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Expressive state-of-the-art separation logics rely on step-indexing to model semantically complex features
and to support modular reasoning about imperative higher-order concurrent and distributed programs. Step-
indexing comes, however, with an inherent cost: it restricts the adequacy theorem of program logics to a fairly
simple class of safety properties.

In this paper, we explore if and how intensional refinement is a viable methodology for strengthening
higher-order concurrent (and distributed) separation logic to prove non-trivial safety and liveness properties.
Specifically, we introduce Trillium, a language-agnostic separation logic framework for showing intensional
refinement relations between traces of a program and a model. We instantiate Trillium with a concurrent
language and develop Fairis, a concurrent separation logic, that we use to show liveness properties of concurrent
programs under fair scheduling assumptions through a fair liveness-preserving refinement of a model. We also
instantiate Trillium with a distributed language and obtain an extension of Aneris, a distributed separation
logic, which we use to show refinement relations between distributed systems and TLA+ models.
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1 INTRODUCTION

There is a tension between the expressivity of program logics and how much they say about the
semantics of the programs being verified, that is, the strength of their adequacy theorems. As program
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logics become more expressive—to handle sophisticated programming language features such as
higher-order functions and references, and to support modular and general library specifications—
they require increasingly complex semantic models to justify them.
In this work, we consider Iris [Jung et al. 2015], state of the art in terms of expressivity: in

particular, it supports higher-order quantification, nested Hoare triples, higher-order ghost state, and
impredicative invariants, i.e., invariants that can contain any Iris proposition, including invariants.
Through its adequacy theorem, the Iris program logic [Jung et al. 2018] is designed to prove
three kinds of properties about programs: (1) postconditions, i.e., properties of the final values
computed, (2) progress, i.e., the program never gets stuck, and (3) preservation of invariants, i.e.,
all invariants stated by the user hold throughout execution. Note how these properties form a
particular class of safety properties.1 That is—as trace properties—these are somewhat trivial, in
that they are all of the form: “for any B such that B0 →∗ B , we have % (B)” for some property % , where
→∗, is the reflexive-transitive closure of the operational semantics of the program. In particular,
this class of properties does not include liveness properties or non-trivial safety trace properties
like: “the value of the counter must increase monotonically without skipping over any number.”
While proving non-trivial safety trace properties is not a fundamental limitation of the Iris logic,2

the lack of support for liveness properties is. This inherent limitation is related to the fact that
Iris’s semantic model relies on step-indexing, which is crucial for the soundness of impredicative
invariants. This fact is a compromise that the designers of Iris have made. On the one hand, making
the semantic model step-indexed, and thereby enabling impredicative invariants, allows many
important applications. Notably, it allows us to construct logical relations models for proving type
safety and contextual equivalences for expressive programming languages, e.g., System F with
recursive types, higher-order references, and concurrency [Krebbers et al. 2017]. On the other hand,
step-indexing inherently restricts program logics to only be able to express properties that concern
finite prefixes of program execution. This effectively dooms any program logic developed on top of
the Iris base logic from supporting liveness properties—at least directly. The thesis that we explore
in this work is that refinement is a viable methodology for strengthening higher-order concurrent (and

distributed) separation logic to prove non-trivial safety and liveness trace properties.

Focus and Methodology. In this paper, we use Iris to establish intensional refinements between
programs and labeled transition systems (LTSs), including the strong notion of liveness-preserving
refinements, for concurrent and distributed programs. We develop Trillium, a language-agnostic
generic program logic, whose adequacy theorem guarantees the existence of a refinement between
the program and an LTS chosen by the prover. This is in addition to the usual properties enjoyed
by program logics for safety reasoning as mentioned above, i.e., postconditions, progress, and
preservation of invariants. The key insight is that, by showing an intensional refinement between a
program and an LTS, we can—indirectly—establish non-trivial safety trace properties and liveness
properties such as fair termination of concurrent programs. By proving that the LTS enjoys the
property of interest (which is often, if not always, simpler than proving it for the program itself),
we can use the refinement relation to “transport” the property to the program. For this reason, we
will refer to the LTS as a model or specification of a program implementation.

