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Abstract. Message passing is a useful abstraction for implementing concurrent programs.
For real-world systems, however, it is often combined with other programming and concur-
rency paradigms, such as higher-order functions, mutable state, shared-memory concurrency,
and locks. We present Actris: a logic for proving functional correctness of programs that
use a combination of the aforementioned features. Actris combines the power of modern
concurrent separation logics with a first-class protocol mechanism—based on session types—
for reasoning about message passing in the presence of other concurrency paradigms. We
show that Actris provides a suitable level of abstraction by proving functional correctness of
a variety of examples, including a channel-based merge sort, a channel-based load-balancing
mapper, and a variant of the map-reduce model, using concise specifications.

While Actris was already presented in a conference paper (POPL’20), this paper expands
the prior presentation significantly. Moreover, it extends Actris to Actris 2.0 with a notion
of subprotocols—based on session-type subtyping—that permits additional flexibility when
composing channel endpoints, and that takes full advantage of the asynchronous semantics
of message passing in Actris. Soundness of Actris 2.0 is proven using a model of its protocol
mechanism in the Iris framework. We have mechanised the theory of Actris, together with
custom tactics, as well as all examples in the paper, in the Coq proof assistant.

1. Introduction

Message-passing programs are ubiquitous in modern computer systems, emphasising the
importance of their functional correctness. Programming languages, like Erlang, Elixir,
and Go, have built-in primitives that handle spawning of processes and intra-process
communication, while other mainstream languages, such as Java, Scala, F#, and C#, have
introduced an Actor model [HBS73] to achieve similar functionality. In both cases the
goal remains the same—help design reliable systems, often with close to constant up-time,
using lightweight processes that can be spawned by the hundreds of thousands and that
communicate via asynchronous message passing.
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While message passing is a useful abstraction, it is not a silver bullet of concurrent
programming. In a qualitative study of larger Scala projects Tasharofi et al. [TDJ13] write:

We studied 15 large, mature, and actively maintained actor programs written
in Scala and found that 80% of them mix the actor model with another
concurrency model.

In this study, 12 out of 15 projects did not entirely stick to the Actor model, hinting
that even for projects that embrace message passing, low-level concurrency primitives like
locks (i.e., mutexes) still have their place. Tu et al. [TLSZ19] came to a similar conclusion
when studying 6 large and popular Go programs. A suitable solution for reasoning about
message-passing programs should thus integrate with other programming and concurrency
paradigms.

In this paper we introduce Actris—a concurrent separation logic for proving functional
correctness of programs that combine message passing with other programming and concur-
rency paradigms. Actris can be used to reason about programs written in a language that
mimics the important features found in aforementioned languages such as higher-order func-
tions, higher-order references, fork-based concurrency, locks, and primitives for asynchronous
message passing over channels. The channels of our language are first-class and can be sent
as arguments to functions, be sent over other channels (often referred to as delegation), and
be stored in references.

Program specifications in Actris are written in an impredicative higher-order concurrent
separation logic built on top of the Iris framework [JSS+15; KJB+17; JKBD16; JKJ+18]. In
addition to the usual features of Iris, Actris provides a notion of dependent separation protocols
to reason about message passing over channels, inspired by binary session types [HVK98].
We show that dependent separation protocols integrate seamlessly with other concurrency
paradigms, allow delegation of resources, support channel sharing over multiple concurrent
threads using locks, and more.

1.1. Message passing in concurrent separation logic. Over the last decade, there has
been much work on extensions of concurrent separation logic with reasoning principles for
message passing [FRS11; LV12; CKC15; OBH16]. These logics typically include some form
of mechanism for writing protocol specifications in a high-level manner, to elegantly reason
about message passing in some specific context.

In a different line of work, researchers have developed more expressive extensions of
concurrent separation logic that support proving strong specifications of programs involving
features such as higher-order functions, fine-grained shared-memory concurrency, and locks.
Examples of such logics are TaDA [dRPDG14], iCAP [SB14], Iris [JSS+15], FCSL [NLSD14],
and VST [App14]. However, only a few variants and extensions of these logics provide a
high-level reasoning mechanism specific to message-passing concurrency.

First off, there has been work on the use of Iris-like separation logic to reason about
programs that communicate via message passing over a network. The reasoning principles
in such logics are geared towards different programming patterns than the ones used in
high-level languages like Erlang, Elixir, Go, and Scala. Namely, on networks all data must be
serialised, and packets can be lost or delivered out of order. In high-level languages messages
cannot get lost, are ensured to be delivered in order, and are allowed to contain many types of
data, including functions, references, and even channel endpoints. Two examples of network
logics are Disel by Sergey et al. [SWT18] and Aneris by Krogh-Jespersen et al. [KTO+20].
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Additionally, there has been work on the use of separation logic to prove compiler correctness
of high-level message-passing languages. Tassarotti et al. [TJH17] verified a small compiler
of a session-typed language into a language where channel buffers are modelled on the heap.

The primary reasoning principle to model the interaction between processes in the
aforementioned logics is the notion of a State Transition System (STS). As a simple example,
consider the following program, which is borrowed from Tassarotti et al. [TJH17]:

prog1 := let (c, c′) := new chan () in fork
{
send c′ 42

}
; recv c

This program creates two channel endpoints c and c′, forks off a new thread, and sends the
number 42 over the channel c′, which is then received by the initiating thread. Modelling
the behaviour of this program in an STS typically requires three states:

Init Sent Received

The three states model that no message has been sent (Init), that a message has been sent
but not received (Sent), and finally that the message has been sent and received (Received).
Exactly what this STS represents is made precise by the underlying logic, which determines
what constitutes a state and a transition, and how these are related to the channel buffers.

While STSs appear like a flexible and intuitive abstraction to reason about message-
passing concurrency, they have their problems:

• Coming up with a good STS that makes the appropriate abstractions is difficult because
the STS has to keep track of all possible states that the channel buffers can be in, including
all possible interleavings of messages in transit.
• While STSs used for the verification of different modules can be composed at the level of

the logic, there is no canonical way of composing them due to their unrestrained structure.
• Finally, STSs are first-order meaning that their states and transitions cannot be indexed

by propositions of the underlying logic, which limits what they can express when sending
messages containing functions or other channels.

1.2. Actris 1.0: Dependent separation protocols. Actris extends separation logic with
a notion called dependent separation protocols. This notion is inspired by the session type
community, pioneered by Honda et al. [HVK98], where channel endpoints are given types
that describe the expected exchanges. Using session types, the channels c and c′ in the
program prog1 in § 1.1 would have the types c : ?Z.end and c′ : !Z.end, where !T and ?T
denotes that a value of type T is sent or received, respectively. Moreover, the types of the
channels c and c′ are duals—when one does a send the other does a receive, and vice versa.

While session types provide a compact way of specifying the behaviour of channels, they
can only be used to talk about the type of data that is being passed around—not their
payloads. In this paper, we build on prior work by Bocchi et al. [BHTY10] and Craciun et
al. [CKC15] to attach logical predicates to session types to say more about the payloads,
thus vastly extending the expressivity. Concretely, we port session types into separation
logic in the form of a construct c � prot , which denotes ownership of a channel c with
dependent separation protocol prot . Dependent separation protocols prot are streams of
! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot constructors that are either infinite or finite, where
finite streams are ultimately terminated by an end constructor. Here, v is the value that is
being sent or received, P is a separation logic proposition denoting the ownership of the
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resources being transferred as part of the message, and the variables ~x :~τ bind into v, P ,
and prot . The dependent separation protocols for the above example are:

c� ?〈42〉{True}. end and c′� ! 〈42〉{True}. end

These protocols state that the endpoint c expects the number 42 to be sent along it, and
that the endpoint c′ expects to send the number 42. Using this protocol, we can prove that
prog1 has the specification {True} prog1 {v. v = 42}, where v is its resulting value.

Dependent separation protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot are dependent,
meaning that the tail prot can be defined in terms of the previously bound variables ~x :~τ . A
sample program showing the use of such dependency is:

prog2 := let (c, c′) := new chan () in
fork {let x := recv c′ in send c′ (x+ 2)} ;
send c 40; recv c

In this program, the main thread sends the number 40 to the forked-off thread, which then
adds two to it, and sends it back. This program has the same specification as prog1, while
we change the dependent separation protocol as follows (we omit the dependent separation
protocol for the dual endpoint c′):

c� ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end

This protocol states that the second exchanged value is exactly the first with two added to
it. To do so, it makes use of a dependency on the variable x, which is used to describe the
contents of the first message, which the second message then depends on. This variable is
bound in the protocol and it is instantiated only when a message is sent. This is different
from the logic by Craciun et al. [CKC15], which does not support dependent protocols.
Their logic is limited to protocols analogous to ! 〈x〉{True}. ?〈x+ 2〉{True}. end where x is
free, which means the value of x must be known when the protocol is created.

While the prior examples could have been type-checked and verified using the formalisms
of Bocchi et al. [BHTY10] and Craciun et al. [CKC15], the following stateful example cannot:

prog3 := let (c, c′) := new chan () in
fork {let l := recv c′ in l← (! l + 2); send c′ ()} ;
let l := ref 40 in send c l; recv c; ! l

Here, the main thread stores the value 40 on the heap, and sends a reference l over the
channel c to the forked-off thread. The main thread then awaits a signal (), notifying that
the reference has been updated to 42 by the forked-off thread. This program has the same
specification as prog1 and prog2, but the dependent separation protocol is updated:

c� ! (` : Loc) (x : Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x+ 2)}. end

This protocol denotes that the endpoints first exchange a reference `, as well as a points-to
connective ` 7→ x that describes the ownership and value of the reference `. To perform the
exchange c has to give up ownership of the location, while c′ acquires it—which is why it
can then safely update the received location to 42 before sending the ownership back along
with the notification ().

The type system by Bocchi et al. [BHTY10] cannot verify this program because it does
not support mutable state, while Actris can verify the program because it is a separation
logic. The logic by Craciun et al. [CKC15] cannot verify this program because it does not
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support dependent protocols, which are crucial here as they make it possible to delay picking
the location ` used in the protocol until the send operation is performed.

Dependent protocols are also useful to define recursive protocols to reason about programs
that use a channel in a loop. Consider the following variant of prog1:

prog4 := let (c, c′) := new chan () in
fork

{
let go () :=

(
send c′ (recv c′ + 2); go ()

)
in go ()

}
;

send c 18; let x := recv c in
send c 20; let y := recv c in x+ y

The forked-off thread will repeatedly interleave receiving values with sending those values
back incremented by two. The program prog4 has the same specification as before, but now
we use the following recursive dependent separation protocol:

c� µrec. ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. rec

This protocol expresses that it is possible to make repeated exchanges with the forked-off
thread to increment a number by two. The fact that the variable x is bound in the protocol
is once again crucial—it allows the use of different numbers for each exchange.

Furthermore, Actris inherently includes some features of conventional session types.
One such example is the delegation of channels as seen in the following program:

prog5 := let (c1, c
′
1) := new chan () in

fork {let c := recv c′1 in let y := recv c′1 in send c y; send c′1 ()} ;
let (c2, c

′
2) := new chan () in

fork {let x := recv c′2 in send c
′
2 (x+ 2)} ;

send c1 c2; send c1 40; recv c1; recv c2

This program uses the channel pair c2, c
′
2 to exchange the number 40 with the second

forked-off thread, which adds 2 to it, and sends it back. Contrary to the programs we have
seen before, it uses the additional channel pair c1, c

′
1 to delegate the endpoint c2 to the first

forked-off thread, which then sends the number over c2. While this program is intricate, the
following dependent separation protocols describe the communication concisely:

c1� ! (c : Val) 〈c〉{c� ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end}.
! (y : Z) 〈y〉{True}. ?〈()〉{c� ?〈y + 2〉{True}. end}. end

c2� ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end

The first protocol states that the initial value sent must be a channel endpoint c with the
protocol used in prog1. This means that the main thread must give up ownership of the
channel endpoint c2, thereby delegating it. The first protocol then expects a value y to
be sent, and finally to receive a notification (), along with ownership of the channel c2,
which has since taken one step by sending y. Note that c is of the type Val of programming
language values due to the programming language being untyped.

Lastly, the dependencies in dependent separation protocols are not limited to first-order
data, but can also be used in combination with functions. For example:

prog6 := let (c, c′) := new chan () in
fork {let f := recv c′ in send c′ (λ . f() + 2)} ;
let l := ref 40 in send c (λ . ! l); recv c ()
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This program exchanges a value to which 2 is added, but postpones the evaluation by
wrapping the computation in a closure. The following protocol is used to verify this program:

c� ! (P Q : iProp) (f : Val) 〈f〉{{P} f () {v. v ∈ Z ∗Q(v)}}.
?(g : Val) 〈g〉{{P} g () {v. ∃w. (v = w + 2) ∗Q(w)}}. end

The send constructor (!) does not just bind the function value f , but also the precondition
P and postcondition Q of its Hoare triple. In the second message, a Hoare triple is returned
that maintains the original pre- and postconditions, but returns an integer of two higher. To
send the function, the main thread would let P , ` 7→ 40 and Q(v) , (v = 40), and prove
{P} (λ . ! `) () {Q}. This example demonstrates that the state space of dependent separation
protocols can be higher-order—it is indexed by the precondition P and postcondition Q
of f—which means that they do not have to be agreed upon when creating the protocol,
masking the internals of the function from the forked-off thread.

It is worth noting that using dependent recursive protocols it is possible to keep track
of a history of what actions have been performed, which, as is shown in § 7, is especially
useful when combining channels with locks.

1.3. Actris 2.0: Subprotocols. While Actris 1.0’s notion of dependent separation pro-
tocols is expressive enough to specify advanced exchanges, as indicated by the examples
in the previous section, they can only reason about interactions that are strictly dual. In
particular, the dual nature of Actris 1.0 requires that:

• Sends (! ~x :~τ 〈v〉{P}) are matched up with receives (?~x :~τ 〈v〉{P}), and vice versa,
• The logical variables ~x :~τ of matched sends and receives are the same, and,
• The propositions P of matched send and receives are the same.

Reasoning about programs with a more relaxed duality principle has been studied in
the session type community, namely in the context of asynchronous session subtyping
[MYH09; MY15]. A subtyping relation S1<: S2 captures that the session type S2 can be
used in place of S1 when type checking a program. Channel endpoints are then allocated
with strictly dual session types, after which either side can be weakened based on the
subtyping relation. For one, the subtyping relation captures that sends can be swapped
ahead of receives ?T.!U.S <: !U.?T.S. Swapping sends ahead of receives is safe to do, as the
messages are simply enqueued into the corresponding channel buffer earlier than necessary.
The following program illustrates such a non-dual yet safe interaction:

prog7 := let (c, c′) := new chan () in
fork {send c′ 20; send c′ (recv c′ + 2)} ;
send c 20;
let x := recv c in
let y := recv c in x+ y

Here, both threads first send the value 20, which is enqueued into both of the channel
buffers, after which they receive the value of the other thread. After this, they follow a dual
behaviour, where the forked-off thread sends a value, which the main thread receives.

In this paper, we show that dependent separation protocols are compatible with the idea
of asynchronous session subtyping. This gives rise to Actris 2.0, which supports so-called
subprotocols. Subprotocols are formalised by a preorder prot1 v prot2, which captures
(among others) a notion of swapping sends ahead of receives (provided that the send does
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not depend on the logical variables of the receive). We can prove that prog7 results in 42 by
picking the following dependent separation protocols:

c� ! (x : Z) 〈x〉{True}. ?〈20〉{True}. ?〈x+ 2〉{True}. end and

c′� ?(x : Z) 〈x〉{True}. ! 〈20〉{True}. ! 〈x+ 2〉{True}. end

While the main thread satisfies the protocol of c immediately, the forked-off thread does not
satisfy the protocol of c′, as it sends the first value before receiving. However, it is possible
to weaken the protocol of c′ using Actris 2.0’s notion of subprotocols:

?(x : Z) 〈x〉{True}. ! 〈20〉{True}. ! 〈x+ 2〉{True}. end
v ! 〈20〉{True}. ?(x : Z) 〈x〉{True}. ! 〈x+ 2〉{True}. end

This gives c′ � ! 〈20〉{True}. ?(x : Z) 〈x〉{True}. ! 〈x+ 2〉{True}. end. Since the first send
(with value 20) is independent of the variable x bound by the receive, the subprotocol
relation follows immediately from the swapping property. Note that it is not possible to
swap the second send (with value x+ 2) ahead of the receive, as it does in fact depend on
variable x bound by the receive.

In addition to allowing the verification of a larger class of programs, Actris 2.0’s subpro-
tocols also provide a more extensional approach to reasoning about dependent separation
protocols. This is beneficial whenever we want to reuse existing specifications that might
use a syntactically different protocol, but that nonetheless logically entail each another. For
example, the ordering of logical variables can be changed using the subprotocol relation:

! (x : Z)(y : Z) 〈(x, y)〉{True}. prot v ! (y : Z)(x : Z) 〈(x, y)〉{True}. prot

Since the subprotocol relation is a first-class logical proposition of Actris 2.0, it also allows
the manipulation of separation logic resources, such as moving in ownership. For example,
we can show the following conditional subprotocol relation:

`′1 7→ 20 −∗
! (`1, `2 : Loc) 〈(`1, `2)〉{`1 7→ 20 ∗ `2 7→ 22}. prot v ! (`2 : Loc) 〈(`′1, `2)〉{`2 7→ 22}. prot

Here, we move the ownership of `′1 7→ 20 into the protocol, to resolve the eventual obligation
of sending it, while instantiating the logical variable `1 with `′1.

In addition to the demonstrated features, in the rest of this paper we show that Actris
2.0’s subprotocol relation is capable of moving resources from one message to another. This
gives rise to a principle similar to framing, known from conventional separation logic, but
applied to dependent separation protocols. Lastly, inspired by the work of Brandt and
Henglein [BH98], the subprotocol relation is defined coinductively, allowing us to use the
principle of Löb induction to prove subprotocol relations for recursive protocols.

1.4. Formal correspondence to session types. Even though Actris’s notion of dependent
separation protocols is influenced by binary session types, this paper does not provide a formal
correspondence between the two systems. However, since Actris is built on top of Iris, it forms
a suitable foundation for building logical relation models of type systems. In related work by
Hinrichsen et al. [HLKB21], Actris has been used to define a logical relations model of binary
session types, with support for various forms of polymorphism and recursion, asynchronous
subtyping, references, and locks/mutexes. Similar to RustBelt [JJKD18; JJKD21], the work
by Hinrichsen et al. [HLKB21] gives rise to an extensible approach for proving type safety,
which can be used to manually prove the typing judgements of racy, but safe, programs that
cannot be type checked using only the rules of the type system.
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1.5. Contributions and outline. This paper introduces Actris 2.0: a higher-order im-
predicative concurrent separation logic built on top of the Iris framework for reasoning about
functional correctness of programs with asynchronous message-passing that combine higher-
order functions, higher-order references, fork-based concurrency, and locks. Concretely, this
paper makes the following contributions:

• We introduce dependent separation protocols inspired by affine binary session types to model
the transfer of resources (including higher-order functions) between channel endpoints.
We show that they can be used to handle choice, recursion, and delegation (§ 2 to 5).
• We introduce subprotocols inspired by asynchronous session subtyping. This notion relaxes

duality, allowing channels to send messages before receiving others, and gives rise to a
more extensional approach to reasoning about dependent separation protocols, providing
more flexibility in the design and reuse of protocols. We moreover show how Löb induction
is used to reason about recursive subprotocols (§ 6).
• We demonstrate the benefits obtained from building Actris on top of Iris by showing how

Iris’s support for ghost state and locks can be used to prove functional correctness of
programs using manifest sharing, i.e., channel endpoints shared by multiple parties (§ 7).
• We provide a case study on Actris and its mechanisation in Coq by proving functional

correctness of a variant of the map-reduce model by Dean and Ghemawat [DG04] (§ 8).
• We give a model of dependent separation protocols in the Iris framework to prove safety

and postcondition validity of our Hoare triples (§ 9).
• We provide a full mechanisation of Actris [HBK21] using the interactive theorem prover

Coq. On top of our Coq mechanisation, we provide custom tactics, which we use to
mechanise all examples in the paper (§ 10).

1.6. Differences from the conference version. This paper is an extension of the paper
“Actris: Session-type based reasoning in separation logic” presented at the POPL’20 confer-
ence [HBK20]. In this paper we present Actris 2.0, which extends Actris 1.0 with the notion
of subprotocols. This extension introduces new logical connectives and proof rules, but also
involves a significant overhaul of the original model and its Coq mechanisation. We extend
the presentation of the programming language semantics, model and mechanisation substan-
tially, with additional details, considerations, and examples, to give a better understanding
of how Actris works and how it can be used. Concretely, this paper includes the following
extensions compared to the conference version:

• An overview of subprotocols in the introduction (§ 1.3).
• A new background section on the programming language semantics (§ 2) and Iris (§ 3).
• A section with an expanded overview of Actris (§ 4, moved from § 5).
• A new section on Actris 2.0’s notion of subprotocols (§ 6).
• An updated and expanded description of the model of Actris in Iris (§ 9).
• An extension of the section on the Coq mechanisation with sample proofs (§ 10).

