Drop(msg)

Send(msg) Dup(msg) Deliver (msg) RecvS(msg) Dup(msg) Deliver(msg) Dup(msg) Drop(msg)

In fact all of these traces correspond to the following U trace:

Send RecvS
Start S8 g Red(mee) b g (6)

Observe the difference between the U trace (6) and traces (1-5). The difference is in actions
performed by the network (no program involvement): dropping, delivering, and duplicating msg.
We call these system actions. There are two kinds of system actions: relevant ones, those after
which there is a program step, and irrelevant ones, those that appear at the end of the trace. In (1),
(2), and (3) all system actions are relevant while in (4) and (5) the system actions that happen after
RecvS(msg) are irrelevant; infinitely many in case of (5).

Refinement Tower. The refinement between a program execution ex and a trace utr of the
user model U is defined in several steps, which are depicted in Figure 5. Going bottom up, the
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user trace utr

st
trimmed user + network trace ttr
g <trim
e user + network trace jir
p S
‘c %st
[N

fuel-instrumented user + network trace fir

< lockstep
program execution ex

Trillium

Fig. 5. The trace refinements involved in Fairneris

Trillium adequacy theorem ensures there is a lockstep forward simulation between the program
execution ex and a trace fir of Fuel(U = Net), where the Fuel-construction, described in Fairis [33],
provides finite stuttering and scheduler fairness preservation, in the sense that if ex is fair (w.r.t.
thread ids), then ftr is fair w.r.t. roles. This step will be discussed in §5.4.

Removing finite stutter from fir yields a trace jtr of the “joint model” U = Net. Extracting a
trace utr of the user model U from jtr is done in two steps: first the trailing network step (irrelevant
system actions) are removed in a process we call trimming, resulting in a trace ttr of U = Net.
Finally, the resulting trimmed trace ttr is projected onto U, yielding the user model trace utr, that
the user can use to reason about the distributed system — during this step we also remove all the
relevant system actions.

The important properties of all these refinements is that:

(i) They preserve (scheduler and network) fairness in the upward direction (according to
Figure 5) so that if the execution ex is fair, then so is utr, and

(if) They all downwards-preserve liveness properties of interest, such as LTL formulas of the
form FP, where P only depends on the current network action.

For example, this allows us to conclude that the program of Figure 2 eventually sends the "done!"
message from the fact that the model does.

Here, we describe the two types of refinement that are involved in the light pink region of
Figure 5 (the outer square), and how they are obtained in a generic way without any additional
proof burden on the user.

Trimming Refinement. The traces we consider contain both transitions coming from the
user model U and transitions coming from the network model Net. The first step to extract the
underling user trace is to remove all trailing network steps, a process we call trimming. The reason
is that, in a trimmed trace, there are necessarily finitely many network transitions before the next
user transition. This allows us to define a productive function that removes network transitions, as
described below.

Among the three kinds of refinement we use, trimming is the worst-behaved with respect to
preservation of properties, as it is very asymmetric. For example, if try <y tre, and if try - FP,
then tr; I FP, but the converse is false. However, this property is sufficient for property (ii) above.
Fairness preservation is proved with an ad-hoc reasoning which depends on the nature of the
atomic predicates involved.

Stutter Refinement. According to the standard definition, the trace t; stutter-refines t, if t; can
be obtained from #; by removing finite stutter, where a finite stutter is a finite sequence of repeated
states. For instance, the sequence 122333 - - - stutter-refines 123 - - -. In our setting however, where
the two traces are equipped with states and labels of different nature, the definition sketched above
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is not applicable. Our solution is to consider a heterogeneous notion of stutter-equivalence, between

traces with different states Sy, S, and labels L, L,. This notion of refinement is parameterized by a

map 7s : S; — S; between states and a partial map 7y : L1 — Ly between labels. The idea is that a
¢

step s; — s in a trace ¢ is a stutter step iff 75(s1) = 7m5(s2) and if 77 (£) is not defined. Formally, it

is defined as follows, where only the rightmost rule can be used infinitely many times in a row.’