1Recall that a safety property is a property that expresses “nothing bad ever happens throughout execution”, as opposed to
liveness properties which express that “something good will eventually happen”.
2For instance, Birkedal et al. [2021] do use an Iris program logic to prove some limited intensional safety trace properties,
e.g., “a file can only be accessed if it has previously been opened and not subsequently closed.”
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Contributions. In summary, we make the following contributions:

• We introduce Trillium (§3), a language-agnostic separation logic framework for establishing
intensional refinement relations between traces of program executions and models.
• We develop Fairis (§4), a higher-order concurrent separation logic for showing liveness prop-
erties of concurrent programs under fair scheduling assumptions through a fair termination-
preserving refinement of a carefully chosen model (see discussion in §2).
• We showcase Fairis on a number of challenging but small concurrent examples (§4.2).
• We instantiate Trillium with AnerisLang to get an extension of Aneris [Krogh-Jespersen et al.
2020] that can be used to show intensional refinements of distributed systems (§5).
• We use the Aneris instantiation of Trillium to show that two distributed protocols, two-phase
commit and single-decree Paxos, refine their abstract TLA+ [Lamport 1992] specifications.
To the best of our knowledge, this is the first foundationally verified proof that a concrete
implementation of a distributed protocol correctly implements an abstract TLA+ specification.
• We further show functional correctness and strong eventual consistency of a concrete imple-
mentation of a Conflict-Free Replicated Data Type (CRDT). The challenging part is incorpo-
rating the notion of fairness of the inter-replica communication; if messages from one replica
are just ignored, then eventual consistency will never be reached. Moreover, the concurrent
interactions with the user-exposed operations makes it non-trivial to reason about eventual
consistency. To the best of our knowledge, this is the first such proof that takes into account
the inter-replica communication at the level of the implementation. For the sake of space, we
have relegated further details about this example to the accompanying appendix.
• All the results that appear in the paper have been formalized in the Coq proof assistant using
the Iris separation logic framework.

2 BACKGROUND AND KEY OBSERVATIONS

We will think of the operational semantics of a concurrent program as an LTS where the transition
labels are thread identifiers corresponding to the thread taking the step. That an LTS refines another
is a standard notion: two states are in a refinement relation if there exists a forward simulation

relation ' that relates them (see, e.g., Cleaveland and Sokolsky [2001]).3 The goal in this paper
is to transport intensional safety and liveness properties of (possibly infinite) traces along such a
refinement relation, e.g., transporting the property “the value of the counter increases (or stays the
same) monotonically without skipping over any number” from the model Chain in Figure 1 to the
program count_up in Figure 2.

To transport intensional properties, we will work with intensional refinement, which is a lockstep
relation where every step of the program is matched by a step of the model. This is, of course, too
strong if taken literally: for example, the step of computation corresponding to a recursive call of
count_up does not increment the counter and hence does not correspond to a step in the model. For
now, we will ignore this issue; in the following section we will present constructions on LTSs that
will allow us to relax the correspondence between the program and the model, while still allowing
intensional properties to be transported.
We recall the precise definitions of forward simulation and refinement. The definitions are

relative to a parameter b , a relation on traces, which provides for a bit of flexibility, by allowing
one to restrict attention to traces satisfying b .

3Cleaveland and Sokolsky [2001] work with relations on a single LTS whereas we work with two LTSs. Nonetheless, all the
results carry over straightforwardly by simply considering an LTS that is the disjoint union of the two LTSs we consider.
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0 1 2 3 . . .

(Chain) Chain of natural numbers

(∞, 0)

(1, 1) (2, 1) (2, 2)

(3, 1) (3, 2) (3, 3)

. . .

(FinChains) All finite chains of numbers; the first component is the length

Fig. 1. Two simple LTSs representing the infinite chain of natural numbers Chain, and all finite chains of
natural numbers FinChains.

let rec count_up l = FAA l 1; count_up l in count_up l

Fig. 2. The program count_up. Here FAA is the (atomic) fetch-and-add operation which increments the integer
stored in its first argument (a reference) by the given amount in the second argument. We assume that the
value of ; is zero at the beginning.