2. Programming language semantics

The Iris program logic is parametric in the programming language that is used. As a result
there are multiple approaches to extend Iris with support for channels:

• Instantiate Iris with a language that has native support for channels. This approach was
carried out in the original Iris paper [JSS+15] and by Tassarotti et al. [TJH17].
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• Instantiate Iris with a language that has low-level concurrency primitives, but no native
support for channels, and implement channels as a library in that language. This approach
was carried out by Bizjak et al. [BGKB19] for a lock-free implementation of channels.

In this paper we take the second approach. We implement channels in HeapLang—the
default programming language that is shipped with Iris’s Coq development [Iri21]. HeapLang
is an untyped functional language with high-level features such as higher-order functions,
higher-order mutable references, fork-based concurrency, and garbage collection. Due to
these high-level features, programs written in HeapLang are reminiscent of those written in
high-level programming languages with message passing like Go or Erlang.

Since HeapLang is an untyped language, safety of a program is not obtained by estab-
lishing a typing judgement, but by proving a Hoare triple in the Iris/Actris logic. Hinrichsen
et al. [HLKB21] show how logical relations in Actris can be used to define and prove sound
a session type system for HeapLang extended with message passing.

We proceed by describing HeapLang’s syntax (§ 2.1) and operational semantics (§ 2.2).
We then present HeapLang’s standard library for spin locks (§ 2.3). We use this lock library
to implement channels (§ 2.4), and to write programs that combine message passing with
lock-based concurrency (§ 7).

2.1. Syntax. The syntax of HeapLang is as follows:

v ∈ Val ::= () | i | b | ` | rec f x := e | (i ∈ Z, b ∈ B, ` ∈ Loc)

(v1, v2) | inj1 v | inj2 v | . . .
e ∈ Expr ::= v | x | e1 e2 | (e1, e2) | fst e | snd e |

if e1 then e2 else e3 | inj1 e | inj2 e |
(match e1 with (inj1 x)⇒ e2 | (inj2 x)⇒ e3 end) |
ref e | ! e | e1 ← e2 | (Mutable state)

fork {e} | CAS e1 e2 e3 | . . . (Concurrency)

We elide the standard boolean and arithmetic operators such as equality, addition, subtraction,
and multiplication. We define various notions as syntactic sugar (i.e., as definitions in the

meta language by use of ,):

λx. e , rec x := e e1; e2 , let := e1 in e2

let x := e1 in e2 , (λx. e2) e1 skipN , rec go x := if 0 < x
then go (x− 1) else ()

We use as the anonymous binder that is not used in the body of the binding expression.
The skipN operation, which performs a given number of no-op program steps, is used in the
implementation of channels (§ 2.4) for proof-related reasons (explained in § 9.5). We often

write definitions as f x1 · · · xn := e rather than f , rec f x1 · · · xn := e. For example, we
write skipN x := if 0 < x then skipN (x− 1) else ().

HeapLang includes the usual operations for ML-style references. New references can be
allocated using ref e, dereferenced using ! e, and updated using e1 ← e2. Concurrency is
supported via fork {e}, which spawns a new thread e that is executed in the background.
The language also supports atomic operations like compare-and-set (CAS), which are used to
implement lock-free data structures and synchronisation primitives, such as the locks (§ 2.3).
HeapLang is garbage collected and thus does not have a deallocation operation.
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Call-by-value evaluation contexts:

K ∈ Ctx ::= • | e K | K v | (e1,K) | (K, v2) | fst (K) | snd (K) |
ifK then e1 else e2 | inj1 (K) | inj2 (K) |
(matchK with (inj1 x)⇒ e2 | (inj2 x)⇒ e3 end) |
ref (K) | !K | e← K | K ← v | (Mutable state)

CAS e1 e2 K | CAS e1 K v2 | CAS K v1 v2 | . . . (Concurrency)

Head reductions of HeapLang:

((rec f x := e)(v);σ) −→h (e[v/x][(rec f x := e)/f ];σ; [ ])

(fst (v1, v2);σ) −→h (v1;σ; [ ])

(snd (v1, v2);σ) −→h (v2;σ; [ ])

(if true then e1 else e2;σ) −→h (e1;σ; [ ])

(if false then e1 else e2;σ) −→h (e2;σ; [ ])
match (inji v) with
(inj1 x)⇒ e1
| (inj2 x)⇒ e2
end

;σ

 −→h (ei[v/x];σ; [ ]) if i ∈ {1, 2}

(ref v;σ) −→h (`;σ[`← v]; [ ]) if σ(`) = ⊥
(! `;σ[`← v]) −→h (v;σ[`← v]; [ ])

(`← w;σ[`← v]) −→h (();σ[`←w]; [ ])

(CAS ` v′ w;σ[`← v]) −→h (true;σ[`←w]; [ ]) if v = v′

(CAS ` v′ w;σ[`← v]) −→h (false;σ[`← v]; [ ]) if v 6= v′

(fork {e};σ) −→h (();σ; [e])

Thread-local and threadpool reductions of HeapLang:

e1;σ1 −→h e2;σ2;~e

K[ e1 ];σ1 −→tl K[ e2 ];σ2;~e

e1;σ1 −→tl e2;σ2;~e

T · [e1] · T ′;σ1 −→tp T · [e2] · T ′ · ~e;σ2

Figure 1: The operational semantics of HeapLang.

2.2. Operational semantics. The small-step operational semantics of HeapLang is pre-
sented in Figure 1. The type of program states State is defined as:

σ ∈ State , Loc fin−⇀ Val

That is, program states are finite partial maps from allocated locations to their stored values.
The head reduction (e1;σ1 −→h e2;σ2;~e) describes how an expression e1 ∈ Expr in an

initial program state σ1 ∈ State reduces to a new expression e2 ∈ Expr in a possibly updated
program state σ2 ∈ State. Additionally, it keeps track of a list of newly spawned threads
~e ∈ List Expr. The reduction rule (fork {e};σ) −→h (();σ; [e]) describes how a new thread
e is spawned by adding it to the list of newly spawned threads [e]. Conversely, the list of
newly spawned threads is empty for all of the other reduction rules.
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new lock () := ref false

try acquire lk := CAS lk false true

acquire lk := if (try acquire lk) then () else acquire lk

release lk := lk ← false

Figure 2: Implementation of locks in HeapLang.

The thread-local reduction (e1;σ1 −→tl e2;σ2;~e) lifts the head reduction to whole ex-
pressions. It decomposes the initial expression e1 into K[ e′1 ], where K is a call-by-value
evaluation context [FH92] and a head expression e′1. The head expression e′1 is then reduced,
using (e′1;σ1 −→h e

′
2;σ2;~e), and the final expression e2 is set to K[ e′2 ]. Evaluation contexts

(shown in Figure 1) provide a deterministic reduction order of sub-expressions. HeapLang
reduces right-to-left, meaning that in expressions such as e1 ← e2 the expression e2 reduces
before e1. This is determined by the corresponding evaluation contexts e← K and K ← v,
which state that we only evaluate sub-expressions of the target location, once the term to
store is a value. More precisely, we would initially get (e1 ← •)[ e2 ]. If e2 reduces to a
value v2 the context syntax dictates that the hole then moves to e1 yielding (• ← v2)[ e1 ].
If e1 reduces to a value v1 we finally end up with the expression v1 ← v2, as there is no
context syntax where both constituents are values, and this expression can be reduced using
a standard head reduction.

Finally, the threadpool reduction (~e1;σ1 −→tp ~e2;σ2) is the top-level reduction relation
that describes the interleaving of threads. It describes how a concurrently running list of
threads ~e1, in an initial program state σ1, reduce to a new list of threads ~e2 in an updated
program state σ2. At each step a thread e1 is picked non-deterministically from ~e1 and
reduced one step to e2 via the thread-local reduction (e1;σ1 −→tl e2;σ2;~e). The final list of
threads ~e2 is obtained from ~e1 by replacing the expression e1 with e2 and appending the list
~e of newly spawned threads to the end.

We refer the interested reader to Iris Development Team [Iri21, docs/heap lang.md]
for more details on the semantics of HeapLang, and to Jung et al. [JKJ+18, §6.1] for details
on the language-parametric aspects of Iris.

2.3. Implementation of locks. Using HeapLang it is possible to implement various kinds
of locks/mutexes. We consider the simplest kind of lock—a spin lock—whose implementation
from the HeapLang standard library is shown in Figure 2.

A spin lock implemented using a reference to a boolean, which is false if the lock is
unlocked, and true if the lock is locked. The new lock () operation creates a new lock lk ,
which is initially unlocked (i.e., false). The operation acquire lk will atomically (using
compare-and-set) take the lock, or loop if the lock is already taken. The release lk operation
releases the lock so that it may be acquired by other threads.

2.4. Implementation of channels. Following the literature on asynchronous session types,
the message-passing semantics of our channels is binary (communication is between two
parties), asynchronous (sending messages does not block), bidirectional (messages can be in
transit in both directions simultaneously), reliable (messages are never dropped), and order
preserving (messages always arrive in the order that they were sent).
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new chan () := let (l, r, lk) := (lnil (), lnil (), new lock ()) in
((l, r, lk), (r, l, lk))

send c v := let (l, r, lk) := c in
acquire lk ;
lsnoc l v;
skipN (llength r);

release lk

try recv c := let (l, r, lk) := c in
acquire lk ;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop r))) in

release lk ; ret

recv c := match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

Figure 3: Implementation of bidirectional channels in HeapLang.

The implementation of our channels in HeapLang is displayed in Figure 3. It uses locks
(§ 2.3) and a linked list library. This list library provides functions for creating a empty
list (lnil), testing if a list is empty (lisnil), computing the length of a list (llength),
adding an element to the back (lsnoc), and popping an element of front (lpop). The last
two functions mutate the list, instead of creating a copy. The implementation of the list
library is standard, and hence elided.

Intuitively, the channels can be thought of as a pair of buffers (~v1, ~v2) of unbounded
size. The new chan () operation creates a new channel whose buffers are empty, and returns
a tuple of endpoints (c1, c2). Bidirectionality is obtained by having one endpoint receive
from the others send buffer and vice versa. As such, the send ci v operation enqueues the
value v in its own buffer, i.e., ~vi, and the recv ci operation dequeues a value from the other
buffer, i.e., from ~v2 if i = 1 and from ~v1 if i = 2. The message passing is asynchronous, as
send c v will always reduce, while recv c will loop as long as the receiving buffer is empty.

More specifically, the new chan function creates new channels by allocating two empty
mutable linked lists l and r using lnil (), along with a lock lk using new lock (), and
returns the tuples (l, r, lk) and (r, l, lk), where the order of the linked lists l and r determines
the side of the endpoints. We refer to the list in the left position as the endpoint’s own
buffer, and the list in the right position as the other endpoint’s buffer.

The send function sends a value v over a given channel endpoint (l, r, lk), by enqueueing
it in the l buffer. The function operates in an atomic fashion by first acquiring the lock
via acquire lk , thereby entering the critical section, after which the value is enqueued
(i.e., appended to the end) of the endpoint’s own buffer using the function lsnoc l v. The
skipN (llength r) instruction is a no-op that is inserted to aid the proof. We come back to
the reason why this instruction is needed in § 9.5.

The recv function receives a value over a channel endpoint (l, r, lk), by dequeueing
the first value in the r buffer. It does so by performing a loop that repeatedly calls the
helper function try recv. This helper function attempts to receive a value atomically, and
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fails if there is no value in the other endpoint’s buffer. The function try recv acquires the
lock with acquire lk , and then checks whether the other endpoint’s buffer is empty using
lisnil r. If it is empty, nothing is returned (i.e., inj1 ()), while otherwise the value is
dequeued and returned (i.e., inj2 (lpop r)).

Throughout the paper, we often use a combined operation for starting a thread and
creating a channel between the parent and child thread:

start f := let (c, c′) := new chan () in fork
{
f c′

}
; c

3. The Iris logic

We give a brief introduction to the features of Iris that play an important role in Actris:
its support for basic separation logic (§ 3.1), higher-order impredicative separation logic
(§3.2), guarded recursion and step-indexing (§3.3), and Iris’s adequacy theorem (§3.4). This
section does not present new material, so readers that are already familiar with Iris can skip
it. An extensive overview of Iris can be found in [JKJ+18], and a tutorial-style introduction
can be found in [BB20].

3.1. Basic separation logic. Propositions in separation logic describe ownership of re-
sources, and can thus intuitively be thought of as predicates over resources. The propositions
of Iris P,Q ∈ iProp range over an extensible set of resources, which includes the program
state. Iris is a higher-order separation logic, so it has the usual logical connectives such as
conjunction (P ∧Q), implication (P ⇒ Q), universal (∀x : τ. P ) and existential (∃x : τ. P )
quantification, as well as the connectives of separation logic:

• The points-to connective (` 7→ v) asserts exclusive resource ownership of a location ` ∈ Loc
in the program state, stating that it holds the value v ∈ Val.
• The separating conjunction (P ∗Q) states that P and Q holds for disjoint sets of resources.
• The separating implication (P −∗ Q) states that by giving up ownership of the resources de-

scribed by P , we obtain ownership of the resources described by Q. Separating implication
is used similarly to implication since (P entails Q −∗ R) iff (P ∗Q entails R).
• The Hoare triple {P} e {w. Q} states that if the initial program state satisfies the precon-

dition P , then (1) the expression e is safe (i.e., does not go wrong), and, (2) if e reduces
to a value v, then the final program state satisfies the postcondition Q[v/w]. We often
omit the binder w in the postcondition if the result is the unit value ().

We say that an Iris proposition P is valid iff it holds for all resources, i.e., P is valid
iff True entails P . Note that P −∗ Q is valid iff P entails Q, so we often use the separating
implication (−∗) in place of entailment. For readability, we use inference-style rules to denote
separation logic rules (P1 ∗ · · · ∗ Pn) −∗ Q as:

P1 . . . Pn

Q

Iris is an affine separation logic, which means that propositions are upwards closed in
the resources, i.e., P ∗ Q entails P (rule Affine). Affinity matches up with the use of a
garbage-collected programming language—one can simply dispose of an unused points-to
connective ` 7→ v using rule Affine when a location ` is no longer referenced.

While many propositions of separation logic assert exclusive ownership of resources (e.g.,
` 7→ v), others do not (e.g., t = u). Propositions that do not assert exclusive ownership
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Grammar:

τ, σ ::= x | 0 | 1 | B | N | Z | Type | ∀x : τ. σ |
Loc | Val | Expr | iProp | List τ | . . .

t, u, P,Q ::= x | λx : τ. t | t(u) | t(τ) | (Polymorphic lambda-calculus)

True | False | P ∧Q | P ∨Q | P ⇒ Q | (Propositional logic)

∀x : τ. P | ∃x : τ. P | t = u | (Higher-order logic with equality)

P ∗Q | P −∗ Q | ` 7→ v | {P} e {v. Q} | (Separation logic)

µx : τ. t | .P | . . . (Guarded recursion and step indexing)

Basic affine separation logic:

Affine
P ∗Q
P

Ht-frame
{P} e {w. Q}

{P ∗R} e {w. Q ∗R}
Ht-val

{True} v {w. w = v}

Ht-fork
{P} e {True}

{P} fork {e} {w. w = ()}

Ht-bind
{P} e {v. Q} ∀v. {Q}K[ v ] {w. R}

{P}K[ e ] {w. R}
K a call-by-value evaluation context

Heap manipulation:

Ht-alloc

{True} ref v {`. ` 7→ v}
Ht-load

{` 7→ v} ! ` {w. (w = v) ∗ ` 7→ v}
Ht-store

{` 7→ v} `← w {` 7→ w}

Guarded recursion and step indexing:

Ht-rec
{P} e[v/x][rec f x := e/f ] {w. Q}
{.P} (rec f x := e) v {w. Q}

.-intro
P

.P

.-mono
P −∗ Q

.P −∗ .Q

Löb
.P ⇒ P

P

µ-unfold

(µx. t) = t[µx. t/x]

Figure 4: The grammar and a selection of rules of Iris.

enjoy some useful laws. Separation conjunction (P ∗ Q) is logically equivalent to regular
conjunction (P ∧ Q) if at least one conjunct does not assert exclusive ownership, and
separating implication (P −∗ Q) is logically equivalent to regular implication (P ⇒ Q) if the
premise P does not assert exclusive ownership.1 For example, (t = u) ∗Q and (t = u) ∧Q
are logically equivalent. Since separating conjunction/implication is omnipresent in Iris, we
prefer the use of separating conjunction/implication over regular conjunction/implication if
both can be used. This is also the convention used in the Iris Coq development.

Iris’s notion of resources is not limited to locations in the program state (i.e., ` 7→ v),
but can be extended with user-defined ghost resources. We use ghost resources to define
Actris’s connective c� prot for exclusive ownership of the channel endpoint c with protocol
prot (§ 9), and to reason about programs with non-trivial sharing (§ 7).

1Formally, these equivalences hold for the class of persistent propositions, see [JKJ+18, §2.3].
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The rules for Hoare triples are mostly standard, but it is worth pointing out the rule
for Ht-bind. This rule enables reductions of an expression e, in some evaluation context K,
based on the precedence enforced by the evaluation contexts presented in § 2.2.

3.2. Higher-order impredicative separation logic. The Iris logic is:

• Higher-order: Using Iris’s quantifiers ∀x : τ. P and ∃x : τ. P it is not only possible to
quantify over first-order types (like Z and List Z), but over any type, including functions
(like Z → Z), higher-order functions (like (Z → Z) → Z), polymorphic functions (like
∀T. List T → N), Iris propositions (iProp), and Iris predicates (like Z→ iProp).
• Impredicative: Iris’s logical connectives can be nested arbitrarily. Notably, ∀P : iProp. Q

is an Iris proposition, and not an Iris proposition in a higher universe. Similarly, Hoare
triples {P} e {v. Q} and other Iris connectives like is lock lk R for lock ownership (§7) are
first-class Iris propositions themselves.

As we will see in this paper, Actris expands on Iris’s support for higher-order impredica-
tive separation logic by allowing the variables ~x :~τ in the dependent separation protocols
! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot to range over any type (including Actris’s type of
protocols iProto), and the proposition P to contain any Iris/Actris connective (including
the Actris connective c� prot for channel ownership). This is particularly useful to reason
about message-passing programs that transfer functions (§ 5.2) and channels (§ 5.5).

To define (pure) functions and predicates used in program specifications, Iris embeds
the polymorphic lambda calculus. In the Coq development of Iris, this lambda calculus
is obtained via a shallow embedding, and thus comprises the usual Coq data types and
functions.2 We should stress that Iris’s lambda calculus is different from our programming
language (HeapLang)—the former is typed and pure, whereas the latter is untyped and
impure. Consequently, there are two kinds of lambda abstraction (λx : τ. t for Iris and λx. e
for HeapLang). It should be clear from context which of the lambda abstractions is used.

Figure 4 includes a subset of the Iris grammar. The typing judgement is mostly standard
and can be derived from the use of meta variables—we use the meta variables P and Q for
propositions (type iProp), the meta variable v for values (type Val), and the meta variables
t and u for general terms of any type. Similar to Coq, λx : τ. t is used for both term and
type abstraction, and we write τ → σ for ∀x : τ. σ if x is free in σ.

3.3. Guarded recursion and step-indexing. Iris is step-indexed [AM01; Ahm04], mean-
ing that propositions are indexed by a natural number—referred to as the step-index—which
is used to stratify a number of semantically cyclic constructs and reasoning principles. Iris
employs the logical account of step-indexing [AMRV07; DAB11] where the step-index is
implicit, and internalised in the logic through the later modality (.) [Nak00]. Actris and Iris
use step-indexing as follows:

• The principle of Löb induction (rule Löb) is used to reason about (among others) recursive
functions. When proving P , Löb induction lets us assume that a proposition holds later,
denoted .P . The proposition .P is strictly weaker than P , since P entails .P (rule
.-intro), while the reverse does not hold. The later modality (.) can be eliminated by
taking a program step, which is formalised by the Iris proof rule Ht-rec. In Actris we use
Löb induction to reason about infinite protocols (§ 6.4).

2Coq, Iris, and Actris have a predicative Type hierarchy, while propositions are impredicative. For brevity’s
sake, we omit details about predicativity of Type, as they are standard.
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• The guarded recursion operator (µx : τ. t) lets us construct recursive predicates without
a restriction on the variance of x in t. Instead, the variable x should be guarded, which
means that it should appear under a contractive term construct. The prime example of
a contractive construct is the later modality (.). The rule µ-unfold says that µx : τ. t
is in fact a fixpoint of t. Actris’s dependent separation protocols ! ~x :~τ 〈v〉{P}. prot and
?~x :~τ 〈v〉{P}. prot are contractive in the tail argument prot , and thereby make it possible
to use Iris’s guarded recursion operator to define recursive protocols (§ 5.4).
• Iris’s support for higher-order ghost state [JKBD16] is used to provide a model of Actris

in Iris (§ 9). Additionally, higher-order ghost state is used by Iris to obtain impredicative
invariants [SB14], which in turn are used to prove the specification of locks [HAN08] used
in § 7.