7s(s1) = ms(hd(#1)) =hd(f) () =L H<ab ms(s1) =s2 m(b) =6 h<sl
7s(s1) = s2
51 0 (7]
(s1) <t (52) S1 — b St by St 2 Sy S2 — 1

In practice, we only have the trace #; and we wish to obtain a trace t, such that t; < ;. This
is possible when the set of traces with states in S; and labels in L; is equipped with a “potential”
function ¥ : Trace(S;, L) — N that decreases along stutter transitions.

We use this technique twice: once for removing the fuel instrumentation, as in Fairis, and once
for obtaining the user trace from the trimmed trace ttr. In the latter case, network transitions are
the stutter transitions, as they cannot modify the user state — see the construction of U = Net
explained below. To define the potential ¥, we rely on the fact that the traces we consider are
trimmed and satisfy scheduling fairness, which means that there can only be finitely many network
transitions in a row. Thus, we define ¥ (tr) to be the number of network transitions before the
first program step.

To reason about property preservation along stutter refinement, we defined the predicate

P St Q = Vtrl, try. try 431» try = (tr1 P& tro I+ Q)

which, intuitively, states that P corresponds to Q when going through a stutter refinement in either
direction. It is a congruence with respect to LTL modalities we use; for example, P < Q implies
FP <4 FQ, and GP <y GQ. However, for point predicates P and Q, for example those which only
depend on the current label of the trace, it is not obvious how to relate them under <. Nevertheless,
the F modality alleviates this issue because we can show the following:

Ve, P(t) & (m(6) # LAQ(m(0)) = FP <4 FQ

As it turns out, this simpler result is sufficient to prove the properties (i) and (ii) for <;.

5.2 Concrete Operational Semantics of Distributed Systems

The Trillium framework [33], just like the Iris framework it is based on, does not fix the programming
language — hence, both Fairis and Fairneris can be constructed on top of it. In practice, this means
that the Trillium framework introduces its own notion what a programming language is. This
allows instantiations to instantiate Trillium by constructing an instance of this notion. In this work,
we have made a simple adjustment to this notion of a programming language: we have introduced
actions. This simple addition allows us to appropriately abstract network’s behavior as we will
discuss below.

A programming language for Trillium is defined fixing a set of terms, Term, a set of states, State,
a set of locales, Locale, a set of user actions, Usract, and a set of system actions, Sysact, together
with the following two relations for program steps and system steps:

—pg & (Termx State) X Usract’ X (Term X State X Term*)
—sys S State X Sysact X State

Terms are program expressions (AnerisLang expressions in case of AnerisLang). States describe
the state of the entire system (for AnerisLang: a memory heap and a map of socket handles for
each node, together with a so-called message soup of messages in transit). Locales are conceptual

3This definition should be understood as an inductive relation nested in a co-inductive relation.
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locations where programs run (a pair of an IP address together with a thread id for AnerisLang). A
tuple (e, 0,a’, €', o, €f) € —prg describes a single step of the program reducing the term e to the
term e’ and updating the state from o to ¢’ while forking threads in the sequence € of expressions
— in AnerisLang €y is only non-empty for the fork operation. The & label is optional (denoted by
?), to allow for internal transitions of the program, which do not involve the network. A tuple
(0,B,0") € —sys describes systems’ autonomous updates; dropping, delivering, or duplicating
in-transit messages in AnerisLang.

Based on these, Trillium defines so-called configurations as a pair of a thread pool (a mapping
from locales to terms) and a state, Cfg 2 ThPool X State, and defines a global step relation

—gop S Cfgx ((Locale X Usract’) U Sysact) x Cfg

The relation— gy is defined by non-deterministically picking a locale and running it for one step, or
by non-deterministically picking a system step. This describes all behaviors of the system including
fair and unfair behaviors of the scheduler and the network.

For AnerisLang, the program steps and system steps are defined in the standard way for the
OCaml-like programming language with UDP-like networking primitive that it is [19]. Here, we
only describe the state in AnerisLang as it is relevant to the discussion in this paper. See Krogh-
Jespersen et al. [19] for more details. In AnerisLang, the global state of a distributed system is of the
form ((S, M), H), where H is a map associating each node ip € Ip with a program heap h = H (ip).
The message soup M is a multiset of messages in transit. The socket state map S is a mapping from
IP addresses to local socket state S, which itself is a map from socket handlers to pairs (skt, buf) of the
receive buffer buf, and the socket itself skt, which contains the socket address skt.sa. Additionally,
there are some well-formedness conditions, for example: S[ip] = S and S[sh] = (skt, buf) imply
that the IP address of the socket address of skt is equal to ip.