Definition 2.1 (b-forward simulation). Let b be a binary relation on finite traces. A relation ' is a
b-forward simulation, written ForSimb ('), if:

ForSimb (') ≜
(

∀g, g ′ . '(g, g ′) =⇒ b (g, g ′)
)

∧
(

∀g, g ′, ;, B . '(g, g ′) ∧ last (g)
;
−→ B =⇒ ∃; ′, B′ . '(g

;
−→ B, g ′

; ′

−→ B′)
)

where last maps a trace to its end state.

Definition 2.2 (Intensional refinement). Let b be a binary relation on finite traces. A finite trace g
is an intensional refinement of a finite trace g ′, with respect to parameter b , written g ≼b g ′, if there
exists a b-forward simulation relation ' such that '(g, g ′). That is,

g ≼b g
′ ≜ ∃'. ForSimb (') ∧ '(g, g

′)

In our running example, the parameter b is used to restrict our attention to traces where the
value of the counter and the model state agree at all times.

The Trillium program logic is designed to establish (cf. Theorem 3.2) an intensional refinement
2 ≼b < between singleton traces consisting of a program state 2 and a model state <. From
Lemma 2.4 below it then follows directly that any possibly-infinite execution of the program can
be matched by a possibly-infinite trace of the model in such a way that all their corresponding
finite prefixes are in the intensional refinement relation.

Definition 2.3 (Trace Relation Extension). Given a relation ' on finite traces, we lift ' to possibly-
infinite traces, written '̂, by considering all finite prefixes as follows:

'̂(g1, g2) ≜ ∀g
′
1, g
′
2. |g

′
1 | = |g

′
2 | ∧ prefix (g

′
1, g1) ∧ prefix (g

′
2, g2) =⇒ '(g ′1, g

′
2)

where prefix (g, g ′) means g is a prefix of g ′.

Lemma 2.4 (Intensional refinement, lifting). Let !1 and !2 be two LTSs, and b a relation on

traces between these LTSs. Let B1 ∈ !1 and B2 ∈ !2 be two states such that B1 ≼b B2 (seen as singleton

traces). For all possibly-infinite traces g1 of !1 such that first (g1) = B1 there exists a possibly-infinite
trace g2 where first (g2) = B2 such that g1 ≼̂b g2. Here, first maps traces to their initial state.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 9. Publication date: January 2024.



Trillium: Higher-Order Concurrent and Distributed Separation Logic for Intensional Refinement 9:5

2.1 Program Steps That Do Not Correspond to Steps in the Model

The core idea of the methodology we propose in this paper is that the model refined by the program
is more abstract, and hence simpler and easier to reason about, than the program. Thus, in general,
there will be steps in the program that do not correspond to any step in the model. One way to
reconcile this with our notion of refinement is to allow for stuttering. That is, allow the program
to take a step while the model stays in the same state. We will support stuttering by lifting the
model into an LTS that allows stuttering. We consider two kinds of lifting, one that is only sound
for intensional safety trace properties, and one that is sound for liveness trace properties as well.
For the former, we show that it is sound in the sense that, if a program refines the lifted model, and
the original model enjoys an intensional safety trace property, so does the program. Similarly, the
latter lifting is sound with respect to liveness trace properties.
We remark on a subtle point here, namely that Trillium is a framework, which means that

when we combine the base program logic of Trillium with one of the two aforementioned liftings,
we obtain two different program logics. The choice of lifting presents a compromise between
expressivity and simplicity of the derived logical principles of the program logic. In particular,
for the lifting that is sound for intensional safety properties, we obtain a program logic that is
conservative with respect to the ordinary program logic of Iris in that all the reasoning principles of
the Iris program logic are still sound, and in addition one obtains simple reasoning principles that
allow proving refinements (cf. §5). For the lifting that is sound with respect to liveness properties,
we obtain a program logic that is more involved but allows proving liveness properties (cf. §4).

Stutter-Lifting: Sound for Intensional Safety Trace Properties. This lifting is very simple: it essen-
tially amounts to adding self-loops, with a special label, to all states of the LTS. For example, the
LTS Chain from Figure 1 would result in the following LTS, where dotted arrows are added to
support stuttering:

0 1 2 3 . . .