3.4. Adequacy of Iris. The adequacy theorem of Iris connects the derivation of Hoare
triples to the operational semantics of the programming language. A closed proof of a Hoare
triple gives rise to safety and postcondition validity. By safety we mean that the program
cannot go wrong, e.g., by resolving an illegal function application (e.g., true + 42), or
accessing an invalid location (i.e., ! ` with ` /∈ dom(σ)). Safety is defined formally as:

safe e , ∀σ, T, σ′. ([e];σ −→∗tp T ;σ′)
implies ∀e′ ∈ T. (e′ ∈ Val) or

(∃e′′, σ′′, ~e. e′;σ′ −→tl e
′′;σ′′;~e)

This definition is not concerned with whether a program terminates (total correctness).
Postcondition validity means that if the main thread terminates with a value v, then

the postcondition holds for that value. This is defined formally as:

post valid (e, ϕ) , ∀σ, v, T, σ′. (e;σ −→∗tp [v] · T ;σ′)
implies (ϕ v)

Theorem 3.1 (Adequacy of Iris). Let ϕ ∈ Val→ Prop be a meta-level (i.e., Coq) predicate
over values and suppose {True} e {v. ϕ v} is derivable in Iris, then safe e and post valid (e, ϕ).

4. The Actris logic

This section describes the core features of Actris 1.0: its dependent separation protocols
mechanism (§ 4.1), proof rules (§ 4.2), and its adequacy result (§ 4.3). Actris inherits all
features of Iris, which is achieved by defining Actris as an embedded logic in Iris. This means
that all of Actris’s primitive constructs are defined in Iris, and all of Actris’s primitive proof
rules are in fact lemmas in Iris. We show how Actris is embedded in Iris in § 9.

4.1. Dependent separation protocols. The key feature of Actris is its session-type like
dependent separation protocols mechanism. Dependent separation protocols prot are streams
of ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot constructors that are either infinite or finite.
The finite streams are ultimately terminated by an end constructor. The value v denotes the
message that is being sent (!) or received (?), the Iris proposition P denotes the ownership
that is transferred along the message, and prot denotes the protocol that describes the
subsequent messages. The logical variables ~x :~τ can be used to bind variables in v, P , and
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Grammar:

τ, σ ::= . . . | iProto | . . .
t, u, P,Q, prot ::= . . . | ! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | end |

prot | prot1 · prot2 | c� prot | . . .

Dependent separation protocols:

! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot

?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

(! ~x :~τ 〈v〉{P}. prot1) · prot2 = ! ~x :~τ 〈v〉{P}. (prot1 · prot2)

(?~x :~τ 〈v〉{P}. prot1) · prot2 = ?~x :~τ 〈v〉{P}. (prot1 · prot2)

prot1 · (prot2 · prot3) = (prot1 · prot2) · prot3

end = end

prot = prot

prot · end = prot

end · prot = prot

prot1 · prot2 = prot1 · prot2

Message passing:

Ht-new

{True} new chan ()
{
w. ∃c1, c2. w = (c1, c2) ∗ c1� prot ∗ c2� prot

}
Ht-send{
c� ! ~x :~τ 〈v〉{P}. prot ∗ P [~t/~x]

}
send c (v[~t/~x])

{
c� prot [~t/~x]

}
Ht-recv

{c� ?~x :~τ 〈v〉{P}. prot} recv c {w. ∃~y. w = v[~y/~x] ∗ c� prot [~y/~x] ∗ P [~y/~x]}

Figure 5: The primitive constructs and proof rules of Actris 1.0.

prot . For example, the following dependent separation protocols expresses that a pair of a
boolean and an integer reference whose value is at least 10 is sent:3

! (b : B) (` : Loc) (i : N) 〈(b, `)〉{` 7→ i ∗ 10 < i}. prot

We often omit the proposition {P}, which simply means it is True.
Apart from the constructors for dependent separation protocols, Actris provides two

primitive operations, prot and prot1 ·prot2. The prot operator denotes the dual of a protocol.
Similar to conventional session types, it transforms the protocol by changing all sends (!)
into receives (?), and vice versa. Taking the dual twice thus results in the original protocol.
The operator prot1 · prot2 appends the protocols prot1 and prot2, which is achieved by
substituting any end in prot1 with prot2.

Channel endpoints are ascribed with dependent separation protocols using the channel
endpoint ownership connective c� prot , which captures unique ownership of the channel
endpoint c and states that the endpoint follows the protocol prot .

4.2. Actris’s proof rules for message passing. Actris provides proof rules for the three
message passing operations new chan, send, and recv (see § 2.4 for the definition of these
operations). The rule Ht-new allows ascribing any protocol to newly created channels using

3Note that ` 7→ i ∗ 10 < i is logically equivalent to ` 7→ i ∧ 10 < i as 10 < i does not describe ownership.
As discussed in § 3.1, we prefer the version with separation conjunction.
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new chan (), obtaining ownership of c1� prot and c2� prot for the respective endpoints.
The duality of the protocol guarantees that any receive (?) is matched with a send (!) by
the dual endpoint, which is crucial for establishing safety.

The rule Ht-send for send c w requires the head of the dependent separation protocol
of c to be a send (!) constructor, and the value w that is sent to match up with the ascribed
value. To send a message w, we need to give up ownership of c� ! ~x :~τ 〈v〉{P}. prot , pick an
appropriate instantiation ~t for the variables ~x :~τ so that w = v[~t/~x], give up ownership of the
associated resources P [~t/~x], and finally regain ownership of the protocol tail c� prot [~t/~x].

The rule Ht-recv for recv c is essentially dual to the rule Ht-send. We need to give up
ownership of c� ?~x :~τ 〈v〉{P}. prot , and in return acquire the resources P [~y/~x], the return
value w where w = v[~y/~x], and finally the ownership of the protocol tail c � prot [~y/~x],
where ~y is some instantiation of the protocol variables.

Finally, we derive the following specification for the start construct from Actris’s rule
Ht-new and Iris’s rule Ht-fork:

Ht-start
∀c2.

{
c2� prot

}
f c2 {True}

{True} start f {c1. c1� prot}

4.3. Adequacy of Actris. By virtue of being an extension of Iris, Actris inherits Iris’s
adequacy theorem (§ 3.4), which says that a closed proof of a Hoare triple gives rise to
safety (programs cannot go wrong) and postcondition validity. In Actris this means that
the implementation of the message passing operations (§ 2.4) cannot go wrong, and that
transferred messages cannot cause the program to go wrong down the line.

Many conventional session-type systems additionally ensure deadlock freedom—which
means that program execution cannot result in a state where all threads are waiting on a
message to be sent. Deadlock freedom is ensured through a linear type system and combining
thread and channel creation into a start primitive. Actris is affine (instead of linear), has a
fork and new chan primitive (instead of a start primitive), and supports locks for channel
sharing. Actris thus provides more flexibility in terms of what programs can be written
and verified (there exist programs that are deadlock free, but cannot be type-checked using
conventional session types, while they can be verified using Actris). On the flip side, using
Actris one can prove Hoare triples for programs that deadlock, for example:

{True} let (c, c′) ::= new chan () in recv c {True}
Indeed, in our operational semantics programs such as the above are safe. The semantics
of both lock acquisition (acquire) and message reception (recv) is that the thread loops
until it succeeds. Loops are considered safe in Iris (and thus also Actris), as the threads in
question will continue to take steps, although they will never terminate.

5. A tour of Actris

This section demonstrates the core features of Actris. We introduce and iteratively extend
a simple channel-based merge sort algorithm to demonstrate the main features of Actris
(§ 5.1–§ 5.6). Note that as the point of the sorting algorithms is to showcase the features
of Actris, they are intentionally kept simple and no effort has been made to make them
efficient (e.g., to avoid spawning threads for small jobs).
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sort service cmp c :=
let l := recv c in
if |l| ≤ 1 then send c () else
let l′ := lsplit l in
let c1 := start (sort service cmp) in
let c2 := start (sort service cmp) in
send c1 l; send c2 l

′;
recv c1; recv c2;
lmerge cmp l l′; send c ()

sort client cmp l :=
let c :=
start (sort service cmp) in

send c l;
recv c

Figure 6: A channel-based merge sort algorithm (the code for lmerge and lsplit is standard
and thus elided).

5.1. Basic protocols. We first prove functional correctness of a simple channel-based merge
sort algorithm, whose code is shown in Figure 6. The function sort client cmp l takes
a comparison function cmp and a linked list l that will be sorted. The function mutates
the linked list l, so it returns a unit value () when done. The bulk of the work is done by
the sort service cmp c function, which takes a channel endpoint c over which it receives
a linked list, and over which it sends back () to inform the sender that the list has been
sorted. The function sort service is implemented as follows. If the received list is an
empty or singleton list, which both are trivially sorted, the function immediately sends back
(). Otherwise, the list is split into two partitions using lsplit l, which mutates the list
l to contain the first partition, while returning l′ containing the second partition. These
partitions are recursively sorted using two newly started instances of sort service. The
results of the processes are then requested and merged using lmerge cmp l l′, which mutates
the list l to contain the merged list. Finally, the unit value () is sent back along the original
channel endpoint c.

In order to verify the correctness of the sorting algorithm we first need a specification
for the comparison function cmp, which must satisfy the following specification:

cmp spec (I : T → Val→ iProp) (R : T → T → B) (cmp : Val) ,
(∀x1 x2. R x1 x2 ∨R x2 x1) ∗
(∀x1 x2 v1 v2. {I x1 v1 ∗ I x2 v2} cmp v1 v2 {r. r = R x1 x2 ∗ I x1 v1 ∗ I x2 v2})

This definition is polymorphic in type T . Here, R is a total relation in type T , and I is
an interpretation predicate that relates language values to elements of type T . While the
relation R dictates the ordering, the interpretation predicate I allows for flexibility about
what is ordered. Setting I to e.g., λx v. v 7→ x orders references by what they point to in
memory, rather than the memory address itself. To specify how lists are laid out in memory
we use the following notation:

`
list7→I ~x ,

{
` 7→ inl () if ~x = ε

∃v1 `2. ` 7→ inr (v1, `2) ∗ I x1 v1 ∗ `2
list7→I ~x2 if ~x = [x1] · ~x2

The channel endpoint c adheres to the following dependent separation protocol:

sort prot (I : T → Val→ iProp) (R : T → T → B) ,
! (~x : List T ) (` : Loc) 〈`〉

{
`

list7→I ~x
}
. ?~y 〈()〉

{
`

list7→I ~y ∗ sorted ofR ~y ~x
}
. end
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sort servicefunc c :=
let cmp := recv c in
sort service cmp c

sort clientfunc cmp l :=
let c := start sort servicefunc in

send c cmp; send c l; recv c

Figure 7: A version of the sort service that receives the comparison function over the channel.

The protocol describes the interaction of first sending a linked list, and then receiving a unit
value () once the list is sorted. The predicate sorted ofR ~y ~x is true iff ~y is a sorted version
of ~x with respect to the relation R. We prove the following specifications of the service and
the client:{

cmp spec I R cmp ∗ c� sort prot I R · prot
}

sort service cmp c

{c� prot}

{
cmp spec I R cmp ∗ ` list7→I ~x

}
sort client cmp `{
∃~y. sorted ofR ~y ~x ∗ ` list7→I ~y

}
There are two important things to note about these specifications. First, the protocol
sort prot I R is written from the point of view of the client. As such, the precondition
for sort service requires that c follows the dual sort prot I R. Second, the pre- and
postcondition of sort service are generalised to have an arbitrary protocol prot appended
at the end. It is important to write specifications this way, so they can be embedded in
other protocols. We will see examples of such an embedding in § 5.4 and § 5.5.

The proof of these specifications is almost entirely performed by symbolic execution
using the rules Ht-new, Ht-send, Ht-recv, and the standard separation logic rules.

Now that we have proven Hoare triples for sort service and sort client, we can use
them to prove Hoare triples of other programs that use these functions. Recall that if we
use them to prove a Hoare triple of a closed program, we obtain safety and postcondition
validity by virtue of Actris’s adequacy theorem (§ 3.4).

5.2. Transferring functions. The channel-based sort service from the previous section
(Figure 6) is parametric on a comparison function. To demonstrate Actris’s support for
reasoning about functions transferred over channels, we verify the correctness of the function
sort servicefunc c in Figure 7. This function takes a channel endpoint c, over which it
receives the comparison function cmp (instead of via a function argument), followed by the
list to sort. Similar to the service in § 5.1, it mutates the list, and sends back () when done.
To verify this program, we extend the protocol sort prot from § 5.1 as follows:

sort protfunc , !(T : Type) (I : T → Val→ iProp) (R : T → T → B) (cmp : Val)

〈cmp〉{cmp spec I R cmp}. sort prot I R
The new protocol specifies that we first send a comparison function cmp. It includes
binders for the polymorphic type T , the interpretation predicate I, and the relation R. The
specifications are much the same as before, with the proofs being similar besides the addition
of a symbolic execution step to resolve the sending and receiving of the comparison function:{

c� sort protfunc · prot
}

sort servicefunc c

{c� prot}

{
cmp spec I R cmp ∗ ` list7→I ~x

}
sort clientfunc cmp `{
∃~y. ` list7→I ~y ∗ sorted ofR ~y ~x

}
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sort servicerec cmp c :=
branch c with
left ⇒ sort service cmp c;

sort servicerec cmp c
| right⇒ ()
end

sort clientrec cmp l :=
let c := start (sort servicerec cmp) in
liter (λl′. select c left; send c l′; recv c) l;
select c right

Figure 8: A recursive version of the sort service that can perform multiple jobs in sequence
(the code for the function liter, which applies a function to each element of the
list, is standard and has been elided).

5.3. Choice. Branching communication is commonly modelled using the choice session
types & for branching and ⊕ for selection. We show that corresponding dependent separation
protocols can readily be encoded in Actris. At the level of the programming language, the
instructions for choice are encoded by sending and receiving a boolean value that is matched
using an if-then-else construct:

select e e′ , send e e′

branch e with left⇒ e1 | right⇒ e2 end , if recv e then e1 else e2

The instructions are syntactic sugar, i.e., defined in the meta language (using ,), which

effectively means that the arguments are evaluated lazily. We define syntactic sugar left ,
true and right , false to be used together with select for readability’s sake.

Due to the higher-order nature of Actris, the usual protocol specifications for choice
from session types can be encoded as regular logical branching within the protocols:

prot1 {Q1}⊕{Q2} prot2 , ! (b : B) 〈b〉{if b thenQ1 elseQ2}. if b then prot1 else prot2

prot1 {Q1}&{Q2} prot2 , ?(b : B) 〈b〉{if b thenQ1 elseQ2}. if b then prot1 else prot2

We often omit the conditions Q1 and Q2, which simply means that they are True. The
following rules can be directly derived from the rules Ht-send and Ht-recv:

Ht-select{
c� prot1 {Q1}⊕{Q2} prot2 ∗
if b then Q1 else Q2

}
select c b {c� if b then prot1 else prot2}

Ht-branch
{P ∗Q1 ∗ c� prot1} e1 {v. R} {P ∗Q2 ∗ c� prot2} e2 {v. R}{

P ∗ c� prot1 {Q1}&{Q2} prot2
}
branch c with left⇒ e1 | right⇒ e2 end {v. R}

Apart from branching on boolean values, dependent separation protocols can be used to
encode choice on any enumeration type (e.g., lists, natural numbers, days of the week, etc.).
These encodings follow the same scheme.

5.4. Recursive protocols. We now use choice and recursion to verify the correctness of
a sorting service that supports performing multiple sorting jobs in sequence. The code
of the sorting service sort servicerec and a possible client sort clientrec are displayed
in Figure 8. The service sort servicerec cmp c takes a comparison function cmp and a
channel endpoint c, and returns (). It contains a loop in which choice is used to either
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terminate the service, or to sort an individual list using the channel-based merge sort
algorithm sort service from § 5.1. The client sort clientrec cmp l takes a comparison
function cmp and a nested linked list of linked lists l, and returns (). It starts a single
instance of the service at channel endpoint c, and then sequentially sends requests to sort
each inner linked list l′ in l. Finally, the client selects the terminating branch to end the
communication with the service. A protocol for interacting with the sorting service can be
defined as follows:

sort protrec (I : T → Val→ iProp) (R : T → T → B) ,
µ(rec : iProto). (sort prot I R · rec)⊕ end

The protocol uses the choice operator ⊕ to specify that the client may either request the
service to perform a sorting job, or terminate communication with the service. After the job
has been finished the protocol proceeds recursively.

We use Iris’s operator µx : τ. t for guarded recursion (§ 3.3) to define recursive protocols.
It is important to recall that—as is usual in logics with guarded recursion—the variable x
should appear under a contractive term construct in the body t of µx : τ. t. In our protocol,
the recursive variable rec appears under the argument of ⊕, which is defined in terms of
! ~x :~τ 〈v〉{P}. prot , which, similarly to ?~x :~τ 〈v〉{P}. prot , is contractive in the tail protocol
prot . We can then prove the following specifications of the service and the client:{

cmp spec I R cmp ∗
c� sort protrec I R · prot

}
sort servicerec cmp c

{c� prot}

{
cmp spec I R cmp ∗ ` list7→J

~~x
}

sort clientrec cmp `{
∃~~y. |~~y| = |~~x| ∗ ` list7→J

~~y ∗ (∀i < |~~x|. sorted ofR ~~yi ~~xi)
}

We let J , λ`′ ~y. `′
list7→I ~y to express that ` points to a list of lists ~~x. The proof of the service

follows naturally by symbolic execution using the induction hypothesis (obtained from Löb),
the rules Ht-branch and Ht-select, and the specification of sort service. Note that we
rely on the specification of sort service having an arbitrary protocol as its suffix.

It is worth pointing out that protocols in Actris provide a lot of flexibility. Using just
minor changes, we can extend the protocol to support transferring a comparison function
over the channel, like the extension made in sort clientfunc, or in a way such that a
different comparison function can be used for each sorting job.

5.5. Higher-order protocols. Higher-order communication is a common feature within
communication protocols, and particularly the session-types community—it is the concept of
transferring a channel endpoint over a channel, often called delegation. Due to the impred-
icativity of dependent separation protocols in Actris, higher-order reasoning about programs
with delegation is readily available. The protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot
can simply refer to the channel endpoint ownership c� prot ′ in the proposition P .

An example of a program that uses delegation is the sort servicedel variant of the
recursive sorting service in Figure 9, which allows multiple sorting jobs to be performed in
parallel. The function sort servicedel cmp c takes a comparison function cmp, a channel
endpoint c, and returns (). Using the channel endpoint c, a client can request the service to
start a new inner sorting service c′, which the service delegates over channel endpoint c.

Similar to the client in §5.4, the client sort clientdel cmp l takes a comparison function
cmp and a nested linked list of linked lists l, and returns (). The client starts a connection c
to the service, and for each inner list l′, it acquires a delegated channel endpoint c′, over
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sort servicedel cmp c :=
branch c with
left ⇒

let c′ :=
start (sort service cmp) in

send c c′;
sort servicedel cmp c

| right⇒ ()
end

sort clientdel cmp l :=
let c := start (sort servicedel cmp) in
let k := lnil () in
liter (λl′. select c left;

let c′ := recv c in
send c′ l′; lcons c′ k) l

select c right;
liter recv k

Figure 9: A recursive version of the sort service that uses delegation to perform multiple
jobs in parallel (the code for the function lcons, which pushes an element to the
head of a list, has been elided).

which it sends the inner list l′ that should be sorted. The client keeps track of all channels
to delegated services in a linked list k so that it can wait for all of them to finish (using
liter recv).

A protocol for the delegation service can be defined as follows, denoting that the client
can select whether to acquire a connection to a new delegated service or to terminate:

sort protdel (I : T → Val→ iProp) (R : T → T → B) ,
µ(rec : iProto). (?(c : Val) 〈c〉{c� sort prot I R}. rec)⊕ end

We can then prove the following specifications of the service and the client:{
cmp spec I R cmp ∗
c� sort protdel I R · prot

}
sort servicedel cmp c

{c� prot}

{
cmp spec I R cmp ∗ ` list7→J

~~x
}

sort clientdel cmp `{
∃~~y. |~~y| = |~~x| ∗ ` list7→J

~~y ∗ (∀i < |~~x|. sorted ofR ~~yi ~~xi)
}

As before, we let J , λ`′ ~y. `′
list7→I ~y to express that ` points to a list of lists ~~x. Once again

the proofs are straightforward, as they are simply a combination of recursive reasoning
combined with the application of Actris’s rules for channels.