5.3 Model Abstraction for Network Traces

Fairneris adequacy, Theorem 3.1, states the existence of a refinement between fair executions of the
distributed system and traces of the user provided model U. As we will see in §5.4, the adequacy
theorem of the underlying Trillium logic constructs a refinement between the distributed system
and a more complicated model, that contains both the user model U and an abstract description of
the network. This section explains how this abstract network is combined with the user model U,
and how the refinement <, is defined.

Synchronized Product. The global model we use is the combination (obtained using the
operation ) of the user model, chosen by the user, and the network model, which is fixed. For the
sake of clarity, we first explain how operation x is defined in general for an arbitrary instantiation
of Trillium. That is, we define the composition of a user model with a system model, which abstracts
the system from the previous section. The two notions of model differ slightly, in that only user
models keep track of roles, as the fairness of the network and of the scheduler are of different
nature.

Definition 5.1 (Enviroment model). Consider a Trillium language instantiation with set of states
State and set of system actions Sysact. A system model is a LTS N labeled with Sysact, together
with a relation

env_match C State X N

and a map

appSys : N — Sysact - N
The relation env_match expresses that the concrete state of the system o € State, refines an
abstract state n € N. The appSys specifies how the system state evolves when the system makes
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an autonomous action, i.e,, it reflects the relation —y. The above data also needs to satisfy some
properties which we elide here.

The purpose of the appSys function is to preserve the refinement env_match between the
distributed system and the abstract model when the network takes an autonomous step. This
function is fixed because system steps are not under the control of the program, and so should be
invisible to the user of the logic. A user model is essentially an LTS with specific labels:

Definition 5.2 (User model). Given a Trillium language instantiation with set of user actions
Usract, a user model U is the data of a set role of roles, together with an LTS A labeled with pairs
(p,a’) € role x Usract’.

The motivation for these two definitions is that we can combine them together to yield a model
that can be “tightly” refined by a distributed system, in the sense that their states are related by a
concrete relation that is amenable to be prove refinements with respect to using a program logic
such as Trillium.

Definition 5.3. Given a user model U and a system model N over the same Trillium language

instantiation, their synchronized product U = N is an LTS labeled with (role X (Usract’)) U Sysact,
whose states are pairs (m, n) of states of U and of N, respectively, together with the following
transitions:

(p,L) (p.ax) o B
m; — my m; — my hnp — Ny np — np
(p.L) (p.cx) B
(m1,n) — (ma,n) (my,ny) —— (mg, nz) (m,ny) — (m,nz)

They correspond, respectively, to a step of the user model without any actions, a step of the user
model that has an action which triggers a step in the system model, and an autonomous step of the
system.

In summary, internal program steps, i.e. when the action is not present, &’ = L, do not synchronize
with the system, and neither do the autonomous system steps with the program. The two sides
synchronize through the program actions, which correspond to both a program step and a system
step.

5.3.1 The Abstract Network Model. In Fairneris, we instantiate the system model with the
network model Net. This network model is more abstract than the one used in the operational
semantics of AnerisLang, as it eschews socket handlers. The states (sm, M) of Net are simply
maps sm from socket addresses to lists of messages, representing the receive buffers, as well as the
global message soup M. The labels are the system actions of AnerisLang, described in §5.2. The
transitions of this LTS are defined in a very similar way as the low-level network semantics. Thus,
we omit them in the paper. The appSys function is defined in the obvious way, for example the
case of message deliveries is the following:

appSys((sm, M), Deliver(msg)) = (sm[sa := msg:sm[sa]], M \ {msg})

where sa is the destination socket address of msg, the message being delivered, and :: is the cons
operation on lists.