(Chain-Loops) Stutter-Lifting of the LTS Chain in Figure 1

The program count_up in Figure 2 is an intensional refinement of the model Chain-Loops above
if we take the parameter b to relate the value of memory location ; with the state of the model—the
recursive call then corresponds to taking the self-loop in the relevant state. As mentioned above,
this stutter-lifting is sound for intensional safety trace properties. Hence, to show that “the value
of the counter increases (or stays the same) monotonically without skipping over any number”, it
suffices to show that this property is enjoyed by Chain in Figure 1.

However, this lifting is not sound for liveness properties, because it is also refined by (using the
same b parameter) the following program:

let rec loop () = loop () in FAA l 1; loop ()

which only increments ; once and afterwards loops forever. To see this, take a very simple liveness
property like “the value of the counter is eventually 3” which is trivially true for the LTS Chain in
Figure 1, but not for the program above. The culprit here is unrestricted stuttering.

Fin-Stutter-Lifting: also Sound for Liveness Properties. To obtain soundness with respect to liveness
properties, we define a fin-stutter-lifting construction, which only allows for finite stuttering. That
is, instead of adding loops, it essentially adds finite unrollings of loops, by creating copies of each
state, each of which allows at most a certain, fixed number of stuttering steps. For instance, the
Fin-Stutter-Lifting of the LTS Chain in Figure 1 is given blow:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 9. Publication date: January 2024.
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...

. . .

(Chain-Fin-Stutter) Fin-Stutter-Lifting of the LTS Chain in Figure 1

The idea is to add states {=8 | 8 ∈ N} (for each state =), all of which intuitively correspond to state
=. From a state =, we can either go to the state = + 1, or stutter to a state =B from where we can at
most stutter B times before going to state = + 1. The Fin-Stutter-Lifting construction is sound for
liveness properties. In fact, it is the core idea of the so-called fuel construction we present in §4.3.
Note that, as expected, the program above which increments the counter only once and then loops
forever does not refine the LTS Chain-Fin-Stutter.

2.2 Step-Indexing and Finite Approximability

As mentioned in §1, step-indexing prevents direct reasoning about liveness properties because it
restricts reasoning to finite prefixes of program execution. The same complication arises when
establishing refinement relations. In this work, this issue shows up in Theorem 3.2 as the relative
image-finiteness side-condition that we will discuss and formally define here. In order to see this
issue concretely, revisit the LTS FinChains from Figure 1. FinChains has no infinite paths and
hence any program that refines the fin-stutter-lifting of FinChains, regardless of the b parameter,
must terminate. However, in a step-indexed logic, one can show a refinement relation between the
program count_up in Figure 2 and the fin-stutter-lifting of FinChains. To see this, simply take the
b parameter for this step-indexed refinement relation to require that the value of l corresponds
to the second component of the state in the fin-stutter-lifting of FinChains. In this case, for any
finite trace of the program, there is a trace in the fin-stutter-lifting of FinChains that matches it
according to this b relation. The key point here is that when the value of l goes from 0 to 1 in the
program, on the model side we go from the state (∞, 0) to (=, 1), where = is the number of steps of
execution being considered. Hence, it would not be sound, in this case, to conclude an intensional
refinement relation from the refinement relation established in the step-indexed logic. The crux of
the issue here is the unbounded choice of transitions going out of the state (∞, 0) which allows us
to pick a path based on the number of steps of execution that we are considering. Below we analyze
this problem more formally, and conclude that a so-called relative image-finiteness side-condition
suffices to circumvent the problem. (Note that the problem of unbounded branching is already
present in the fin-stutter-lifting construction; we will discuss this issue further when we explain
the fuel construction in §4.3.)
We first define a notion of finite approximation, which intuitively corresponds to what guarded

recursive predicates compute. Guarded recursive predicates are those defined as fixed points using
the step-indexing technique, e.g., the weakest preconditions underlying the program logic of both
Iris and Trillium.