5.6. Dependent protocols. The protocols we have seen so far have only made limited
use of Actris’s support for recursion. We now demonstrate Actris’s support for dependent
protocols, which make it possible to keep track of the history of what messages have been
sent and received. We demonstrate this feature by considering a fine-grained version of
the channel-based merge-sort service as shown in Figure 10. Like previous versions, the
function sort servicefg cmp c takes a comparison function cmp and a channel endpoint
c, and returns (). However, unlike previous versions, the input list should be transferred
element by element over the channel endpoint c to the service, and when done, the service
sends back the sorted list element by element. We use choice to indicate whether the whole
list has been sent (right) or another element remains to be sent (left).

The structure of sort servicefg is somewhat similar to the coarse-grained merge-sort
algorithm that we have seen before. The base cases of the empty or the singleton list are
handled initially. This is achieved by waiting for at least two values before starting the
recursive sub-services c1 and c2. In the base cases the values are sent back immediately,
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sort servicefg cmp c :=
branch c with
right⇒ select c right
| left ⇒
let x1 := recv c in
branch c with
right⇒ select c left; send c x1;

select c right
| left ⇒
let x2 := recv c in
let c1 := start (sort servicefg cmp) in
let c2 := start (sort servicefg cmp) in
select c1 left; send c1 x1;
select c2 left; send c2 x2;
splitfg c c1 c2; mergefg cmp c c1 c2

end

end

splitfg c c1 c2 :=
branch c with
right⇒ select c1 right;

select c2 right

| left ⇒
let x := recv c in
select c1 left; send c1 x;
splitfg c c2 c1

end

mergefg cmp c c1 c2 :=
branch c1 with

right⇒ assert false

| left ⇒
let x := recv c1 in
mergeauxfg cmp c x c1 c2

end

mergeauxfg cmp c x c1 c2 :=

branch c2 with

right⇒ select c left; send c x1;
transfer c1 c

| left ⇒
let y := recv c2 in
if cmp x y then
select c left; send c x;
mergeauxfg cmp c y c2 c1

else

select c left; send c y;
mergeauxfg cmp c x c1 c2

end

sort clientfg cmp l :=
let c :=
start (sort servicefg cmp) in

send all c l; recv all c l

Figure 10: A fine-grained version of the sort service that transfers elements one by one (the
code for the functions transfer, send all, and recv all has been elided).

as they are trivially sorted. The inductive case is handled by starting two sub-services at
the channel endpoints c1 and c2. First, each of the channel endpoints are sent one of the
two initially received elements. The remaining elements are then received by the parent
service on c, and forwarded to the sub-services alternatingly on c1 and c2, using the function
splitfg c c1 c2. Once the right flag is received, the splitfg function terminates, and the
algorithm moves to the second phase.

In the second phase, the function mergefg cmp c c1 c2 is used to merge the stream of
elements returned by the sub-services on c1 and c2 and forwards them to the parent service
on c. It initially acquires the first element x from the first sub-service on c1, which it passes
to the auxiliary function mergeauxfg as the current largest value. The auxiliary function
mergeauxfg cmp c x c1 c2 recursively requests a value y from the sub-service from which the

current largest value was not acquired from (initially c2). It then compares x and y using
the comparison function cmp, and forwards the smallest element on c. This is repeated until
the right flag is received from either sub-service, after which the remaining values of the
other sub-service are forwarded to the parent service on c using transfer c1 c.
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The interface of the client sort clientfg cmp l is similar to the one from § 5.1 and 5.2.
It takes a comparison function cmp and a linked lists l, sorts the linked list l, and returns ()
when done. The client sorts the list l by sending its elements to the sort service using the
send all c l function (which mutates the list l by removing all of its values and sending
them over the channel c), and puts the received values back into the linked list using
the recv all c l function (which also mutates the list l). A suitable protocol for proving
functional correctness of the fine-grained sorting service is as follows:

sort protfg (I : T → Val→ iProp) (R : T → T → B) , sort protheadfg I R ε

sort protheadfg (I : T → Val→ iProp) (R : T → T → B) , µ(rec : List T → iProto).

λ~x. (! (x : T ) (v : Val) 〈v〉{I x v}. rec (~x · [x])) ⊕ sort prottailfg I R ~x ε

sort prottailfg (I : T → Val→ iProp) (R : T → T → B) , µ(rec : List T → List T → iProto).

λ~x ~y. (?(y : T ) (v : Val) 〈v〉{(∀i < |~y|. R ~yi y) ∗ I y v}. rec ~x (~y · [y])) &{~x≡p~y} end

The protocol is split into two phases sort protheadfg and sort prottailfg , mimicking the behaviour

of the program. The sort protheadfg phase is indexed by the values ~x that have been sent so
far. The protocol describes that one can either send another value and proceed recursively,
or stop, which moves the protocol to the next phase.

The sort prottailfg phase is dependent on the list of values ~x received in the first phase,

and the list of values ~y returned so far. The condition (∀i < |~y|. R ~yi y) states that the
received element is larger than any of the elements that have previously been returned,
which maintains the invariant that the stream of received elements is sorted. When the
right flag is received ~x ≡p ~y shows that the received values ~y are a permutation of the ones
~x that were sent, making sure that all of the sent elements have been accounted for.

We can then prove top-level specifications for the service and client that are similar to
the coarse-grained version of the channel-based merge sort:{

cmp spec I R cmp ∗ c� sort protfg I R · prot
}

sort protfg c

{c� prot}

{
cmp spec I R cmp ∗ ` list7→I ~x

}
sort clientfg cmp `{
∃~y. ` list7→I ~y ∗ sorted ofR ~y ~x

}
Proving these specifications requires one to pick appropriate specifications for the auxiliary
functions to capture the required invariants with regard to sorting. After having picked these
specifications, the parts of the proofs that involve communication are mostly straightforward,
but require a number of trivial auxiliary results about sorting and permutations.

6. Subprotocols

This section describes Actris 2.0, which extends Actris 1.0—as presented in the conference
version of this paper [HBK20]—with subprotocols, inspired by asynchronous subtyping of
session types [MYH09; MY15]. The intention of both of these relations is to capture protocol-
preserving changes, that allow for some internal flexibility of how an endpoint fulfills a
protocol, while being indistinguishable by the other endpoint. In particular, subprotocols
have two key features. First, they exploit the asynchronous semantics of channels by relaxing
the notion of duality, thereby making it possible to prove functional correctness of a larger
class of programs. Second, they give rise to a more extensional approach to reasoning about
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dependent separation protocols, as we can work up to the subprotocol relation rather than
equality, thereby providing more flexibility in the design and reuse of protocols.

We first introduce Actris 2.0’s subprotocol relation and its proof rules (§ 6.1). These
should (similar to the Actris 1.0 logic, presented in § 4) be considered to be primitives of
Actris; in § 9.2 we define and prove them in Iris. We then show how subprotocols can be
employed to prove a mapper service, which handles requests one at a time, while its client
may send multiple requests up front (§ 6.2). Next, we demonstrate how the subprotocol
relation allows for the composition of slightly differing protocols, by composing a list reversal
service whose protocol is based on a list predicate that does not carry ownership, with a client
whose protocol is based on a list predicate that does carry ownership (§ 6.3). Finally, we
show that the subprotocol relation is coinductive, and, when combined with Löb induction,
can be used to reason about recursive protocols (§ 6.4).

6.1. The subprotocol relation. The dependent separation protocols of channel endpoints
are picked on channel creation (using the rule Ht-new shown in Figure 5), which then
determines how the channel endpoints should interact. To ensure safe communication, Actris
adapts the notion of duality from session types, which requires every send (!) of one endpoint
to be paired with a receive (?) for the other endpoint, and vice versa. However, working with
a channel’s protocol and its dual is more restrictive than strictly necessary. Some variations
from the original protocol preserve the externally observed interaction, as the other endpoint
is agnostic to the variations in question, which will be made clear momentarily. We capture
some of these so-called protocol-preserving variations via a new notion—the subprotocol
relation—denoted as follows:

prot1 v prot2

The subprotocol relation describes that protocol prot1 is stronger than prot2, or conversely,
that protocol prot2 is weaker than prot1. More specifically, this means that prot2 can be used
in place of prot1 whenever such a protocol is expected during verification. This property is
captured by the following monotonicity rule for channel ownership:

c� prot1 prot1 v prot2
c� prot2

The subprotocol relation is inspired by asynchronous subtyping for session types [MYH09;
MY15], which allows (1) sending subtypes (contravariance), (2) receiving supertypes (co-
variance), and (3) swapping sends ahead of receives. These variations preserve the protocol,
as (1) the originally expected type that is to be sent can be derived from the subtype, (2)
the originally expected type to be received can be derived from the supertype, and (3)
sends do not block because channels are buffered in both directions, so messages can be
enqueued ahead of time. These variations, including the swapping property, are generalised
to dependent separation protocols using the following proof rules:

v-send-mono’
∀~x :~τ . P2 −∗ P1 ∀~x :~τ . prot1 v prot2

! ~x :~τ 〈v〉{P1}. prot1 v ! ~x :~τ 〈v〉{P2}. prot2

v-recv-mono’
∀~x :~τ . P1 −∗ P2 ∀~x :~τ . prot1 v prot2

?~x :~τ 〈v〉{P1}. prot1 v ?~x :~τ 〈v〉{P2}. prot2

v-swap’
?~x :~τ 〈v〉{P}. ! ~y :~σ 〈w〉{Q}. prot v ! ~y :~σ 〈w〉{Q}. ?~x :~τ 〈v〉{P}. prot
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The rules v-send-mono’ and v-recv-mono’ use separation implication P −∗ Q—which states
that ownership of Q can be obtained by giving up ownership of P—to mimic the contra-
and covariance of session subtyping. The rule v-swap’ states that sends can be swapped
ahead of receives. To be well-formed, this rule has the implicit side condition that ~x :~τ does
not bind into w and Q, and that ~y :~σ does not bind into v and P .

To give an intuition behind the protocol-consistent changes that the above rules capture,
consider the following subprotocol derivation:

?(i : Z) 〈i〉{i < 42}. ! (j : Z) 〈j〉{j > 42}. prot v-send-mono’
v ?(i : Z) 〈i〉{i < 42}. ! (j : Z) 〈j〉{j > 50}. prot v-recv-mono’
v ?(i : Z) 〈i〉{i < 40}. ! (j : Z) 〈j〉{j > 50}. prot v-swap’
v ! (j : Z) 〈j〉{j > 50}. ?(i : Z) 〈i〉{i < 40}. prot

Here, we first strengthen the proposition of the send (by increasing the bound from j > 42
to j > 50), then weaken the proposition of the receive (by reducing the bound from i < 42
to i < 40), and finally swap the send ahead of the receive.

While the aforementioned rules cover the intuition behind Actris’s subprotocol relation,
Actris’s actual subprotocol rules provide a number of additional features:

(1) They can be used to manipulate the logical variables ~x :~τ that appear in protocols.
(2) They can be used to transfer ownership of resources in and out of messages.
(3) They can be used to reason about recursive protocols defined using Löb induction.

The full set of primitive rules for subprotocols is shown in Figure 11. The first four rules
account for logical variable manipulation and resource transfer: Rules v-send-out and
v-recv-out generalise over the logical variables ~x :~τ and transfer ownership of P out of the
weaker sending protocol ! ~x :~τ 〈v〉{P}. prot , and stronger receiving protocol ?~x :~τ 〈v〉{P}. prot ,
respectively. Rule v-send-in weakens a sending protocol ! ~x :~τ 〈v〉{P}. prot by instantiating
the logical variables ~x : ~τ and transferring ownership of P [~t/~x] into the protocol. Dually,
the rule v-recv-in strengthens a receiving protocol ?~x :~τ 〈v〉{P}. prot by instantiating the
logical variables ~x :~τ and transferring ownership of P [~t/~x] into the protocol.

To demonstrate the intuition behind these rules consider the following proof of the
subprotocol relation presented in § 1.3, where we transfer ownership of `′1 7→ 20 into a
protocol, while instantiating the logical variable `1 with `′1:

`′1 7→ 20 ∗ `2 7→ 22 −∗ `′1 7→ 20 ∗ `2 7→ 22 v-send-in
`′1 7→ 20 ∗ `2 7→ 22 −∗

! (`1, `2 :Loc) 〈(`1, `2)〉{`1 7→20 ∗ `2 7→22}. prot v ! 〈(`′1, `2)〉. prot v-send-out
`′1 7→ 20 −∗

! (`1, `2 :Loc) 〈(`1, `2)〉{`1 7→20 ∗ `2 7→22}. prot v
! (`2 :Loc) 〈(`′1, `2)〉{`2 7→22}. prot

We first use rule v-send-out to generalise over the logical variable `2 and transfer ownership
of `2 7→ 22 out of the weaker protocol (i.e., the send on the RHS), and then use v-send-in
to instantiate the logical variables `′1 and `2 and transfer ownership of `′1 7→ 20 and `2 7→ 22
into the stronger protocol (i.e., the send on the LHS).

The rules for monotonicity (v-send-mono and v-recv-mono) and swapping (v-swap)
in Figure 11 differ in two aspects from the rules for monotonicity (v-send-mono’ and v-
recv-mono’) and swapping (v-swap’) that we have seen in the beginning of this section.
First, the actual rules only apply to protocols whose head does not have logical variables
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Grammar:

t, u, P,Q, prot ::= . . . | prot1 v prot2 | . . .

Logical variable manipulation and resource transfer:

v-send-out
∀~x :~τ . P −∗

(
prot1 v ! 〈v〉. prot2

)
prot1 v ! ~x :~τ 〈v〉{P}. prot2

prot1 6= end

v-send-in
P [~t/~x]

! ~x :~τ 〈v〉{P}. prot v ! 〈v[~t/~x]〉. prot [~t/~x]

v-recv-out
∀~x :~τ . P −∗

(
?〈v〉. prot1 v prot2

)
?~x :~τ 〈v〉{P}. prot1 v prot2

prot2 6= end

v-recv-in
P [~t/~x]

?〈v[~t/~x]〉. prot [~t/~x] v ?~x :~τ 〈v〉{P}. prot

Monotonicity and swapping:

v-send-mono
.(prot1 v prot2)

! 〈v〉. prot1 v ! 〈v〉. prot2

v-recv-mono
.(prot1 v prot2)

?〈v〉. prot1 v ?〈v〉. prot2

v-swap
?〈v〉. ! 〈w〉. prot v ! 〈w〉. ?〈v〉. prot

Reflexivity and transitivity:

v-refl
prot v prot

v-trans
prot1 v prot2 prot2 v prot3

prot1 v prot3

Dual and append:

v-dual
prot2 v prot1
prot1 v prot2

v-append
prot1 v prot2 prot3 v prot4

prot1 · prot3 v prot2 · prot4

Channel ownership:

v-chan-mono
c� prot1 prot1 v prot2

c� prot2

Figure 11: The grammar and primitive rules of Actris 2.0 for subprotocols.

~x :~τ and resources P , i.e., protocols of the shape ! 〈v〉. prot or ?〈v〉. prot , instead of those
of the shape ! ~x :~τ 〈v〉{P}. prot or ?~x :~τ 〈v〉{P}. prot . While this restriction might seem to
make the rules more restrictive, the more general rules for monotonicity (v-send-mono’ and
v-recv-mono’) and swapping (v-swap’) are derivable from these simpler rules. This is done
using the rules for logical variable manipulation and resource transfer. Second, the actual
rules for monotonicity have a later modality (.) in their premise. The later modality makes
these rules stronger (by .-intro we have that P entails .P ), and thereby internalizes its
coinductive nature into the Actris logic so Löb induction can be used to prove subprotocol
relations for recursive protocols (§ 6.4).
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mapper service fv c :=
branch c with
left ⇒ let x := recv c in

let y := fv x in
send c y;
mapper service fv c

| right⇒ ()
end

mapper client fv l :=
let c := start (mapper service fv) in
let n := |l| in
send all c l;
recvN c l n;
select c right;

Figure 12: A mapper service whose verification relies on swapping (the code for the functions
send all and recvN has been elided).

The remaining rules in Figure 11 express that the subprotocol relation is reflexive
(v-refl) and transitive (v-trans), as well as that the dual operation is anti-monotone
(v-dual) and the append operation is monotone (v-append).

Let us consider the following subprotocol relation to provide some further insight into
the expressivity of our rules, (where logical variables are omitted for simplicity):

! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉{P ∗R}. ?〈w〉{Q ∗R}. prot

Here we extend the protocol ! 〈v〉{P}. ?〈w〉{Q}. prot with a frame R. The proposition R
describes resources that can be sent along with the originally expected resources P , and
which are reacquired along with the resources Q that are sent back. We demonstrate the
usefulness of this notion of framing at the protocol level in § 6.3.

The above subprotocol relation mimics the frame rule of separation logic (Ht-frame),
which makes it possible to apply specifications while maintaining a frame of resources R:

{P} e {w. Q}
{P ∗R} e {w. Q ∗R}

The frame-like subprotocol relation is proven as follows:

v-recv-in
Q ∗R −∗ ?〈w〉. prot v ?〈w〉{Q ∗R}. prot v-recv-out

R −∗ ?〈w〉{Q}. prot v ?〈w〉{Q ∗R}. prot v-send-mono, .-intro
R −∗ ! 〈v〉. ?〈w〉{Q}. prot v ! 〈v〉. ?〈w〉{Q ∗R}. prot v-send-in, v-trans

P ∗R −∗ ! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉. ?〈w〉{Q ∗R}. prot v-send-out
! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉{P ∗R}. ?〈w〉{Q ∗R}. prot

We use rule v-send-out to transfer P and the frame R out of the weaker protocol (i.e., the
send on the RHS), and then use rule v-send-in to transfer P into the stronger protocol
(i.e., the send on the LHS), leaving us with a context in which we still own the frame R.
We then use rule v-send-mono to proceed with the receiving part of the protocol in a dual
fashion—we use rule v-recv-out to transfer out Q of the stronger protocol (i.e., the receive
on the LHS), and use rule v-recv-in to transfer Q and the frame R into the weaker protocol
(i.e., the receive on the RHS).
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6.2. Swapping. Subprotocols make it possible to verify message-passing programs whose
order of sends and receives does not match up w.r.t. duality. As an example of such a program,
let us consider the mapper service and client in Figure 12. The service mapper service fv c is
a loop, which iteratively receives an element over channel endpoint c, maps the function fv over
that element, and sends the resulting value back. Conversely, the client mapper client fv l
sends all of the elements of the list l up front, and only requests the mapped results back
once all elements have been sent. Since the service interleaves the sends and receives, while
the client does not, the dependent separation protocols for the service and client cannot be
dual of each other. However, the communication between the service and client is in fact
safe as messages are buffered. We now show that using subprotocols we can prove that this
is indeed the case. We define the protocol based on the communication where sends and
receives are interleaved:

mapper prot (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → U) ,
µ(rec : iProto). (! (x : T ) (v : Val) 〈v〉{IT x v}. ?(w : Val) 〈w〉{IU (f x) w}. rec)⊕ end

The protocol is parameterised by representation predicates IT and IU that relate HeapLang
values to elements of type T and U in the Iris/Actris logic, and a function f : T → U in
Iris/Actris that specifies the behaviour of the HeapLang function fv. The connection between
f and fv is formalised as:

f spec (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → U) (fv : Val) ,
∀x v. {IT x v} fv v {w. IU (f x) w}

Since mapper prot describes an interleaved sequence of transactions, mapper service can
be readily verified against the protocol mapper prot using just the symbolic execution rules
of Actris 1.0 as presented in § 4.2. However, to verify mapper client against the protocol
mapper prot, we need to weaken the protocol using the rules for subprotocols of Actris 2.0.
Given a list of n elements, the subprotocol relation (together with an intermediate step)
that describes this weakening is:

mapper prot IT IU f
v ! 〈left〉. ! (x1 : T ) (v1 : Val) 〈v1〉{IT x1 v1}.

?(y1 : U) 〈y1〉{IU (f x1) y1}. · · ·
! 〈left〉. ! (xn : T ) (vn : Val) 〈vn〉{IT xn vn}.
?(yn : U) 〈yn〉{IU (f xn) yn}.
mapper prot IT IU f

n times µ-unfold and
weaken ⊕ into ! 〈left〉

v ! 〈left〉. ! (x1 : T ) (v1 : Val) 〈v1〉{IT x1 v1}. · · ·
! 〈left〉. ! (xn : T ) (vn : Val) 〈vn〉{IT xn vn}.
?(y1 : U) 〈y1〉{IU (f x1) y1}. · · ·
?(yn : U) 〈yn〉{IU (f xn) yn}.
mapper prot IT IU f

n times v-swap’

Both steps are proven by induction on n. In the first step, we unfold the recursive protocol
n times using µ-unfold, and use the derived rule (prot1⊕ prot2) v ! 〈left〉. prot1 to weaken
the choices to the left choice left. Recall from § 5.3 that ⊕ is defined in terms of the
send protocol (!). This allows us to prove the derived rule (prot1⊕ prot2) v ! 〈left〉. prot1
using v-send-out and v-send-in. The second step involves swapping all sends ahead of the
receives using the rule v-swap’.