To build the refinement between the program and the model, we maintain a relationship
env_match between the two representations of the network: an AnerisLang network (S, M)
refines a model network (sm, M’) when

M=M (7)
Slip] =S A S[sh] = (skt, buf) = sm[skt.sa] = buf (8)
sm[sa] = buf = 3sh, skt. S[ip][sh] = (skt, buf) A skt.sa= sa 9)
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Intuitively, the message soups have to match exactly, and the receive buffers have to contain the
same messages. Note that there could be an empty receive buffer in the AnerisLang network state
that is not allocated at all in the model network state, this allows —, transitions such as creating
a new socket to not be reflected in the abstract model.

5.4 Model of the Logic

We conclude this section with a discussion of how the Fairneris logic is defined. First we explain
the concept of trace interpretation [33] and define that of Fairneris. This allows us to explicate the
definitions of the predicates wp e (&) and mué®’ | that were explained in §3, and which manipulate
this trace interpretation. Finally, we sketch how the first refinement in Figure 5 is obtained using
the Trillium logic.

Trace Interpretation. The general weakest precondition of Trillium is parameterized by a
so-called trace interpretation predicate, an Iris predicate relating traces of the program to the traces
of the model (This is a generalization of what Iris calls a state interpretation). We write TI(, x).
In our instantiation of Trillium with AnerisLang, the arguments 7 and « are respectively, a finite
execution of the program (a sequence of Cfg’s to be more precise), and a finite trace of the global
model Fuel(U = Net). These are the histories of the program and of the model, and are intuitively
prefixes of the full executions ex and user model traces utr we considered above. Intuitively, TI(z, k)
states that the current state of the program is last(7), the current state of the model is last(x), and
that they match, in the sense determined by the person instantiating Trillium who picks the trace
interpretation relation. Note that, since Trillium is designed to build lockstep simulations, the two
histories 7 and k must always have the same length. For the Fairneris instantiation of Trillium, the
trace interpretation is defined as follows:

TI(r,x) := traces_match(z,x) * aneris_interp(r) * model_interp(last(r), last(x))

where aneris_interp is the existing Aneris state/trace interpretation, reflecting the state of node
heaps, sockets, and the message soup in Iris resources. The traces_match predicate is a straightfor-
ward modification of that same predicate from Fairis, adding support for actions in the operational
semantics of the programming language and in the model. Here, traces_match also adds the re-
quirement that actions must match exactly in the two traces, allowing us to transport knowledge
about the network actions back-and-forth between the distributed system and the abstract model
(U < Net). Finally, the relation model_interp((p, o), i) asserts that the current state of the model
is m, and that it is well-formed. The state m € Fuel(U < Net) can be decomposed into three parts,
that are each treated differently:

e The fuel instrumentation is handled as in Fairis [33]

e The state m of the user model U is owned by the predicate TI*

e The network part n € Net is novel: the trace interpretation TI asserts env_match(o, n)
holds.

The Single Step Weakest Precondition. One of the main innovation of Fairneris over Fairis
in terms of their program logics is the logical rules governing the single step weakest precondition
wp e (P) (abbreviated SSWP), which was introduced by Fairis, and its companion, the model update
mu?@ | which we have introduced in this paper. In Fairis[33], SSWP was intuitively defined as
follows: during a single step of the program, given the current trace interpretation TI(z, k), we
can update the ghost state in such a way that the trace interpretation for the extended histories

4For readers familiar with Iris, TI asserts ownership of the authoritative part of the resource algebra AuTH(Ex(U))
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Trillium SSWP
wpe(P) = B (e ¢ Val * Vr,k, 0, K, tp. last(7) = (tp[{ — K[e]],0) * TI(r, k) ~+ B

2

reducible(e, o) * »Va', e', 0", €. (e, 0) Lprg (e/,0';6) = B
0 (r &9 (tp[¢ - K[e]],0), k. (@) x D (€/a”) % € = €)
Trillium Model Update
mué® p £ vr,k. Tl (1, K, ¢, ') «B3Ime M, p. last(x) B> m = TI(r,k &> m) « P

System weakest precondition

system_wp 2 Vr,k, S, tp, 0. ((last(f) ﬂsys (tp,o)) * TI(x, lc)) -+ B 3dm, . TI(TA (tp,0), k5 m)

Fig. 6. Definitions of basic constructs

TI(r i) (tp',0'), x 5 m’)holds. As such, logically, and in terms of user experience, updating the
ghost state for the program and for the model M had to be done at the same time.