Definition 2.5. Let � be a function on the space of binary relations on traces of LTSs !1 and !2,
i.e., � : 2tr (!1 )×tr (!2 ) → 2tr (!1 )×tr (!2 ) , where 2� is the powerset of �, and tr (!) is the set of all traces
of the LTS !. We define the finite approximation of � , written FinApprox (� ), as

FinApprox (� ) ≜
∞
⋂

8=0

'8� where '0� ≜ tr (!1) × tr (!2) and '
8+1
� ≜ � ('

8
� )

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 9. Publication date: January 2024.
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The upshot of the limitation of step-indexed logics is that the best we can hope to conclude from
a refinement relation defined in a step-indexed logic is a finite approximation of the refinement
relation. Specifically, in our case we can conclude FinApprox (�≼b ), where �≼b is the function whose
greatest fixed point (by the Knaster-Tarski fixed point theorem) is the intensional refinement
relation in Definition 2.2:

�≼b (') = {(g, g
′) |∀;, B . last (g)

;
−→ B =⇒ ∃; ′, B′ . '(g

;
−→ B, g ′

; ′

−→ B′)} ∩ b

In other words, we can only conclude ≼b if ≼b is finitely approximable, i.e., if ≼b= FinApprox (�≼b ),
which is well-known not to be the case in general for refinement relations. Indeed, one frequently
used condition for finite approximation is so-called image-finiteness [Cleaveland and Sokolsky
2001, Thm. 2.6]. An LTS is said to be image-finite if, for any state B and label ; , there exists only
finitely many states B′ such that B ;

−→ B′. As we will discuss in §4.2.2, however, it is desirable to
consider LTSs with infinite branching. For this reason we relax the image-finiteness condition by
considering the weaker relative image-finiteness condition (a property of the b relation, not the
LTS), defined below. For relative image-finiteness, it is sufficient that for any state B of the program
and for any transition B ;

−→ B′, there are only finitely many LTS transitions that correspond to B ;
−→ B′

allowed by the b relation.

Definition 2.6 (Relative image-finiteness). Let b be a relation on traces of two LTSs. The relation b
is relatively image-finite if, for any g , g ′, and transition last (g)

;
−→ B , the following set is finite:

{(; ′, B′) | b (g
;
−→ B, g ′

; ′

−→ B′)}

Theorem 2.7 (Finite Approximation). Let b be a relatively image-finite relation on traces of two

LTSs. The intensional refinement relation ≼b is finitely approximable, i.e., ≼b= FinApprox (�≼b ).

2.3 Further Discussions

Coming up with the Appropriate Model. One natural question regarding the methodology that
we present in this paper is “how does one come up with the appropriate model and the parameter
b for the verification task at hand?” We argue that coming up with the appropriate model and
b parameter is of the same nature, and indeed part of picking the appropriate specification, e.g.,
relevant preconditions and postconditions. Hence, there is no obvious, one-size-fits-all answer.
Indeed, the model and the relation often need to be designed so as to facilitate establishing the
safety trace property or liveness property of the program we wish to prove, e.g., the relation b
and the model Chain in Figure 1 that we chose for the program count_up in Figure 2, in order to
establish that “the value of the counter increases monotonically without skipping over any number”.
Moreover, at a technical level, the limitation of relative-image-finiteness of the b relation restricts
us in the choice of the model and the b parameter. For these reasons, the chosen model may not
be arbitrarily abstract. It must reflect some of the core characteristics of the program, at least to
the extent necessary for the trace property in question, and for the b to be relative image-finite.
It is our hypothesis that coming up with appropriate models and b relations is feasible in most,
if not all, interesting examples. However, in the present paper we only present the foundation
and methodology of using intensional refinement to strengthen the expressivity of step-indexed
higher-order concurrent (and distributed) separation logics, and support it with simple examples. A
proper experimental evaluation of the hypothesis, using a wide range of more advanced examples,
is beyond the scope of the current work, and we leave it for future work.