The weakened protocol that we have obtained follows the behaviour of the client, making
its verification straightforward using Actris’s rules for symbolic execution. Concretely, we
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list rev service c :=
let l := recv c in
lreverse l; send c ()

list rev client l :=
let c := start list rev service in

send c l; recv c

Figure 13: A list reversing service (the code for the function lreverse has been elided).

prove the following specifications for the service and the client:{
f spec IT IU f fv ∗ c� mapper prot IT IU f · prot

}
mapper service fv c

{c� prot}

{
f spec IT IU f fv ∗ `

list7→IT ~x
}

mapper client fv `{
`

list7→IU map f ~x
}

6.3. Protocol compositionality. An essential feature of separation logic is the ability
to compose specifications of different libraries, so that each library can be defined and
verified once against its own specification, while being used in the context of slightly differing
specifications and proofs of other libraries. To achieve a similar property for our dependent
separation protocols we would similarly like to be able to compose compatible protocols.

A key ingredient that enables such compositionality in traditional separation logic is
the frame rule (Ht-frame). In § 6.1 we demonstrated how subprotocols allow for similar
framing in our protocols. In this section we give a more detailed example of such framing in
our protocols by considering the service list rev service c in Figure 13, which receives a
linked list over channel endpoint c, reverses it, and sends it back over c.

To specify this service, we could use a protocol similar to the sorting service in § 5.1,
defined in terms of the representation predicate `

list7→IT ~x for linked lists:

list rev protIT , ! (` : Loc)(~x : List T ) 〈`〉
{
`

list7→IT ~x
}
. ?〈()〉

{
`

list7→IT reverse ~x
}
. end

Although it is possible to verify the service against the protocol list rev protIT , this approach
is not quite satisfactory. Unlike the sorting service, the reversal service does not access the
list elements, but only changes the structure of the list. Hence, there is no need to keep track
of the ownership of the elements through the predicate IT . A self-contained and simpler
protocol for this service would instead be the following:

list rev prot , ! (` : Loc)(~v : List Val) 〈`〉
{
`

list7→ ~v
}
. ?〈()〉

{
`

list7→ reverse ~v
}
. end

Here, `
list7→ ~v is a version of the list representation predicate that does not keep track of the

resources of the elements, but only describes the structure of the list. It is defined as:

`
list7→ ~v ,

{
` 7→ inl () if ~v = ε

∃`2. ` 7→ inr (v1, `2) ∗ `2
list7→ ~v2 if ~v = [v1] · ~v2

However, once we have verified the service against the simple protocol, the proof of a
client might prefer to interact with the list reversal service through the general protocol
list rev protIT . Doing so can be achieved by proving the subprotocol relation list rev prot v
list rev protIT . To prove this subprotocol relation, we first establish the following relation
between the two versions of the list representation predicate:

`
list7→IT ~x ∗−∗ (∃~v. ` list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v) (list-rel)
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Here, ∗(x,v)∈(~x,~v) is the pairwise iterated separation conjunction over two lists of equal

length, and ∗−∗ is a bi-directional separation implication. The above result thus states that
`

list7→IT ~x can be split into two parts, ownership of the links of the list `
list7→ ~v, and a range of

interpretation predicates IT for each element of the list, and vice versa. With this result at
hand, the proof of the desired subprotocol relation is carried out as follows:

list rev prot

= ! (` : Loc)(~v : List Val) 〈`〉
{
`

list7→ ~v
}
. ?〈()〉

{
`

list7→ reverse ~v
}
. end

v ! (` : Loc)(~v : List Val)(~x : List T ) 〈`〉
{
`

list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v
}
.

?〈()〉
{
`

list7→ (reverse ~v) ∗∗(x,v)∈(~x,~v) .IT x v
}
. end

v ! (` : Loc)(~x : List T ) 〈`〉
{
`

list7→IT ~x
}
. ?〈()〉

{
`

list7→IT reverse ~x
}
. end

= list rev protIT

We first frame the range of interpretation predicates owned by the list ∗(x,v)∈(~x,~v) .IT x v,

using an approach similar to the frame example in § 6.1, and then use list-rel to combine it
with `

list7→ ~v and `
list7→ reverse ~v for the sending and receiving step, to turn them into `

list7→IT ~x

and `
list7→IT reverse ~x, respectively. Note that the logical variable ~v is changed into ~x, using

the subprotocol rules for logical variable manipulation. With this subprotocol relation at
hand, it is possible to prove the following specifications for the service and client:{

c� list rev prot · prot
}

list rev service c

{c� prot}

{
`

list7→IT ~x
}

list rev client `{
`

list7→IT reverse ~x
}

6.4. Subprotocols and recursion. We conclude this section by showing how subprotocol
relations involving recursive protocols can be proven using Löb induction. Recall from § 5
that the principle of Löb induction is as follows:

.P ⇒ P

P

By letting P be prot1 v prot2, we can prove prot1 v prot2 using the induction hypothesis
.(prot1 v prot2). The later modality (.) ensures that the induction hypothesis is not used
immediately, but a monotonicity rule for send (v-send-mono) or receive (v-recv-mono) is
applied first. This is done typically after unfolding the recursion operator using µ-unfold.
The monotonicity rules v-send-mono or v-recv-mono contain a later modality (.) in their
premise, which makes it possible to strip off the later of the induction hypotheses (by rule
.-mono for monotonicity of .).

Our approach for proving subprotocol relations using Löb induction is similar to the
approach of Brandt and Henglein [BH98] for proving subtyping relations for recursive types
using coinduction. Brand and Henglein [BH98] however have a syntactic restriction on
proofs to ensure that the induction hypothesis is not used immediately (i.e., is used in a
contractive fashion), while we use the later modality (.) of Iris to achieve that.

To demonstrate how our approach works, we prove prot1 v prot2, where:

prot1 , µ(rec : iProto). (list rev prot · rec)⊕ end

prot2 , µ(rec : iProto). (list rev protIT · rec)⊕ end
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Here, list rev prot and list rev protIT are the protocols from § 6.3, for which we have already
proven list rev prot v list rev protIT . The proof of prot1 v prot2 is as follows:

prot1 v prot2 −∗ prot1 v prot2 v-append
prot1 v prot2 −∗ list rev prot · prot1 v list rev protIT · prot2 .-mono

.(prot1 v prot2) −∗ .(list rev prot · prot1 v list rev protIT · prot2) ⊕-mono

.(prot1 v prot2) −∗ (list rev prot · prot1)⊕ end v (list rev protIT · prot2)⊕ end
µ-unfold

.(prot1 v prot2) −∗ prot1 v prot2 Löb
prot1 v prot2

The proof starts with the Löb rule, followed by unfolding the recursive types with µ-unfold.
We then proceed with the following derived rule for monotonicity of selection (⊕):

⊕-mono
.(prot1 v prot2 ∧ prot3 v prot4)

(prot1⊕ prot3) v (prot2⊕ prot4)

Due to the regular conjunction in the premise, the same resources can be used to prove both
branches of ⊕. This is sound because only one branch of ⊕ will be chosen. The rule ⊕-mono
follows from v-send-mono as selection (⊕) is defined in terms of send (!).

We continue the main proof with monotonicity of the later modality (.-mono), which lets
us strip off the later of the induction hypothesis .(prot1 v prot2). We then use v-append,
along with list rev prot v list rev protIT , which we have proven in § 6.3. The remaining proof
obligation prot1 v prot2 follows from the induction hypothesis.

While the protocols in the prior examples are similar in structure, our approach scales
to protocols for which that is not the case. For example, consider prot1 v prot2, where:

prot1 , µ(rec : iProto). ! (x : Z) 〈x〉. ?〈x+ 2〉. rec

prot2 , µ(rec : iProto). ! (x : Z) 〈x〉. ! (y : Z) 〈y〉. ?〈x+ 2〉. ?〈y + 2〉. rec

Intuitively, these protocols are related, as we can unfold the body of prot1 twice, the body
of prot2 once, and swap the second receive over the first send. The proof is as follows:

prot1 v prot2 −∗ prot1 v prot2 v-recv-mono, .-intro
prot1 v prot2 −∗ ?〈x+2〉. ?〈y+2〉. prot1 v

?〈x+2〉. ?〈y+2〉. prot2 v-send-mono’, .-intro
prot1 v prot2 −∗ ! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 v-swap’, v-trans
prot1 v prot2 −∗ ?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 .-mono
.(prot1 v prot2) −∗ .(?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2) v-send-mono’
.(prot1 v prot2) −∗ !x 〈x〉. ?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

!x 〈x〉. ! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 µ-unfold
.(prot1 v prot2) −∗ prot1 v prot2 Löb

prot1 v prot2
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Grammar:

t, u, P,Q, prot ::= . . . | is lock lk P | . . .
Locks:

{R} new lock () {lk . is lock lk R} (Ht-new-lock)

{is lock lk R} acquire lk {R} (Ht-acquire)

{is lock lk R ∗R} release lk {True} (Ht-release)

is lock lk R −∗ is lock lk R ∗ is lock lk R (Lock-dup)

Figure 14: The grammar and rules of locks in Iris.

After we use v-send-mono’ for the first time, we strip off the later of the induction hypothesis
.(prot1 v prot2), using .-mono. Subsequently, when we use v-send-mono’ and v-recv-
mono, there are no more laters to strip. We therefore instead introduce the laters using
.-intro before applying the appropriate subprotocol monotonicity rule.

7. Manifest sharing via locks

Since dependent separation protocols and the connective c� prot for ownership of protocols
are first-class objects of the Actris logic, they can be used like any other logical connective.
This means that protocols can be combined with any other mechanism that Actris inherits
from Iris. In particular, they can be combined with Iris’s generic invariant and ghost state
mechanism, and can be used in combination with Iris’s abstractions for reasoning about
other concurrency connectives like locks, barriers, lock-free data structures, etc.

In this section we demonstrate how dependent separation protocols can be combined
with lock-based concurrency. This combination allows us to prove functional correctness of
programs that make use of the notion of manifest sharing [BP17; BTP19], where channel
endpoints are shared between multiple parties. Instead of having to extend Actris, we make
use of the locks and ghost state that Actris inherits from Iris. We present the basic idea with
a simple introductory example of sharing a channel endpoint between two parties (§7.1). We
then consider a more challenging example of a channel-based load-balancing mapper (§ 7.2).

7.1. Locks and ghost state. As presented in §2, HeapLang includes a lock library, with the
operations new lock (), acquire lk , and release lk . The operations satisfy the separation
logic specifications shown in Figure 14.

The specifications for locks make use of the representation predicate is lock lk R, which
expresses that a lock lk guards the resources described by the proposition R. When creating a
new lock one has to give up ownership of R, and in turn, obtains the representation predicate
is lock lk R (Ht-new-lock). The representation predicate can then be freely duplicated so
it can be shared between multiple threads (Lock-dup). When entering a critical section
using acquire lk , a thread gets exclusive ownership of R (Ht-acquire), which has to be
given up when releasing the lock using release lk (Ht-release). The resources R that are
protected by the lock are therefore invariant in-between any of the critical sections. The
lock can only ever be acquired by one thread at a time, as acquire lk will loop until the
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prog lock := let c := start (λc. let lk := new lock () in
fork {acquire lk ; send c 21; release lk} ;
acquire lk ; send c 21; release lk) in

recv c+ recv c

Figure 15: A sample program that combines locks and channels to achieve manifest sharing.

TrueV ∃γ. authγ 0 (Auth-init)

authγ nV contribγ ∗ authγ (1 + n) (Auth-alloc)

authγ (1 + n) ∗ contribγ V authγ n (Auth-dealloc)

authγ n ∗ contribγ −∗ n > 0 (Auth-contrib-pos)

Figure 16: The authoritative contribution ghost theory.

lock is released. The Ht-acquire rule reflects this, as the exclusive resources R are only
obtained once the function terminates, i.e., when the lock is available.

To show how locks can be used, consider the program prog lock in Figure 15. This
program uses a lock to share a channel endpoint between two threads, which each send
the integer 21 to the main thread. The following dependent protocol specifies the expected
interaction from the point of view of the main thread:

lock prot , µ(rec : N→ iProto). λn. if (n = 0) then end else ?〈21〉. rec (n− 1)

Here, n denotes the number of messages that should be exchanged. In the example program,
n is initially 2. Since c� lock prot n is an exclusive resource, we need a lock to share it
between the threads that send 21. For this we will use the following lock invariant:

is lock lk (∃n. authγ n ∗ c� lock prot n)

The natural number n is existentially quantified since it changes whenever a message is
exchanged. To keep track of the number of exchanges that each thread is allowed to make we
then need to tie the number n to some local resource. We achieve this by using Iris’s ghost
theory mechanism for creating user-defined ghost state [JSS+15; JKJ+18]. In particular, we
define two logical connectives authγ n and contribγ using Iris.4

The authγ n fragment can be thought of as an authority that keeps track of the number
of ongoing contributions n, while each contribγ is a token that witnesses that a contribution is
still in progress. This intuition is made precise by the rules in Figure 16. The rule Auth-init

expresses that an authority authγ 0 can always be created, capturing that 0 contributions
are initially in progress. A fresh ghost identifier γ is given, which is conceptually similar to
how we obtain fresh locations for newly allocated references on the physical heap. Using
the rules Auth-alloc and Auth-dealloc, we can allocate and deallocate contribγ tokens as
long as the number n of ongoing contributions in authγ n is updated accordingly. The rule
Auth-contrib-pos expresses that ownership of a token contribγ implies that the count n of
authγ n must be positive.

4Defining a ghost theory in Iris involves picking an appropriate resource algebra with which one can define
a set of abstract predicates (here authγ n and contribγ). The details of resource algebras are beyond the scope
of this paper and can be found in Jung et al. [JKJ+18].
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Most of the rules in Figure 16 involve Iris’s view shift connectiveV for performing ghost
updates. This is made precise by the structural rules Vs-csq and Vs-frame, which establish
the connection between V and Iris’s Hoare triples:

Vs-csq

P V P ′
{
P ′
}
e
{
v. Q′

}
∀v. Q′ V Q

{P} e {v. Q}

Vs-frame
P V Q

P ∗RV Q ∗R

With the ghost theory in place, we can now prove suitable specifications for the program.
The specification of the top-level program is shown on the right, while the left Hoare triple
shows the auxiliary specification of both threads that send the integer 21:{

contribγ ∗ is lock lk (∃n. authγ n ∗ c� lock prot n)
}

acquire lk ; send c 21; release lk

{True}

{True}
prog lock

{v. v = 42}

We use rule Ht-new to assign protocol lock prot 2 to the channel. To establish the initial
lock invariant, we use the rules Auth-init and Auth-alloc to create the authority authγ 2
and two contribγ tokens. The contribγ tokens play a crucial role in the proofs of the sending
threads to establish that the existentially quantified variable n is positive (using Auth-

contrib-pos). Knowing n > 0, these threads can establish that the protocol lock prot n
has not terminated yet (i.e., is not end). This is needed to use the rule Ht-send to prove
the correctness of sending 21, and thereby advancing the protocol from lock prot n to

lock prot (n− 1). Subsequently, the sending threads can deallocate the token contribγ
(using Auth-dealloc) to decrement the n of authγ n accordingly to restore the lock invariant.

7.2. A channel-based load-balancing mapper. This section demonstrates a more in-
teresting use of manifest sharing. We show how Actris can be used to verify functional
correctness of a channel-based load-balancing mapper that maps the HeapLang function fv

over a list. Our channel-based mapper consists of one client that distributes the work, and a
number of workers that perform the function fv on individual elements of the list. To enable
communication between the client and the workers, we make use of a single channel. One
endpoint is used by the client to distribute the work between the workers, while the other
endpoint is shared between all workers to request and return work from the client. The
implementation of the workers par mapper worker fv lk c, which can be found in Figure 17,
consists of a loop over three phases:

(1) The worker notifies the client that it wants to perform work (using select c left), after
which it is then notified (using branch) whether there is more work or all elements have
been mapped. If there is more work, the worker receives an element x that needs to be
mapped. Otherwise, the worker will terminate.

(2) The worker maps the function fv on x.
(3) The worker notifies the client that it wants to send back a result (using select c right),

and subsequently sends back the result y of mapping fv on x.

The first and last phases are in a critical section guarded by a lock lk since they involve
interaction over a shared channel endpoint. As the sharing behaviour is encapsulated by the
worker, we omit the code of the client for brevity’s sake.5

5The entire code is present in the accompanied Coq development [HBK21].
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par mapper worker fv lk c :=
acquire lk ;
select c left;
branch c with
right⇒ release lk
| left ⇒ let x := recv c in release lk ; (* acquire work *)

let y := fv x in (* map it *)

acquire lk ;
select c right; send c y; (* send it back *)

release lk ;
par mapper worker fv lk c

end

Figure 17: A worker of the channel-based mapper service.

TrueV ∃γ. authγ 0 ∅ (AuthM-init)

authγ n X V authγ (1 + n) X ∗ contribγ ∅ (AuthM-alloc)

authγ n X ∗ contribγ ∅V authγ (n− 1) X (AuthM-dealloc)

authγ n X ∗ contribγ Y V authγ n (X ] Z) ∗ contribγ (Y ] Z) (AuthM-add)

Z ⊆ Y ∗ authγ n X ∗ contribγ Y V authγ n (X \ Z) ∗ contribγ (Y \ Z) (AuthM-remove)

authγ n X ∗ contribγ Y −∗ n > 0 ∗ Y ⊆ X (AuthM-contrib-agree)

authγ 1 X ∗ contribγ Y −∗ Y = X (AuthM-contrib-agree1)

Figure 18: The authoritative contribution ghost theory extended with multisets.

A protocol that describes the interaction from the client’s point of view is as follows:

par mapper prot (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → List U) ,
µ(rec : N→ MultiSet T → iProto). λn X.
if n = 0 then end else

(! (x : T ) (v : Val) 〈v〉{IT x v}. rec n (X ] {x}))⊕ rec (n− 1) X

{(n=1)−∗(X=∅)}&{True}

?(x : T ) (` : Loc) 〈`〉
{
x ∈ X ∗ ` list7→IU (f x)

}
. rec n (X \ {x})

Similarly to mapper prot from § 6.2, the protocol is parameterised by representation predi-
cates IT and IU , and a function f : T → List U in the Iris/Actris logic that will be related to
fv through a f spec specification. Similar to the protocol lock prot from § 7.1, the protocol
par mapper prot is indexed by the number of remaining workers n. On top of that, it carries
a multiset X describing the values currently being processed by all the workers. The multiset
X is used to make sure that the returned results are in fact the result of mapping the
function f . The condition (n = 1) −∗ (X = ∅) on the branching operator (&) expresses that
the last worker may only request more work if there are no ongoing jobs.

To accommodate sharing of the channel endpoint between all workers using a lock
invariant, we extend the authoritative contribution ghost theory from § 7.1. We do this by
adding multisets X and Y to the connectives authγ n X and contribγ Y . These multisets
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keep track of the values held by the workers. The rules for the ghost theory extended
with multisets are shown in Figure 18. The rules AuthM-init, AuthM-alloc and AuthM-

dealloc are straightforward generalisations of the ones we have seen before. The new
rules AuthM-add and AuthM-remove determine that the multiset Y of contribγ Y can be
updated as long as it is done in accordance with the multiset X of authγ n X. Finally, the
AuthM-contrib-agree rule expresses that the multiset Y of contribγ Y must be a subset of
the multiset X of authγ n X, while the stricter rule AuthM-contrib-agree1 asserts equality
between X and Y when only one contribution remains.

We then prove the following specifications of par mapper worker and a possible top-level
client par mapper client that uses n workers to map fv over the linked list `:

f spec IT IU f fv ∗ contribγ ∅ ∗

is lock lk

(
∃n X. authγ n X ∗
c� par mapper prot IT IU f n X

)
par mapper worker fv lk c

{True}

{
f spec IT IU f fv ∗
0 < n ∗ ` list7→IT ~x

}
par mapper client n fv `{
∃~y. ~y ≡p flatMap f ~x ∗ ` list7→IU ~y

}
The lock invariant and specification of par mapper worker are similar to those used in the
simple example in §7.1. The specification of par mapper client n fv ` simply states that the
resulting linked contains a permutation of performing the map at the level of the logic. To
specify that, we make use of flatMap : (T → List U)→ (List T → List U), whose definition
is standard.

The proof of the client involves allocating the channel with the protocol par mapper prot,
with the initial number of workers n. Subsequently, we use the rules AuthM-init and
AuthM-alloc to create the authority authγ n ∅ and n tokens contribγ ∅, which allow us to
establish the lock invariant and to distribute the tokens among the mappers. The proof of
the mapper proceeds as usual. After acquiring the lock, the mapper obtains ownership of
the lock invariant. Since the worker owns the token contribγ ∅, it knows that the number
of remaining workers n is positive, which allows it to conclude that the protocol has not
terminated (i.e., is not end). After using the rules for channels, the rules AuthM-add and
AuthM-remove are used to update the authority, which is needed to reestablish the lock
invariant so the lock can be released.