The new definition of the SSWP, and that of model update, given in Figure 6, decouple these two
concerns. Here, make use of a so-called torn trace interpretation TI'(t,k, {, a?), which expresses
that the program history 7 is one step ahead of the model history «, for a step that is labeled by
(Z,a’). Formally, it is defined as:

7 A ’ (’ ?)
TI (T,K,{,a?) £ 3Adip o T = T'g—a>(tp,0) *

traces_match(7’,x) * aneris_interp(z’) * model_interp(last(z’), last(x))

The Aneris part of the ghost state corresponds to extended trace 7 of the program, whereas the
current model history corresponds to the immediate prefix 7’ of the program history. Thus, the
SSWP moves the program execution by one step, tearing the relationship between the traces of the
program and the the model. The model update then moves the model trace one step so that they
match again. This explains the inference rule we-ster, which decomposes a weakest precondition
into (1) an SSWP handling the next step of the program, (2) a model update handling the next
step of the model, and (3) a weakest precondition handling the remainder of the steps of both the
program and the model.

The System Weakest Precondition. The intuitive reason wp e {(P} guarantees safety of the
program e is that it states that every step of the program is safe, in the sense that the program
should not crash (should not get stuck), and that it preserves the trace interpretation. In the case of
distributed systems that is not enough, as the network also takes autonomous steps. These steps
need to not only should not cause a crash, but they must also preserve the trace interpretation.

The solution in Trillium [33] was to introduce the system weakest precondition (system WP),
which simply states that all steps 0 — s 0 of the network preserve the trace interpretation, as
shown in Figure 6. Unlike weakest preconditions that are proved by the users of a program logic
like Fairneris based on the Trillium framework, the system WP is proved once and for all by the
person instantiating Trillium, and does not appear at all to the user.

In the case of Fairneris this step is more difficult than for the previous Aneris instantiation of
Trillium by Timany et al. [33], as we additionally need to prove that each network step refines the
corresponding step in the abstract network model Net. This is one of the places the gap between
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Fairneris (this work) | Aneris [19] | Disel [29] | Grove [30] | Igloo [31] | IronFleet [15] | Verdi [34]
Higher-Order 4 v v v v v X
Concurrency v v X v v X X
Safety properties v v v v v v v
Liveness properties v X X X X v X
Refinement-based v v X X 4 4 X
Foundational v v v 4 X X 2l
Crash Recovery &
Reconfiguration X X X v X X X

“Requires a special program shape: a main event loop.
The version by Timany et al. [33] is refinement-based; albeit only for safety properties.
#Refinement between programs; initially programs are written against an idealized network model and then automatically refined to
programs that assume a less reliable network model.
$Meta theory proven correct in the Isabelle proof assistant [1]; programs proven correct in Verifast [17] and Negini [11].
TRelies on a not-so-small shim to run programs written in Verdi’s DSL.

Table 1. Comparison of different approaches to reasoning about distributed systems’ implementations.

the concrete network and abstract model of the network needs to be bridged, by proving that
properties (7-9) are preserved.

The Lockstep Refinement Using Trillium. Fairneris is based on Trillium[33], and thus inherits
its weakest precondition wp¢ e {(D} The first step of the proof of Fairneris adequacy (Theorem 3.1)
is to apply Trillium’s adequacy, Theorem 5.4. Below, we will present and explain this theorem and
sketch how it is used in proving the adequacy theorem of Fairneris.

THEOREM 5.4 (TRILLIUM ADEQUACY). Let e be a program, o a program state, { the locale of e, and ®
an Iris predicate on values. Let m € M be a model state and & a relation on finite traces of the program
and the model. Let ({{ +— e}, o) be the initial configuration of the program. If £(({{ — e}, o), m)
holds for the initial singleton traces, and furthermore we have

B TI(c,m) = wpg e {QD} * AlwaysHoldsp (€, ¢, m)
then ({ + e}, 0) 3¢ m holds in the meta-logic.