What about Transfinite Iris? Transfinite Iris [Spies et al. 2021] is a variant of Iris whose model is
step-indexed over an arbitrary ordinal (as opposed to the natural numbers used in the model of
ordinary Iris). The upshot of this change is that Transfinite Iris satisfies the so-called “existential

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 9. Publication date: January 2024.
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property” [Spies et al. 2021] which in effect renders the (relative) image-finiteness side-condition
unnecessary. We believe that the work of this paper could also be carried out on top of Transfinite
Iris, dispensing with the relative image-finiteness side-condition, albeit at the cost of other possible
complications in proofs.4 Spies et al. [2021] prove termination and termination-preserving refine-
ments of sequential programs but do not show any (preservation of) liveness properties beyond
termination nor do they treat concurrent programs.

What about the Approaches for Contextual Refinement? There have been several works on estab-
lishing contextual refinement in Iris for complex sequential and concurrent programming languages
[Frumin et al. 2018, 2020; Georges et al. 2022; Gregersen et al. 2023; Jacobs et al. 2022, 2021; Krebbers
et al. 2017; Krogh-Jespersen et al. 2017; Timany and Birkedal 2019; Timany et al. 2018]. In essence,
contextual refinement boils down to showing that if one program terminates, so should the other.
In these previous works, it is established by the use of invariants in Iris. This implies that the
approach only allows one to show that for any finite prefix of execution of the first program (the
implementation side) there exists a finite execution of the second program (the specification side)
and the final states correspond. This notion of refinement is too weak for our purposes: (1) it says
nothing about infinite executions and hence does not help us establish liveness properties, and (2)
it does not allow us to transfer non-trivial safety trace properties. In the Appendix we discuss an
illustrative example.

3 TRILLIUM: A TRACE PROGRAM LOGIC FRAMEWORK

In this section, we give a more detailed account of the general Trillium logic and a formal statement
of its adequacy theorem. We first detail how we instrument the operational semantics of the domain
programming language with “locale” transition identifiers (essentially thread id’s), to facilitate
thread-level properties such as fair scheduling. Second, we present the fundamentals of the Trillium
logic, and its adequacy theorem (Theorem 3.2). We focus on the novelties of Trillium but will
recount necessary constructions of the Iris base logic briefly at a high level.

Language Agnostic Framework. The Trillium program logic is language agnostic and is defined
with respect to any programming language which comes with an operational semantics given
by a notion of expression 4 ∈ Expr, value E ∈ Val ⊆ Expr, evaluation context  ∈ Ectx, program
state f ∈ State (a model of, e.g., the heap and/or the network), and a primitive reduction relation

41, f1 ⇝ 42, f2; 45 1, · · · , 45 = that relates an expression 41 and a state f1 to an expression 42, a state
f2, and a (possibly empty) list 45 1, . . . , 45 = of expressions, corresponding to the threads forked by
the reduction. A value denotes an expression that has reached its final form and will no longer
reduce. We write  [4] for the result of replacing the hole in evaluation context  with 4 .
The global state of the system is a configuration c = (tp, f), where the thread pool tp is a finite

mapping from locales5 to expressions, each corresponding to an execution thread. We will write
tp(Z ) for the expression whose locale is Z in tp and use tp[Z ↦→ 4] for the corresponding update
(which adds a new thread if Z ∉ dom(tp)). We will write {Z ↦→ 4} for the singleton thread-pool
consisting of a single thread 4 . For a language with shared-memory concurrency a locale would
simply be a thread identifier. For a distributed language, a natural definition would be a pair (=, tid)
of the name = of the node and the thread identifier tid of the thread in that node. Having explicit
locales as part of the language definition will be beneficial when expressing, e.g., thread-level
properties such as fair scheduling.

4The compromise that Transfinite Iris makes is that it no longer validates some of the basic reasoning principles regarding
step-indexing, i.e., rules regarding interaction of the later modality with other connectives of the logic. It is partly due to
this limitation that we opt to base our work on ordinary Iris at the cost of the relative image-finiteness side-condition.
5The name is inspired by the Chapel programming language, where it denotes the abstract place where programs execute.
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The primitive reduction relation is lifted to an LTS by a relation between configurations labeled
by the step-taking locale as follows:

(41, f1) ⇝ (42, f2; 451 , · · · , 45= ) fr (Z , tp) = Z1, Z2, . . .