8. Case study: map-reduce

As a means of demonstrating the use of Actris for verifying more realistic programs, we present
a proof of functional correctness of a simple channel-based load-balancing implementation of
the map-reduce model by Dean and Ghemawat [DG04].

Since Actris is not concerned with distributed systems over networks, we consider a
version of map-reduce that delegates the work over forked-off threads on a single machine.
This means that we do not consider mechanics like handling the failure, restarting, and
rescheduling of nodes that a version that operates on a network has to consider.

In order to implement and verify our map-reduce version we make use of the implemen-
tation and verification of the fine-grained channel-based merge sort algorithm (§5.6) and the
channel-based load-balancing mapper (§ 7.2). As such, our map-reduce implementation is
mostly a suitable client that glues together communication with these services. The purpose
of this section is to give a high-level description of the implementation. The actual code and
proofs can be found in the accompanied Coq development [HBK21].
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8.1. A functional specification of map-reduce. The purpose of the map-reduce model
is to transform an input set of type List T into an output set of type List V using two
functions f (often called “map”) and g (often called “reduce”):

f : T → List (K ∗ U) g : (K ∗ List U)→ List V

An implementation of map-reduce performs the transformation in three steps:

(1) First, the function f is applied to each element of the input set. This results in lists of
key/value pairs which are then flattened using a flatMap operation (an operation that
takes a list of lists and appends all nested lists):

flatMap f : List T → List (K ∗ U)

(2) Second, the resulting lists of key/value pairs are grouped together by their key (this step
is often called “shuffling”):

group : List (K ∗ U)→ List (K ∗ List U)

(3) Finally, the grouped key/value pairs are passed on to the g function, after which the
results are flattened to aggregate the results. This is done using a flatMap operation:

flatMap g : List (K ∗ List U)→ List V

The complete functionality of map-reduce is equivalent to applying the following map reduce

function on the entire data set:

map reduce : List T → List V , (flatMap g) ◦ group ◦ (flatMap f )

A standard instance of map-reduce is counting word occurrences, where we let T , K , String
and U , N and V , String ∗ N with:

f : String→ List (String ∗ N) , λx. [(x, 1)]

g : (String ∗ List N)→ List (String ∗ N) , λ(k, ~n). [(k,Σi<|~n|. ~ni)]

8.2. Implementation of map-reduce. The general distributed model of map-reduce is
achieved by delegating the phases of mapping, shuffling, and reducing, over a number of
worker nodes (e.g., nodes of a cluster or individual CPUs). To perform the computation
in a delegated way, there is some work involved in coordinating the jobs over these worker
nodes, which is usually done as follows:

(1) Split the input data into chunks and delegate these chunks to worker nodes, that each
apply the “map” function f to their given data in parallel. We call these nodes the
“mappers”.

(2) Collect the complete set of mapped results and “shuffle” them, i.e., group them by key.
The grouping is commonly implemented using a parallel sorting algorithm.

(3) Split the shuffled data into chunks and delegate these chunks to worker nodes that each
apply the “reduce” function g to their given data in parallel. We call these nodes the
“reducers”.

(4) Collect and aggregate the complete set of result of the reducers.

Our variant of the map-reduce model is defined as a function map reducev n m fv gv `
in HeapLang, which coordinates the work for performing map-reduce on a linked list `
between n mappers applying the HeapLang “map” function fv, and m reducers applying the
HeapLang “reduce” function gv. To make the implementation more interesting, we prevent
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storing intermediate values locally by forwarding/returning them immediately as they are
available/requested. The global structure is as follows:

(1) Start n instances of the load-balancing par mapper worker from §7, parameterised with
the fv function, acting as the mappers. Additionally start an instance of sort servicefg
from § 5.6, parameterised by a concrete comparison function on the keys, corresponding
to λ(k1, ) (k2, ). k1 < k2. Note that the type of keys are restricted to be integers for
brevity’s sake.

(2) Perform a loop that handles communication with the mappers. If a mapper requests
work, pop a value from the input list. If a mapper returns work, forward it to the sorting
service. This process is repeated until all inputs have been mapped and forwarded.

(3) Start m instances of the par mapper worker, parameterised by gv, acting as the reducers.
(4) Perform a loop that handles communication with the mappers. If a mapper requests

work, group elements returned by the sort service. If a mapper returns work, aggregate
the returned value in a the linked list. Grouped elements are created by requesting and
aggregating elements from the sorter until the key changes.

The aggregated linked list then contains the fully mapped input set upon completion.

8.3. Functional correctness of map-reduce. The specification of the map-reduce pro-
gram that we prove is as follows:{

0 < n ∗ 0 < m ∗ f spec IT IZ∗U f fv ∗ f spec IZ∗List U IV g gv ∗ `
list7→IT ~x

}
map reducev n m fv gv `{
∃~z. ~z ≡p map reduce f g ~x ∗ ` list7→IV ~z

}
The f spec predicates (as introduced in § 6.2) establish a connection between the functions
f and g in Iris/Actris and the functions fv and gv in HeapLang. These make use of the
various interpretation predicates IT , IZ∗U , IZ∗List U , and IV for the types in question. Lastly,
the `

list7→IT ~x predicate determines that the input is a linked list of the initial type T . The
postcondition asserts that the result ~z is a permutation of the original linked list ~x applied
to the functional specification map reduce of map-reduce from § 8.1.

9. The model of Actris

We construct a model of Actris as a shallow embedding in the Iris framework [KJB+17;
JSS+15; JKBD16; JKJ+18]. This means that the type iProto of dependent separation
protocols, the subprotocol relation prot1 v prot2, and the connective c � prot for the
channel ownership, are definitions in Iris, and the Actris proof rules are lemmas about these
definitions in Iris.

In this section we describe the relevant aspects of the model of Actris. We model the
type iProto of dependent separation protocols as the solution of a recursive domain equation,
and describe how the operations for dual and composition are defined (§ 9.1). We then
define the subprotocol relation prot1 v prot2 and prove its proof rules as lemmas (§ 9.2). To
connect protocols to the endpoint channel buffers in the semantics we define the protocol
consistency relation, which ensures that a pair of protocols is consistent with the messages
in their associated buffers (§ 9.3). On top of the protocol consistency relation, we define the
Actris ghost theory for dependent separation protocols (§9.4), which forms the key ingredient
for defining the connective c� prot for channel ownership (§ 9.5) that links protocols to the
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semantics of channels (§ 2.4). We then show how adequacy follows from the embedding in
Iris (§ 9.6). Finally, we show how to solve the recursive domain equation for the type iProto
of dependent separation protocols (§ 9.7).

9.1. The model of dependent separation protocols. To construct a model of dependent
separation protocols, we first need to determine what they mean semantically. The challenging
part involves the constructors ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot , whose (higher-order
and impredicative) logical variables ~x :~τ bind into the communicated value v, the transferred
resources P , and the tail protocol prot . We model these constructors as predicates over
the communicated value and the tail protocol. To describe the transferred resources P , we
model these protocols as Iris predicates (functions to iProp). This gives rise to the following
recursive domain equation:

action ::= send | recv

iProto ∼= 1 + (action× (Val→ IiProto→ iProp))

The left part of the sum type (the unit type 1) indicates that the protocol has terminated,
while the right part describes a message that is exchanged, expressed as an Iris predicate.
Since the recursive occurrence of iProto in the predicate appears in negative position, we
guard it using Iris’s type-level later (I) operator (whose only constructor is next : T → I T ).
The exact way the solution is constructed is detailed in § 9.7. For now, we assume a solution
exists, and define the dependent separation protocols constructors as:

end , inj1 ()

! ~x :~τ 〈v〉{P}. prot , inj2 (send, λw prot ′. ∃~x :~τ . (v = w) ∗ P ∗ (prot ′ = next prot))

?~x :~τ 〈v〉{P}. prot , inj2 (recv, λw prot ′. ∃~x :~τ . (v = w) ∗ P ∗ (prot ′ = next prot))

The definitions of ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot make use of the (higher-order
and impredicative) existential quantifiers of Iris to constrain the actual message w and tail
prot ′ so that they agree with the message v and tail prot prescribed by the protocol.

Recursive protocols. Iris’s guarded recursion operator µx. t requires the recursion variable
x to appear under a contractive term construct in t. Hence, to use Iris’s recursion operator
to construct recursive protocols, it is essential that the protocols ! ~x : ~τ 〈v〉{P}. prot and
?~x :~τ 〈v〉{P}. prot are contractive in the tail prot . To show why this is the case, let us first
define what it means for a function f : T → U to be contractive:

∀x, y. .(x = y)⇒ f x = f y

Examples of contractive functions are the later modality . : iProp→ iProp and the constructor
next : T → I T . The protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot are defined so that
prot appears below a next, and hence we can prove that they are contractive in prot .

Operations. With these definitions at hand, the dual ( ) and append ( · ) operations are
defined using Iris’s guarded recursion operator (µx. t):

( ) , µrec. λprot .


inj1 () if prot = inj1 ()

inj2 (a, λw prot ′. ∃prot ′′.

Φ w (next prot ′′) ∗
prot ′ = next (rec prot ′′))

if prot = inj2 (a, Φ)
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( · prot2) , µrec. λprot1.


prot2 if prot1 = inj1 ()

inj2 (a, λw prot ′. ∃prot ′′.

Φ w (next prot ′′) ∗
prot ′ = next (rec prot ′′))

if prot1 = inj2 (a, Φ)

In the above definitions, we let send , recv and recv = send.
The base cases of both definitions are as expected. In the recursive cases, we construct

a new predicate, given the original predicate Φ. In these new predicates, we quantify over an
original tail protocol prot ′′ such that Φ w (next prot ′′) holds, and unify the new tail protocol
prot ′ with the result of the recursive call rec prot ′′.

The equational rules for dual ( ) and append ( · ) from Figure 5 are proven as lemmas
in Iris using Löb induction. This is possible as the recursive call rec prot ′′ appears below a
next constructor—since the next constructor is contractive, we can strip-off the later from
the induction hypothesis when proving the equality for the tail.

Difference from the conference version. In the conference version of this paper [HBK20],
we described two versions of the recursive domain equation for dependent separation protocols:
an “ideal” version (as used in this paper), where iProto appears in negative position, and
an “alternative” version, where iProto appears in positive position. At that time, we were
unable to construct a solution of the “ideal” version, so we used the “alternative” version.
In § 9.7 we show how we are now able to solve the “ideal” version.

In the conference version of this paper, the proposition P appeared under a later modality
in the definitions of the protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot , making these
protocols contractive in P . This choice was motivated by the ability to construct recursive
protocols like µrec. ! (c : Val) 〈c〉{c� prot}. prot ′, where the payload refers to the recursion
variable rec. In the current version (without the later modality) we can still construct such
protocols, because c� prot is contractive in prot . We removed the later modality because
it is incompatible with the rules v-send-out and v-recv-out for subprotocols.

9.2. The model of the subprotocol relation. We now model the subprotocol relation
prot1 v prot2 from §6. For legibility, we present it in the style of an inference system through
its constructors, whereas it is formally defined using Iris’s guarded recursion operator (µx. t):

inj1 () v inj1 ()

∀v, prot2. Φ2 v (next prot2) −∗
∃prot1. Φ1 v (next prot1) ∗

.(prot1 v prot2)
inj2 (send, Φ1) v inj2 (send, Φ2)

∀v, prot1. Φ1 v (next prot1) −∗
∃prot2. Φ2 v (next prot2) ∗

.(prot1 v prot2)
inj2 (recv, Φ1) v inj2 (recv, Φ2)

∀v1, v2, prot1, prot2. (Φ1 v1 (next prot1) ∗ Φ2 v2 (next prot2)) −∗
∃prot . .(prot1 v ! 〈v2〉. prot) ∗ .(?〈v1〉. prot v prot2)
inj2 (recv, Φ1) v inj2 (send, Φ2)

To be a well-formed guarded recursion definition, every recursive occurrence of v is guarded
by the later modality (.). Aside from later being required for well-formedness, these laters
make it possible to reason about the subprotocol relation using Löb induction; both to
prove the subprotocol rules from Figure 11 as lemmas, and for Actris users to reason about
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recursive protocols as shown in § 6.4. The relation is defined in a syntax directed fashion
(i.e., there are no overlapping rules), and therefore all constructors need to be defined so
that they are closed under monotonicity and transitivity.

The first constructor states that terminating protocols (end , inj1 ()) are related. The
other constructors concern the protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot , which
are modelled as inj2 (send, Φ) and inj2 (recv, Φ), where Φ : Val → IiProto → iProp is a
predicate over the communicated value and tail protocol. While the actual constructors are
somewhat intimidating because they are defined in terms of these predicates in the model,
they essentially correspond to the following high-level versions:

∀~y :~σ. P2 −∗ ∃~x :~τ . (v1 = v2) ∗ P1 ∗ .(prot1 v prot2)

! ~x :~τ 〈v1〉{P1}. prot1 v ! ~y :~σ 〈v2〉{P2}. prot2

∀~x :~τ . P1 −∗ ∃~y :~σ. (v1 = v2) ∗ P2 ∗ .(prot1 v prot2)

?~x :~τ 〈v1〉{P1}. prot1 v ?~y :~σ 〈v2〉{P2}. prot2

∀~x :~τ , ~y :~σ. (P1 ∗ P2) −∗ ∃prot . .(prot1 v ! 〈v2〉. prot) ∗ .(?〈v1〉. prot v prot2)

?~x :~τ 〈v1〉{P1}. prot1 v ! ~y :~σ 〈v2〉{P2}. prot2

To obtain syntax directed rules, the first rule combines v-send-out, v-send-in, and v-send-
mono, and dually, the second rule combines v-recv-out, v-recv-in, and v-recv-mono. The
third rule combines v-recv-out, v-send-out and v-swap and bakes in transitivity, instead
of asserting that prot1 and prot2 are equal to ! 〈v2〉. prot and ?〈v1〉. prot , respectively.

The rules from the beginning of this section are defined by generalising the high-level
rules to arbitrary predicates. For example, rule inj2 (send, Φ1) v inj2 (send, Φ2) requires
that for any value v and tail protocol prot2 that are allowed by the predicate Φ2, there
is a stronger tail protocol prot1 (i.e., where prot1 v prot2), so that the same value v and
stronger tail protocol prot1 are allowed by the predicate Φ1.

The rules in Figure 11 on page 28 are proven as lemmas. Those for logical variable and
resource manipulation (v-send-out, v-send-in, v-recv-out and v-recv-in), monotonicity
(v-send-mono and v-recv-mono), and swapping (v-swap) follow almost immediately from
the definition, whereas those for reflexivity (v-refl), transitivity (v-trans), and the dual
and append operator (v-dual and v-append) are proven using Löb induction.

9.3. Protocol consistency. To connect dependent separation protocols to the semantics of
channels in §9.5, we define the protocol consistency relation prot consistent ~v1 ~v2 prot1 prot2,
which expresses that protocols prot1 and prot2 are consistent w.r.t. channel buffers containing
values ~v1 and ~v2. The consistency relation is defined as:

prot consistent ~v1 ~v2 prot1 prot2 , ∃prot .

(?〈~v2.1〉. . . . ?〈~v2.|~v2|〉. prot v prot1) ∗ (?〈~v1.1〉. . . . ?〈~v1.|~v1|〉. prot v prot2)

Intuitively, prot consistent ~v1 ~v2 prot1 prot2 ensures that for all messages ~v1 = ~v1.1 . . . ~v1.|~v1|
in transit from the endpoint described by prot1 to the endpoint described by prot2, the
protocol prot2 is expecting to receive these message in order (and vice versa for ~v2), after
which the remaining protocols prot and prot are dual. To account for weakening we close
the consistency relation under subprotocols (by using v instead of equality). Closure under
the subprotocol relation additionally implicitly captures ownership of the quantifiers and
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TrueV ∃γ. (γ 7→• prot) ∗ (γ 7→◦ prot) (ho-ghost-alloc)

(γ 7→• prot) ∗ (γ 7→◦ prot ′)V (γ 7→• prot ′′) ∗ (γ 7→◦ prot ′′) (ho-ghost-update)

(γ 7→• prot) ∗ (γ 7→◦ prot ′) −∗ .(prot = prot ′) (ho-ghost-agree)

Figure 19: Ghost theory for higher-order ghost variables in Iris.

resources associated with the messages ~v1 and ~v2. That is, since the subprotocol relations
relate the protocol arguments prot1 and prot2 with protocols that specify no quantifiers or
resources. More precisely, by the definition of the subprotocol relation (shown in § 9.2), a
relation such as ?〈v〉. prot1 v ?(~x :~τ) 〈v〉{P}. prot2 is equivalent to a separation implication
of the form True −∗ ∃~x :~τ . P ∗ . prot1 v prot2, where the obligation True is trivial, meaning
that it implicitly asserts ownership of P .

Finally, closure under the subprotocol relation gives that prot consistent ~v1 ~v2 prot1 prot2
and prot1 v prot ′1 implies prot consistent ~v1 ~v2 prot ′1 prot2, and ensures that the consistency
relation enjoys the following rules corresponding to creating a channel, sending a message,
and receiving a message:

prot consistent ε ε prot prot

(prot consistent ~v1 ~v2 (! ~x :~τ 〈v〉{P}. prot1) prot2 ∗ P [~t/~x]) −∗
.|~v2|(prot consistent (~v1 · [v[~t/~x]]) ~v2 prot1 prot2)

prot consistent ~v1 ([w] · ~v2) (?~x :~τ 〈v〉{P}. prot1) prot2 −∗
∃~y. (w = v[~y/~x]) ∗ P [~y/~x] ∗ .(prot consistent ~v1 ~v2 prot1 prot2)

The first rule states that dual protocols are consistent w.r.t. a pair of empty buffers. The
second rule states that a protocol ! ~x :~τ 〈v〉{P}. prot1 can be advanced to prot1 by giving
up ownership of P [~t/~x] and enqueueing the value v[~t/~x] in the buffer ~v1. Dually, the third
rule states that given a protocol ?~x :~τ 〈v〉{P}. prot1 and a buffer that contains value w as
its head, we learn that w is equal to v[~y/~x], and that we can obtain ownership of P [~y/~x] by
advancing the protocol to prot1 and dequeuing the value w from the buffer. Since the relation
is symmetric, i.e., if prot consistent ~v1 ~v2 prot1 prot2 then prot consistent ~v2 ~v1 prot2 prot1,
we obtain similar rules for the protocol prot2 on the right-hand side.

The last two rules are proven by case analysis on the subprotocol relation (v) in the
assumption. Since the subprotocol relation (v) is defined using guarded recursion, we obtain
a later modality (.) for each case analysis. To prove the first of the rules, we need to perform
a number of case analyses equal to the size of the buffer ~v2, whereas for the second rule we
need to perform just a single case analysis. These later modalities are eliminated through
the skipN operation in the send operation, see § 9.5 for further discussion.

9.4. The Actris ghost theory. To provide a general interface for making Actris’s reasoning
principles independent of HeapLang, we employ a standard ghost theory approach in Iris
to compartmentalise channel ownership. In § 9.5 we define the connective c � prot for
channel endpoint ownership that links the ghost theory to the buffers of our implementation
of channels in HeapLang.

The Actris ghost theory is similar in its interface to the ghost theory for contributions
that we used in § 7. We define three new logical connectives—an authority prot ctx χ ~v1 ~v2,
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TrueV ∃χ. prot ctx χ ε ε ∗ prot ownl χ prot ∗ prot ownr χ prot (proto-alloc)

prot ctx χ ~v1 ~v2 ∗ prot ownl χ (! ~x :~τ 〈v〉{P}. prot) ∗ P [~t/~x]V(
.|~v2| prot ctx χ (~v1 · [v[~t/~x]]) ~v2

)
∗ prot ownl χ (prot [~t/~x])

(proto-send-l)

prot ctx χ ~v1 ~v2 ∗ prot ownr χ (! ~x :~τ 〈v〉{P}. prot) ∗ P [~t/~x]V(
.|~v1| prot ctx χ ~v1 (~v2 · [v[~t/~x]])

)
∗ prot ownr χ (prot [~t/~x])

(proto-send-r)

prot ctx χ ~v1 ([w] · ~v2) ∗ prot ownl χ (?~x :~τ 〈v〉{P}. prot)V
.∃~y. w = v[~y/~x] ∗ P [~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownl χ (prot [~y/~x])

(proto-recv-l)

prot ctx χ ([w] · ~v1) ~v2 ∗ prot ownr χ (?~x :~τ 〈v〉{P}. prot)V
. ∃~y. w = v[~y/~x] ∗ P [~y/~x] ∗ prot ctx χ ~v1 ~v2 ∗ prot ownr χ (prot [~y/~x])

(proto-recv-r)

prot ownl χ prot ∗ prot v prot ′ −∗ prot ownl χ prot ′ (proto-v-l)

prot ownr χ prot ∗ prot v prot ′ −∗ prot ownr χ prot ′ (proto-v-r)

Figure 20: The Actris ghost theory.

and tokens prot ownl χ prot l and prot ownr χ protr—and prove rules about how they can be
allocated, updated, and used. Similar to prior ghost theories, the identifier χ associates the
connectives to each other. The prot ctx χ ~v1 ~v2 connective can be thought of as an authority
that governs the global state of the buffers ~v1 and ~v2. The tokens prot ownl χ prot l and
prot ownr χ protr provide local views of the buffers state in terms of the protocols prot l and
protr. As we will see in § 9.5, the authority can be shared using a lock, while the tokens
provide unique ownership of each endpoint.