The predicate ({{ + e},0) 3¢ m states that there exists a lockstep forward simulation that
preserves the relation &, and which relates ({{ +— e}, o) and m. The AlwaysHolds; predicate is
analogous to the corresponding predicate in Theorem 3.1. The refinement <jkssep at the bottom of
Figure 5 is obtained from <y using a general result stating that such simulation relations induce a
refinement relation between possibly-infinite traces [33]. All that remains is to apply Theorem 5.4
with of M = Fuel(U < Net), where U is the model chosen by the user of Fairneris and with
a well-chosen relation &, which incorporates the user chosen relation &. The Fuel construction,
which is taken essentially verbatim from Fairis [33], together with ¢ ensure that 3 preserves
fairness. We remark that this is more difficult than for the other refinement relations, because
fairness of the program execution is defined in terms of locales, whereas the fairness for traces of
Fuel(U = Net) is defined in terms of the roles of U.

6 Related and Future Work

Verification of Distributed Systems’ Implementations. We have already discussed the
works most closely related to ours, i.e., Aneris [19], Disel [29], Grove [30], Igloo [31], IronFleet [15],
and Verdi [34], in §1. Table 1 gives a summary of comparison of these systems.

Regarding Igloo, we remark that it proves correctness of distributed systems by establishing a
rather weak refinement relation between the program and a transition system which only establishes
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that the program and the transition system perform the same I/O operations. The weakness of
Igloo’s refinement relation enables great flexibility with respect program structure thus enabling it
to reason about concurrent programs that use higher-order programming features which are not
written as simple event loops. However, it is not clear how the methodology of Igloo [31] can be
extended to support reasoning about liveness properties.

The approach of Grove [30] to verifying distributed systems is very close to that of Aneris
[19] upon which we have based our work — Grove is also based on the Iris framework [18]. It
pushes the limits of this methodology by verifying (safety properties of) crash recovery (some
nodes may spontaneously fail and restart) and reconfiguration (nodes can dynamically join or leave
the distributed system). An interesting and important future work is to prove liveness properties
of such distributed systems. Indeed, one of the main reasons for implementing crash recovery
and dynamic reconfiguration in distributed systems is to improve availability. We believe that the
Fairneris methodology developed here should also scale to supporting reasoning about these more
advanced features of distributed systems.

Verification of Liveness Properties of Distributed Protocols. Several works [4, 5, 10, 23,
24, 26, 27, 35] have considered proving liveness properties of distributed systems at the protocol
level by studying these protocols as state transition systems at various levels of detail. Most of
these approaches focus on specifically proving correctness of consensus protocols. They often [10]
even require the program to be constructed in terms of rounds of reaching consensus. Even though
these approaches would be able to verify the stenning protocol as we have, they do net seem able
to handle our simpler retransmit example in §2. In many cases [4, 5, 23, 24, 26] these works verify
liveness properties by reducing liveness properties to safety properties which they then automate.
Compared to our approach of verifying liveness properties of concrete implementations, these
approaches scale better, e.g., to proving liveness in the presence of byzantine faults [4, 5, 23, 27].
Proving liveness of distributed systems in the presence of byzantine faults is another important
and interesting future work. We believe that the state-transition-systems style protocols studied by
these works are interesting candidates to consider as high-level models in Fairneris. This would
allow us to scale Fairneris’s approach to reasoning about liveness in the presence of byzantine
faults.

Verification of Stenning Protocol. Both safety and liveness properties of the Stenning protocol
have been verified at different levels of details [7, 8, 14, 25, 28]. Among these, only Compton [7]
considers a concrete implementation, in OCaml, on top of UDP sockets. However, Compton [7]
only proves safety properties, whereas we prove both safety and liveness of the protocol.

7 Conclusion

We have presented Fairneris, the first higher order concurrent separation logic that is capable of
reasoning about both the safety and liveness of concrete implementations of distributed systems, by
following the methodology of Fairis and Trillium, i.e., via constructing and exploiting a refinement
relation between the distributed program and an abstract model of the distributed algorithm
it implements. Using this method, the program logic handles what it does best — the complex
semantics of the language and the safety properties — while the liveness reasoning happens on a
high level representation of the system.
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