To define the connectives of the Actris ghost theory we use Iris’s existing ghost theory for
higher-order ghost variables, revolving around the two connectives γ 7→• prot and γ 7→◦ prot ′,
which we call the inner and outer fragments, respectively. As before, the γ is the ghost
identifier that associates the connectives. The fragments can be thought of as two pieces of
a single variable, which can only be updated in the presence of both fragments. As a result,
we know that inner and outer fragment with the same ghost identifier γ always point to the
same protocol prot . This is made precise by the rules as shown in Figure 19. In particular,
higher-order ghost variables are allocated in pairs γ 7→• prot and γ 7→◦ prot for an identical
protocol prot (ho-ghost-alloc), and they can only be updated together (ho-ghost-update).
This means that they will always hold the same protocol (ho-ghost-agree). The subtle
part of the higher-order ghost variables is that they involve ownership of a protocol of type
iProto, which is defined in terms of Iris propositions iProp. Due to the dependency on iProp
(which is covered in detail in § 9.1 and 9.7) the rule ho-ghost-agree only gives the equality
between the protocols under a later modality (.).

With Iris’s higher-order ghost variables at hand, we can define the Actris ghost theory
connectives as:

prot ctx (γ1, γ2) ~v1 ~v2 , ∃prot1, prot2. γ1 7→• prot1 ∗ γ2 7→• prot2 ∗
. prot consistent ~v1 ~v2 prot1 prot2

prot ownl (γ1, γ2) prot l , ∃prot ′l. γ1 7→◦ prot ′l ∗ .(prot ′l v prot l)

prot ownr (γ1, γ2) protr , ∃prot ′r. γ2 7→◦ prot ′r ∗ .(prot ′r v protr)
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Since we use two higher-order ghost variables, our identifiers χ ::= (γ1, γ2) are pairs of Iris
ghost identifiers. The authority prot ctx (γ1, γ2) ~v1 ~v2 asserts ownership of the inner fragments
of the higher-order ghost variables γ1 7→• prot1 and γ2 7→• prot2 for some protocols prot1 and
prot2. It then asserts that the buffers ~v1 and ~v2 are consistent with respect to those protocols
prot1 and prot2 (via prot consistent ~v1 ~v2 prot1 prot2). The tokens prot ownl (γ1, γ2) prot l
and prot ownr (γ1, γ2) protr respectively assert ownership of the outer higher-order ghost
variable fragments γ1 7→◦ prot ′l and γ2 7→◦ prot ′r. Here prot ′l and prot ′r are protocols that are
weaker than the protocol arguments prot l and protr (via prot ′l v prot l and prot ′r v protr).
The explicit weakening under the subprotocol relation may seem redundant, as weakening is
already accounted for in prot consistent. However, it allows us to weaken the protocols of the
tokens without the presence of the authority as shown momentarily. The later modality (.)
makes sure that prot ownl (γ1, γ2) prot and prot ownr (γ1, γ2) prot are contractive in prot .

With the definitions of the ghost theory connectives at hand, we prove the rules of the
ghost theory presented in Figure 20. The rule proto-alloc corresponds to allocation of
a buffer pair, the rules proto-send-l and proto-send-r correspond to sending a message,
and the rules proto-recv-l and proto-recv-r correspond to receiving a message. Finally,
the rules proto-v-l and proto-v-r captures that we can weaken the protocols of the
tokens without the presence of the authority. The rules of Figure 20 are proven through a
combination of the rules for higher-order ghost state from Figure 19, and the rules for the
protocol consistency relation prot consistent from § 9.3.

9.5. The model of channel ownership. To link the physical contents of the bidirectional
channel c to the Actris ghost theory we define the channel ownership connective as follows:

c� prot , ∃χ, l, r, lk .
(

(c = (l, r, lk) ∗ prot ownl χ prot) ∨
(c = (r, l, lk) ∗ prot ownr χ prot)

)
∗

is lock lk (∃~v1 ~v2. l
list7→ ~v1 ∗ r

list7→ ~v2 ∗ prot ctx χ ~v1 ~v2)

The predicate states that the referenced channel endpoint c is either the left (l, r, lk) or the
right (r, l, lk) side of a channel, and that we have exclusive ownership of the ghost token
prot ownl χ prot or prot ownr χ prot for the corresponding side. Iris’s lock representation
predicate is lock (previously presented in § 7) is used to make sharing of the buffers possible.

The lock invariant is governed by lock lk , and carries the ownership l
list7→ ~v1 and r

list7→ ~v2 of
the mutable linked lists containing the channel buffers, as well as prot ctx χ ~v1 ~v2, which
asserts protocol consistency of the buffers with respect to the protocols.

With the definition of the channel endpoint ownership along with the ghost theory and
lock rules we then prove the channel rules Ht-new, Ht-send and Ht-recv from Figure 5.
The proofs are carried out through symbolic execution to the point where the critical section
is entered, after which the rules of the Actris ghost theory (Figure 20) are used to allocate
or update the ghost state appropriately so that it matches the physical channel buffers.

The need for skip instructions. The rules proto-send-l and proto-send-r from Fig-
ure 20 contain a number of later modalities (.) proportional to the other endpoint’s buffer.
As explained in § 9.3 these later modalities are the consequence of having to perform a
number of case analyses on the subprotocol relation, which is defined using guarded recursion,
and thus contains a later modality for each recursive unfolding.

To eliminate these later modalities, we instrument the code of the send function with
the skipN (llength r) instruction, which performs a number of skips equal to the size of
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the other endpoint’s buffer r. The skipN instruction has the following specification:

{.n P} skipN n {P}
Instrumentation with skip instructions is used often in work on step-indexing, see e.g., [SSB16;
GST+20]. Instrumentation is needed because current step-indexed logics like Iris unify
physical/program steps and logical steps, i.e., for each physical/program step at most one
later can be eliminated from the hypotheses. In recent work by Svendsen et al. [SSB16],
Matsushita and Jourdan [MJ20], and Spies et al. [SGG+21] more liberal versions of step-
indexing have been proposed, but none of these versions of step-indexing have been integrated
into the main Coq development of Iris and HeapLang.

9.6. Adequacy of Actris. Having constructed the model of Actris in Iris, we obtain the
following main result, as first presented in § 3.4:

Theorem 9.1 (Adequacy of Actris). Let ϕ ∈ Val → Prop be a meta-level (i.e., Coq)
predicate over values and suppose {True} e {v. ϕ v} is derivable in Iris, then safe e and
post valid (e, ϕ).

Since Actris is an internal logic embedded in Iris, the proof is an immediate consequence
of Iris’s adequacy theorem (Theorem 3.1).

9.7. Solving the recursive domain equation for protocols. Recall the recursive do-
main equation for dependent separation protocols from § 9.1:

iProto ∼= 1 + (action× (Val→ IiProto→ iProp))

This recursive domain equation shows that iProto depends on the type iProp of Iris proposi-
tions. To use types that depend on iProp as part of higher-order ghost state in Iris, such
types need to be bi-functorial in iProp. Hence, this means that to construct iProto, in a way
that it can be used in combination with the higher-order ghost variables in Figure 19, we
need to solve the following recursive domain equation:

iProto(X−, X+) ∼= 1 + (action× (Val→ IiProto(X+, X−)→ X+))

Since the recursive occurrence of iProto appears in negative position, the polarity needs to
be inverted for iProto to be bi-functorial.

The version of Iris’s recursive domain equation solver based on [AR89; BST10] as mecha-
nised in Iris’s Coq development is not readily able to construct a solution of iProto(X−, X+).
Concretely, the solver can only construct solutions of non-parameterised recursive domain
equations. While a general construction for solving such recursive domain equations ex-
ists [BMSS12, § 7], that construction has not been mechanised in Coq. We circumvent this
shortcoming by solving the following recursive domain equation instead, in which we unfold
the recursion once by hand:

iProto2(X
−, X+) ∼=

1 +
(
action×

(
Val→ I(1 + (action× (Val→ IiProto2(X−, X+)→ X−)))→ X+

))
Here, the polarity in the recursive occurrence is fixed, allowing us to solve iProto2(X

−, X+)
using Iris’s existing recursive domain equation solver. This is sufficient because a solution of
iProto2(X

−, X+) is isomorphic to a solution of iProto(X−, X+).
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Notation on paper Notation in Coq

Send !x1 . . . xn 〈v〉{P}. prot <! x_1 .. x_n> MSG v {{ P }}; prot

Receive ?x1 . . . xn 〈v〉{P}. prot <? x_1 .. x_n> MSG v {{ P }}; prot

End end END

Dual prot iProto_dual prot

Literals (), 5, true #(), #5, #true
Logical variables x, y, z, "x" , "y" , "z" , <>
Types 1, N, Z (), nat, Z

Figure 21: Overview of notations in the Actris Coq mechanisation.

10. Coq mechanisation

The definition of the Actris logic, its model, and the proofs of all examples in this paper have
been fully mechanised using the Coq proof assistant [Coq20]. In this section we will elaborate
on the mechanisation effort (§ 10.1), and go through the full proof of a message-passing
program (§ 10.2) and a subprotocol relation (§ 10.3) showcasing the tactics for Actris. We
display proofs and proof states taken directly from the Coq mechanisation, which differ in
notation from the paper as shown in Figure 21.

10.1. Mechanisation effort. The mechanisation of Actris is built on top of the mechani-
sation of Iris [KJB+17; JKBD16; JKJ+18]. To carry out proofs in separation logic, we use
the MoSeL Proof Mode (formerly Iris Proof Mode) [KTB17; KJJ+18], which provides an
embedded proof assistant for separation logic in Coq. Building Actris on top of the Iris and
MoSeL framework in Coq has a number of tangible advantages:

• By defining channels on top of HeapLang, we do not have to define a full programming
language semantics, and can reuse all of the program libraries and Coq machinery, including
the tactics for symbolic execution of non message-passing programs.
• Since Actris is mechanised as an Iris library we get all of the features of Iris for free, such

as the ghost state mechanisms for reasoning about concurrency.
• When proving the Actris proof rules, we can make use of the MoSeL Proof Mode to carry

out proofs directly using separation logic, thus reasoning at a high level of abstraction.
• We can make use of the extendable nature of the MoSeL Proof Mode to define custom

tactics for symbolic execution of message-passing programs.

These advantages made it possible to mechanise Actris, along with the examples of the paper,
with a small Coq development of a total size of about 5000 lines of code (comments and
whitespace included). The line count of the different components are shown in Figure 22.

10.2. Tactic support for session type-based reasoning. To carry out interactive Actris
proofs using symbolic execution, we follow the methodology described in the original Iris
Proof Mode paper [KTB17]. In particular, this means that the logic in Coq is presented in
weakest precondition style rather than using Hoare triples. For handling send or recv we
define the following tactics:

wp_send (t1 .. tn) with "[H1 .. Hn]" and wp_recv (y1 .. yn) as "H".

These tactics roughly perform the following actions:

• Find a send or recv in evaluation position of the program under consideration.
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Component Sections ∼LOC

The Actris model § 9.1–§ 9.4 1500
Channel implementation and proof rules § 2.4 and 9.5 350
Tactics for symbolic execution § 10.2 500
Utilities (linked lists, permutations, etc.) n.a. 450
Authoritative contribution ghost theory § 7 150
Recursive domain equation theory solver § 9.7 100
Examples:
• Basic examples § 1 and 7.1 400
• Coarse-grained channel-based merge sort § 5.1–§ 5.5 250
• Fine-grained channel-based merge sort § 5.6 300
• Mapper with swapping § 6.2 400
• List reversal § 6.3 100
• Channel-based load-balancing mapper § 7.2 200
• Channel-based map-reduce § 8 300
Total 5000

Figure 22: Overview of components of the Actris Coq mechanisation.

• Find a corresponding c� prot hypothesis in the separation logic context.
• Normalise the protocol prot using the rules for duals, composition, recursion, and swapping

so it has a ! ~x :~τ 〈v〉{P}. prot or ?~x :~τ 〈v〉{P}. prot construct in its head position.
• In case of wp_send, instantiate the variables ~x :~τ using the terms (t1 .. tn), and create a

goal for the proposition P with the hypotheses [H1 .. Hn]. Hypotheses prefixed with $
will automatically be consumed to resolve a subgoal of P if possible. In case the terms
(t1 .. tn) are omitted, an attempt is made to determine these using unification.
• In case of wp_recv, introduce the variables ~x :~τ into the context by naming them (y1 .. yn),

and create a hypothesis H for P .

The implementation of these tactics follows the approach by Krebbers et al. [KTB17]. The
protocol normalisation is implemented via logic programming with type classes.

As an example we will go through a proof of the following program:

prog ref swap loop := λ . let c := start (rec go c′ := let l := recv c′ in
l← ! l + 2;
send c′ (); go c′) in

let l1 := ref 18 in let l2 := ref 20 in
send c l1; send c l2;
recv c; recv c;
! l1 + ! l2

Here, the forked-off thread acts as a service that recursively receives locations, adds 2 to
their stored number, and then sends back a flag indicating that the location has been
updated. The main thread, acting like a client, first allocates two new references, to 18 and
20, respectively, which are both sent to the service after which the update flags are received.
It finally dereferences the updated locations, and adds their values together, thus returning
42. To verify this program, we use the following recursive protocol:

prot ref loop , µ(rec : iProto). ! (` : Loc)(x : Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ x+ 2}. rec
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1 Lemma prog_ref_swap_loop_spec : ∀Φ, Φ #42 -∗ WP prog_ref_swap_loop #() {{ Φ }}.

2 Proof.

3 iIntros (Φ) "HΦ". wp_lam.

4 wp_apply (start_chan_spec prot_ref_loop); iIntros (c) "Hc".

5 - iLöb as "IH". wp_lam.

6 wp_recv (l x) as "Hl". wp_load. wp_store. wp_send with "[$Hl]".
7 do 2 wp_pure _. by iApply "IH".

8 - wp_alloc l1 as "Hl1". wp_alloc l2 as "Hl2".

9 wp_send with "[$Hl1]". wp_send with "[$Hl2]".
10 wp_recv as "Hl1". wp_recv as "Hl2".

11 wp_load. wp_load.

12 wp_pures. by iApply "HΦ".

13 Qed.

Figure 23: Proof of message-passing program

The (forked-off) service follows the (dual of) the protocol exactly, while the main thread
follows a weakened version. The recursion is unfolded twice, after which the second send has
been swapped ahead of the first receive, allowing it to first send both values before receiving:

prot ref loop v ! (`1 : Loc)(x1 : Z) 〈`1〉{`1 7→ x1}.
! (`2 : Loc)(x2 : Z) 〈`2〉{`2 7→ x2}.
?〈()〉{`1 7→ (x1 + 2)}.
?〈()〉{`2 7→ (x2 + 2)}. prot ref loop

The full Coq proof of the program is shown in Figure 23. The proven lemma is logically
equivalent to the specification {True} prog ref swap loop () {v. v = 42}, but is presented
in weakest precondition style as is common in Iris in Coq. The initial proof state is:

--------------------------------------∗
∀Φ, Φ #42 -∗ WP prog_ref_swap_loop #() {{ v, Φ v }}

We start the proof on line 3 by introducing the postcondition Φ, and the hypothesis HΦ: Φ

#42, and then continue by evaluating the lambda expression with wp_lam. On line 4 we apply
the specification start_chan_spec, which is the weakest precondition variant of Ht-start for
start by picking the expected protocol prot_ref_loop. This leaves us with two subgoals,
separated by bullets “-”: one for the forked-off thread, and one for the main thread.

Proof of the forked-off thread. In the proof of the recursively-defined forked-off thread we
use iLöb as "IH" for Löb induction on line 5. This leaves us with the proof state:

"IH" : .(c � iProto_dual prot_ref_loop -∗
WP (rec: "go" "c’" :=

let: "l" := recv "c’" in

"l" <- ! "l" + #2;;

send "c’" #();; "go" "c’") c {{ _, True }})

--------------------------------------�
"Hc" : c � iProto_dual prot_ref_loop

--------------------------------------∗
WP (rec: "go" "c’" :=

let: "l" := recv "c’" in

"l" <- ! "l" + #2;;

send "c’" #();; "go" "c’") c {{ _, True }}
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We now resolve the application of c to the recursive function with wp_lam. This lets us strip
the later from the Löb induction hypothesis, as the program has taken a step. The proof
state is then as follows:

"IH" : c � iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hc" : c � iProto_dual prot_ref_loop

--------------------------------------∗
WP let: "l" := recv c in

"l" <- ! "l" + #2;;

send c #();; prog_rec c {{ _, True }}

For brevity’s sake we abbreviate the recursive code in "IH" as prog_rec c.
On line 6 we resolve the proof of the body of the recursive function. So far, the proof only

used Iris’s standard tactics, we now use the Actris tactic for receive wp_recv (l x) as "Hl",
to resolve the receive in evaluation position, introducing the received logical variables l and
x, along with the predicate of the protocol l 7→ #x naming it Hl. To do so, the protocol is
normalised, unfolding the recursive definition once, as well as resolving the dualisation of
the head, turning it into a receive as expected. This leads to the following proof state:

"IH" : c � iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hl" : l 7→ #x

"Hc" : c � iProto_dual (<?> MSG #() {{ l 7→ #(x + 2) }}; prot_ref_loop)

--------------------------------------∗
WP let: "l" := #l in

"l" <- ! "l" + #2;;

send c #();; prog_rec c {{ _, True }}

We then use the HeapLang tactics wp_load and wp_store to resolve the dereferencing and
updating of the location:

"IH" : c � iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hl" : l 7→ #(x + 2)

"Hc" : c � iProto_dual (<?> MSG #() {{ l 7→ #(x + 2) }}; prot_ref_loop)

--------------------------------------∗
WP send c #();; prog_rec c {{ _, True }}

We then use the Actris tactic wp_send with "[$Hl]" to resolve the send operation in eval-
uation position, by giving up the ownership of "Hl". Again, the protocol is automatically
normalised by resolving the dualisation of the receive (?) to obtain the send (!) as expected.

We finally close the proof of the forked-off thread on line 7. We first take two pure
evaluation steps revolving the sequencing of operations with do 2 wp_pure _ to reach the
recursive call. This results in the proof state:

"IH" : c � iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hc" : c � iProto_dual prot_ref_loop

--------------------------------------∗
WP prog_rec c {{ _, True }}

We then use by iApply "IH" to close the proof by using the Löb induction hypothesis.
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Proof of the main thread. The proof of the main thread follows similarly. On line 8 we
use wp_alloc l1 as "Hl1" and wp_alloc l2 as "Hl2", to resolve the allocations of the new
locations, binding the logical variables of the locations to l1 and l2, and adding hypotheses
"Hl1" and "Hl2" for ownership of these locations to the separation logic proof context. The
proof state is then:

"HΦ" : Φ #42

"Hc" : c � prot_ref_loop

"Hl1" : l1 7→ #18

"Hl2" : l2 7→ #20

--------------------------------------∗
WP send c #l1;; send c #l2;; recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

On line 9, we resolve the first send operation with the Actris tactic wp_send with "[$Hl1]",
by giving up ownership of the location l1. Here, the protocol is normalised by unfolding the
recursive definition, after which the head symbol is a send (!) as expected. The resulting
proof state is as follows:

"HΦ" : Φ #42

"Hl2" : l2 7→ #20

"Hc" : c � (<?> MSG #() {{ l1 7→ #(18 + 2) }}; prot_ref_loop)

--------------------------------------∗
WP send c #l2;; recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

To resolve the second send operation, we need to weaken the protocol using swapping (rule
v-swap’), which is taken care of automatically by the Actris tactic wp_send with "[$Hl2]".
The normalisation detects that the protocol has a receive (?) as a head symbol, and therefore
attempts swapping. To do so it steps ahead of the receive (?), and unfolds the recursive
definition, which results in a send (!) as the first symbol after the head. It then detects that
there are no dependencies between the two, and can thus apply the swapping rule v-swap’,
moving the send (!) ahead of the receive (?). With the head symbol now being a send (!),
the symbolic execution continues as normal, resulting in the proof state:

"HΦ" : Φ #42

"Hc" : c � (<?> MSG #() {{ l1 7→ #(18 + 2) }};

<?> MSG #() {{ l2 7→ #(20 + 2) }}; prot_ref_loop)

--------------------------------------∗
WP recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

On line 10 we then proceed as expected with wp_recv as "Hl1" and wp_recv as "Hl2", to
resolve the receive operations, giving us back the updated point-to resources:

"HΦ" : Φ #42

"Hl1" : l1 7→ #(18 + 2)

"Hl2" : l2 7→ #(20 + 2)

"Hc" : c � prot_ref_loop

--------------------------------------∗
WP ! #l1 + ! #l2 {{ v, Φ v }}

At line 11 we then continue by using wp_load twice to dereference the reacquired and updated
locations, and then use trivial symbolic execution using wp_pures to resolve the remaining
computations. On line 12 we finally close the proof by applying the hypothesis "HΦ" about
the postcondition.
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1 Lemma list_rev_subprot :

2 ` (<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

3 <?> MSG #() {{ llist internal_eq l (reverse vs) }}; END) v
4 (<! (l : loc) (xs : list T)> MSG #l {{ llistI IT l xs }};

5 <?> MSG #() {{ llistI IT l (reverse xs) }}; END).

6 Proof.

7 iIntros (l xs) "Hl".

8 iDestruct (Hlr with "Hl") as (vs) "[Hl HIT]".

9 iExists l, vs. iFrame "Hl".

10 iModIntro. iIntros "Hl".

11 iSplitL.

12 { rewrite big_sepL2_reverse_2. iApply Hlr.

13 iExists (reverse vs). iFrame "Hl HIT". }

14 done.

15 Qed.

Figure 24: Proof of subprotocol relation

10.3. Tactic support for subprotocols. While the Actris tactics automatically apply the
subprotocol rules during symbolic execution, as shown in §10.2, we sometimes want to prove
subprotocol relations as explicit lemmas. We have tactic support for such proofs as well.
We extend the existing MoSeL tactics iIntros, iExists, iFrame, iModIntro, and iSplitL/

iSplitR to automatically use the subprotocol rules to turn the goal into an equivalent goal
where the regular Iris tactics apply.

• iIntros (x1 .. xn) "H1 .. Hm" transforms the subprotocol goal to begin with n universal
quantification and m implications, using the rules v-send-out and v-recv-out, and
then introduces the quantifiers (naming them x1 .. xn) into the Coq context, and the
hypotheses (naming them H1 .. Hm) into the separation logic context.
• iExists (t1 .. tn) transforms the subprotocol goal to start with n existential quantifiers,

using the v-send-in, v-recv-in and v-trans rules, and then instantiates these quantifiers
with the terms t1 .. tn specified by the pattern.
• iFrame "H" transforms the subprotocol goal into a separating conjunction between the

payload predicates of the head symbols of either protocol, using the rules v-send-in and
v-recv-in, and then tries to solve the payload predicate subgoal using "H".
• iModIntro transforms the subprotocol goal into a goal starting with a later modality

(.), using the rules v-send-mono and v-recv-mono, and then introduces that later by
stripping off a later from any hypothesis in the separation logic context.
• iSplitL/iSplitR "H1 .. Hn" transforms the subprotocol goal into a separating conjunction

between the payload predicates of the head symbols of either protocol, using the v-send-in,
v-recv-in and v-trans rules, and then creates two subgoals. For iSplitL the left subgoal
is given the hypotheses H1 .. Hn from the separation logic context, while the right subgoal
is given any remaining hypotheses, and vice versa for iSplitR.

The extensions of these tactics are implemented by defining custom type class instances that
hook into the existing MoSeL tactics as described by Krebbers et al. [KTB17].

To demonstrate these tactics, we will go through a proof of the subprotocol relation for
the list reversing service presented in § 6.3:

! (` : Loc)(~v : List Val) 〈`〉
{
`

list7→ ~v
}
. ?〈()〉

{
`

list7→ reverse ~v
}
. end

v ! (` : Loc)(~x : List T ) 〈`〉
{
`

list7→IT ~x
}
. ?〈()〉

{
`

list7→IT reverse ~x
}
. end
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Recall that the following conversion between the list representation predicate with payload
`

list7→IT ~x and one without payload `
list7→ ~v holds:

Hlr : `
list7→IT ~x ∗−∗ (∃~v. ` list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v)

The full Coq proof of the subprotocol relation is shown in Figure 24. The initial proof state is
identical to the lemma statement. On line 7 we start by introducing the logical variables l, xs
and the payload llistI IT l xs of the weaker protocol with the tactic iIntros (l xs) "Hl".
This tactic will implicitly apply the rule v-send-out, so the goal starts with a universal
quantification ∀(l : loc)(xs : list T). llistI IT l xs -∗..., which is then introduced
based on the regular Iris introduction pattern. This gives us:

"Hl" : llistI IT l vs

--------------------------------------∗
(<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

To obtain the payload predicate expected by the stronger protocol, we use the lemma Hlr,
to derive llist l vs and [∗list] x;v ∈ xs;vs, IT x v from llistI l xs with the tactic
iDestruct (Hlr with "Hl") as (vs) "[Hl HIT]" on line 8. The resulting proof state is:

"Hl" : llist l vs

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

At line 9 we instantiate the logical variables of the stronger protocol with the logical variables
l and vs using iExists l, vs. This will implicitly apply the rules v-send-in and v-trans,
which makes the goal start with ∃(l : loc) (vs : list val), so the existentials can be
instantiated. To resolve the payload predicate obligation llist l vs, we use iFrame "Hl".
This uses the rules v-send-in and v-trans to turn the goal into llist l vs ∗ ..., where
the left subgoal is resolved using "Hl". We then have the following remaining proof state:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<!> MSG #l; <?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

As the head symbols of both protocols are sends (!) with no logical variables or payload
predicates, we use iModIntro on line 10, which first applies v-send-mono to step over the
sends, and then introduces the later modality (.). This gives us the proof state:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<?> MSG #() {{ llistI IT l (reverse xs) }}; END)

On line 10, similarly to before, we use iIntros "Hl", to introduce the payload predicate, but
this time we do it for the stronger protocol, as dictated by v-recv-out:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
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(<?> MSG #() ; END) v
(<?> MSG #() {{ llistI IT l (reverse xs) }}; END)

To resolve the payload predicate of the weaker protocol, we use iSplitL "Hl HIT" on line 11,
that first use v-recv-in and v-trans, to turn the goal into llistI IT l (reverse xs) ∗ ...,
and then use the goal splitting pattern of Iris, to give us two subgoals, where we use the
hypotheses "Hl" and "HIT" in the left subgoal. The first subgoal is then:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
llistI IT l (reverse xs)

On line 12, we first use the lemma Hlr in the right-to-left direction, and then rewrite the
hypothesis "HIT" using a lemma from the Iris library with rewrite big_sepL2_reverse_2.
We do this to obtain [∗list] x;v ∈ reverse xs;reverse vs, IT x v, in order to match the
proof goal. This gives the proof obligation:

"HIT" : [∗ list] x;v ∈ reverse xs;reverse vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
∃ vs : list val, llist l vs ∗ ([∗ list] x;v ∈reverse xs;vs, IT x v)

We finally close the proof on line 13 with iExists (reverse vs), followed by iFrame "Hl

HIT", as the goal matches the hypotheses exactly, when picking reverse vs as the existential
quantification. We then move on to the second subgoal:

--------------------------------------∗
(<?> MSG #(); END) v (<?> MSG #(); END)

We resolve this subgoal, on line 14, with the tactic done, which tries to close the proof, by
automatically applying v-refl.

11. Related work

This section elaborates on the relation to message passing in separation logic (§ 11.1) and
process calculi (§ 11.2), session types (§ 11.3), session subtyping (§ 11.4), endpoint sharing
(§ 11.5), and verification of map-reduce (§ 11.6).

11.1. Message passing and separation logic. Lozes and Villard [VLC09; LV12] present
a logic for contract-based reasoning about programs in a small imperative language with
bi-directional asynchronous channels. Contracts are represented by finite-state automata
with labelled send or receive transitions, equipped with separation logic predicates. Similar
to session types (and Actris), contracts have a notion of duality, but unlike Actris they
do not support dependencies between messages. Their logic supports ownership transfer
(including ownership transfer of channels, akin to delegation), session-type like choice, and a
form of recursive contracts. Their language has a close operation for channel deallocation
instead of being garbage collected. A restriction to structured concurrency (i.e., par instead
of fork-based), structured channel deallocation (i.e., must close both endpoints together)
and linear (instead of affine) logic ensures memory-leak freedom. A form of channel sharing
is supported, which we further discuss in § 11.5.
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Craciun et al. [CKC15] introduced session logic, a variant of separation logic that includes
predicates for protocol specifications similar to ours. This work includes support for mutable
state, ownership transfer (including ownership transfer of channels, akin to delegation),
session-type like choice using a special type of disjunction operator on the protocol level, and
a sketch of an approach to verify deadlock freedom of programs. Combined, these features
allow them to verify interesting and non-trivial message-passing programs. Their logic as a
whole is not higher-order, which means that sending functions over channels is not possible.
Moreover, their logic does not support protocol-level logical variables that can connect the
transferred message with the tail protocol. It is therefore not possible to model dependent
protocols like we do in Actris. Their work includes a notion of subtyping as weakening and
strengthening of the payload predicates, however they do not consider swapping, and do
not allow manipulation of resources as a part of their subtyping relation. There also exists
no support for other concurrency primitives such as locks, which by extension means that
manifest sharing is not possible. In Actris we get this for free by building on top of Iris, and
reusing its ghost state mechanism. Their work has not been mechanised in a proof assistant,
but example programs can be checked using the HIP/SLEEK verifier.

The original Iris paper [JSS+15] includes a small message-passing language with channels
that do not preserve message order. It was included to demonstrate that Iris is flexible
enough to handle other concurrency models than standard shared-memory concurrency.
Since the Hoare triples for send and receive reason about the entire channel buffer, protocol
reasoning must be done via STSs or other forms of ghost state.

Hamin and Jacobs [HJ19] take an orthogonal direction and use separation logic to prove
deadlock freedom of programs that communicate via message passing using a custom logic
tailored to this purpose. They do not provide abstractions akin to our session-type based
protocols. Instead one has to reason using invariants and ghost state explicitly.

Mansky et al. [MAN17] verify the functional correctness of a message-passing system
written in C using the VST framework in Coq [App14]. While they do not verify message-
passing programs like we do, they do verify that the implementation of their message-passing
system is resilient to faulty behaviour in the presence of malicious senders and receivers.

Tassarotti et al. [TJH17] prove correctness and termination preservation of a compiler
from a simple language with session types to a functional language with mutable state,
where channels are implemented using references on the heap. This work is also done in Iris
in Coq. The session types they consider are more like standard session types, which cannot
express functional properties of messages, but only their types.

The Disel logic by Sergey et al. [SWT18] and the Aneris logic by Krogh-Jespersen et
al. [KTO+20] can be used to reason about message-passing programs that work on network
sockets. Channels can only be used to send strings, are not order preserving, and messages
can be dropped but not duplicated. Since only strings are sent over channels complex
data (such as functions) must be marshalled and unmarshalled in order to be sent over the
network. Both Disel and Aneris therefore address a different problem than we do.

SteelCore [SRF+20] is a framework for concurrent separation logic embedded in the F?

language. SteelCore has been used to encode unidirectional synchronous channels that can
be typed with protocols akin to session types. Their protocols are defined as a dependent
sequence of value obligations with associated separation logic predicates, dictating what can
be sent over the channel, including the transfer of ownership. Channels are first-class and
can also be transferred (akin to delegation), but their protocols do not include higher-order
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protocol-level logical variables, or subtyping. They postulated that their approach scales to
bidirectional asynchronous communication, but left that for future work.

11.2. Separation logic and process calculi. Another approach to verify message-passing
programs is to combine separation logic and process calculus. Neither of the approaches
below support delegation or concurrency paradigms other than message passing.

Francalanza et al. [FRS11] use separation logic to verify programs written in a CCS-like
language. Channels model memory location, which has the effect that their input-actions
behave a lot like our updates of mutable state with variable substitutions updating the state.
As a proof of concept they prove the correctness of an in-place quick-sort algorithm.

Oortwijn et al. [OBH16] use separation logic and the mCRL2 process calculus to model
communication protocols. The logic itself operates on a high level of abstraction and deals
exclusively with intraprocess communication where a fractional separation logic is used to
distribute channel resources to concurrent threads. Protocols are extracted from code, but
there is no formal connection between the specification logic and the underlying language.

11.3. Session types. Seminal work on linear type systems for the π-calculus by Kobayashi
et al. [KPT96] led to the creation of binary session types by Honda et al. [HVK98], and
consequentially multiparty session types by Honda et al. [HYC08].

Later work by Dardha et al. [DGS12] helped merge the linear type systems of Kobayashi
with Honda’s session types, which facilitated the incorporation of session types in mainstream
programming languages like Go [LNTY18], OCaml [Pad17; IYY19], and Java [HKP+10].
These works focus on adding session-typed support for message passing in existing languages,
but do not target functional correctness.

Bocchi et al. [BHTY10] pushed the boundaries of what can be verified with (multiparty)
session types while staying within a decidable fragment of first-order logic. They use first-
order predicates to describe properties of values being sent and received. Decidability is
maintained by imposing restrictions on these predicates, such as ensuring that nothing is
sent that will be invalidated down the line. The constraints on the logic do, however, limit
what programs can be verified. The work includes standard subtyping on communicated
values and on choices, but no notion of swapping sends ahead of receives.

Caires and Pfenning [CP10] discovered a correspondence between intuitionistic linear
logic and π-calculus with session types, which was extended with quantifiers and dependent
types by Toninho et al. [TCP11]. These quantifiers range over both terms and propositions
of an LF-based logic [CP96], and can be used to specify basic properties of the exchanged
values. Toninho and Yoshida [TY18] extended this work by allowing the structure of the
protocol to depend on the quantifiers. This notion of dependency allows for protocols where
the length of the (tail) protocol depends on the values that were previously exchanged,
similar to what we do in § 5.6. Finally, Das and Pfenning [DP20a; DP20b] developed a
dependent session-type system with domain-specific logic for verifying arithmetic properties
of programs with message passing.

Another approach to dependent session types was carried out by Thiemann and Vas-
concelos [TV20] who introduced label-dependent session types. They unify universal and
existential quantifiers with the send and receive primitives of conventional session types.
Hence, similar to Actris, the choice connectives (& and ⊕) can be derived.
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Toninho et al. [TCP14] and Lindley and Morris [LM16] developed session-type systems
with termination guarantees in the presence of recursive (session) types. This is achieved
by imposing a discipline similar to (co)inductive definitions in Coq and Agda. In contrast,
Actris poses no usage discipline on recursive dependent separation protocols, and hence
guarantees partial correctness.

11.4. Session subtyping. Actris’s subprotocol relation is inspired by the notion of session
subtyping, for which seminal work was carried out by Gay and Hole [GH05]. Mostrous et
al. [MYH09] extended session subtyping to multiparty asynchronous session types, and as
part of that, introduced the notion of swapping sends ahead of receives for independent
channels. Mostrous et al. [MY15] later considered swapping over the same channel in the
context of binary session types. Our subprotocol relation is most closely related to the work
of Mostrous et al. [MY15], although they define subtyping as a simulation on infinite trees,
using so-called asynchronous contexts, whereas we define it using Iris’s support for guarded
recursion. It should be noted that the work by Gay and Hole [GH05] differs from the work
by Mostrous et al. [MYH09] and Mostrous et al. [MY15] in the orientation of the subtyping
relation, as discussed by Gay [Gay16]. Our subprotocol relation uses the orientation of Gay
and Hole [GH05].

Session subtyping for recursive type systems is universally carried out as a type simulation
on infinite trees [GH05; MYH09; MY15], which complicates subtyping under the recursion
operator. Bernardi et al. [BDGK14] and Gay et al. [GTV20] provide further insights on this
problem, although they primarily investigate duality rather than subtyping.

To reason about recursive subtyping, Brand and Henglein [BH98] present a coinductive
formulation of subtyping (which they apply to regular type systems, rather than session
types). We use a similar coinductive formulation, but instead of ordinary coinduction, we
use Iris’s support for guarded recursion, which lets us prove subtyping relations of recursive
protocols using Löb induction.

11.5. Endpoint sharing. One of the key features of conventional session types is that
endpoints are owned by a single thread. While endpoints can be delegated (i.e., transferred
from one thread to another), they typically cannot be shared (i.e., be accessed by multiple
threads concurrently). However, as demonstrated in § 7, sharing channels endpoints is often
desirable, and possible in Actris.

As a simple way to relax this limitation of sharing in conventional session types,
Vasconcelos [Vas12] allows session types of the form (µrec. !T. rec) or (µrec. ?T. rec) to be
shared. Lozes and Villard [LV12] present a similar idea in the context of their contract-based
separation logic (see also §11.1) by equipping the connective for channel endpoint ownership
with a fractional permission. If the fraction is smaller than 1, then the endpoint can be
shared, but at the cost of only permitting transitions to the same contract state. Using
fractional permissions they prove a lock specification à la Gotsman et al. [GBC+07] of an
implementation of locks in terms of channels. This approach to locks is dual to ours in
Actris, where we implement channels in terms of locks. Unlike Iris (and Actris), their logic
does not support ghost state, so it cannot express complex protocols like the ones from § 7.

In the π-calculus community there has been prior work on endpoint sharing, e.g., by
Atkey et al. [ALM16], Kobayashi [Kob06], and Padovani [Pad14]. The latest contribution
in this line of work is by Balzer et al. [BTP19], who developed a type system based on
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session types with support for manifest sharing. Manifest sharing is the notion of sharing a
channel endpoint between multiple processes using a lock-like structure to ensure mutual
exclusion. Their key idea to ensure mutual exclusion using a type system is to use adjoint
modalities to connect two classes of types: types that are linear, and thus denote unique
channel ownership, and types that are unrestricted, and thus can be shared. The approach
to endpoint sharing in Actris is different: dependent separation protocols do not include
a built-in notion for endpoint sharing, but can be combined with Iris’s general-purpose
mechanisms for sharing, like locks.

11.6. Verification of map-reduce. To our knowledge the only verification related to the
map-reduce model [DG04] is by Ono et al. [OHT+11], who made two mechanisations in
Coq. The first took a functional model of map-reduce and verified a few specific mappers
and reducers, extracted these to Haskell, and ran them using Hadoop Streaming. The
second did the same by annotating Java mappers and reducers using JML and proving
them correct using the Krakatoa tool [MPU04], using a combination of SAT-solvers and the
Coq proof assistant. While they worked on verifying specific mappers and reducers, our
case study focuses on verifying the communication of a map-reduce model that can later be
parameterised with concrete mappers and reducers.

12. Conclusion and future work

In this paper, we have given a comprehensive account of the Actris concurrent separation
logic for proving functional correctness of programs that combine message-passing with other
programming and concurrency paradigms. The core feature of Actris its its mechanism of
dependent separation protocols, which is inspired by session types. Considering the rich
literature on session types and concurrent separation logic, we expect there to be many
promising directions for future work.

Multi-party. The formalism of multi-party session types [HYC08] applies to message-passing
communication between more than two parties (threads or processes). The key ingredient of
multi-party session types is the notion of a global protocol, which specifies the permitted
communication for multiple parties of a system. From the global protocol one can then
generate local protocols for the individual parties. It would be interesting to explore a multi-
party version of dependent separation protocols. Prior work by Costea et al. [CCQC18]
on multi-party session logic and Zhoud et al. [ZFH+20] on refined multiparty session types
could serve as a starting point.

Deadlock freedom. As discussed in § 4.3, deadlocks are valid behaviours according to the
notion of safety used in Iris (and thus Actris). Many conventional session type systems do
not consider deadlocks to be valid behaviours, but achieve that at the expense of prohibiting
valid (deadlock free) programs that can be verified in Actris.

A direction for future work is to develop a variant of Actris that incorporates the usual
restrictions of session-type systems like linearity and a start primitive for combined channel
and thread creation. To prove an adequacy theorem that ensures that this variant of Actris
indeed prohibits deadlocks, one needs to change the model of Actris to ensure acyclicity
of the dependency structure among the threads and channels. This could be achieved by
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building upon recent work by Bizjak et al. [BGKB19] on linearity in Iris and by Jacobs et
al. [JBK21] on a separation-logic based proof method for deadlock freedom of session types.
Additionally, one could consider a version of Actris without garbage collection but with a
close instruction for channel deallocation, and prove that it indeed guarantees memory-leak
freedom.

Another direction for future work is to develop a separation logic that combines session-
type based deadlock freedom with lock-order based deadlock freedom to prove deadlock
freedom of programs that combine message passing with other concurrency mechanisms like
locks. The work by Hamin and Jacobs [HJ19] on reasoning about lock orders in separation
logic, and the work by Balzer et al. [BTP19] on deadlock freedom for manifest sharing might
provide valuable insights, but figuring out how to combine these two approaches with Iris
and Actris is a challenging open problem.
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[TCP11] Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Dependent session types
via intuitionistic linear type theory. In PPDP, pages 161–172, 2011.
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