(tp[Z ↦→  [41]], f1)
Z
−→ (tp[Z ↦→  [42], Z1 ↦→ 451 , . . . , Z= ↦→ 45= ], f2)

where fr (Z , tp) is an infinite sequence of fresh locales (not in dom(tp)) derived from Z , e.g., in case
of distributed systems it would consist of fresh thread identifiers on the same node as Z .

The Trillium Program Logic. The goal of the Trillium program logic is to establish an intensional
refinement c ≾b m between singleton traces consisting of the initial program configuration c and a
model state m. Proving this refinement is a matter of proving that b always holds, throughout the
execution of the program starting in c, alongside a corresponding traversal of the model starting
from m. This can be achieved by ensuring that the program execution makes progress in tandem
with the model, in addition to the relation b being preserved throughout any such execution.

Conventional Iris-style weakest precondition predicates wpE 4
{

Q
}

guarantee postcondition

validity of terminated programs, progress of program executions, and preservation of the invariants
whose names are in the mask E. This can be seen explicitly in its definition; a guarded fixpoint of
the following equation [Jung et al. 2018] (which, unlike in Trillium, does not consider locales):

wpE 4
{

Φ
}

≜
(

4 ∈ Val ∗ Q (4)
)

∨ (post condition)
(

4 ∉ Val ∗ ∀f. ( (f) −∗ |⇛E ∅ reducible(4, f) ∗ (progress)

⊲∀4′, f ′, 45 1, · · · , 45 = . (4, f) ⇝ (4
′, f ′; 451 , . . . , 45= ) −∗

|⇛∅ E ( (f ′) ∗ wpE 4
′
{

Φ
}

∗ ∗
1≤8≤=

wp⊤ 458
{

Ψ
}

(preservation)

The definition is by case distinction: either 4 is a value, in which case the postcondition should
hold, or 4 is not a value, in which case there are two requirements (ignoring |⇛E1 E2 and ( (f)
for now). First, for the current state (captured by ( (f)), the program should be reducible, i.e., it
can make progress. Second, for any program 4′ and forked threads 458 that 4 might reduce to, the
weakest precondition must hold as well (with some post condition Ψ for the forked threads). The
later modality ⊲ guarantees that the fixpoint is well-defined (the recursive occurrence is guarded).
The update modality |⇛E1 E2 % enables a form of rely-guarantee reasoning regarding invariants: to
establish % the prover can access the invariants in E1 but they must also establish all the invariants
in E2 alongside proving % . Hence, the definition of the weakest precondition preserves invariants
in E by giving access to all of them (by going from E to ∅) but requires them to be preserved by
asking them to be closed immediately after each program step (by going back from ∅ to E). The
predicate ( : State→ iProp is the state interpretation predicate that reflects the state (e.g., the heap)
of the program as resources in the logic and gives meaning to, e.g., the traditional separation logic
connective ℓ ↦→ E for heap ownership. Note how the definition of weakest precondition enforces
that the state interpretation, just like invariants, is preserved throughout program execution. We
often write wpE 4

{

E .&
}

≜ wpE 4
{

_E.&
}

, and wpE 4
{

&
}

≜ wpE 4
{

E . E = () ∗&
}

.

Remark 3.1 (Invariants and ghost resources in Iris). That % is invariant in Iris is represented
by the proposition %

N
which is annotated with a name N that identifies it. In order to work

with invariants formally in Iris, the update modality is annotated with two masks: |⇛E1 E2 .
We write |⇛E when E1 = E2 = E and |⇛ when E = ⊤, the set of all masks. The update
modality allows us to update ghost resources as described by Iris’s ghost resource theory
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[Jung et al. 2018] and to access invariants. Intuitively, the proposition |⇛E1 E2 % holds if we can
establish % and all invariants in E2 through ghost updates, without violating the environment’s
resources (a “frame preserving update”), and all the invariants in E1. For weakest preconditions
(in both the Iris and Trillium program logic) we can manipulate resources and invariants
throughout the proof because weakest preconditions are closed under the update modality:
|⇛Ewp 4

{

Q
}

⊣⊢ wp 4
{

Q
}

⊣⊢ wp 4
{

G . |⇛EQ (G)
}

. The following rules allow us to create and
access invariants and to manipulate the update modality. Note how accessing an invariant
only makes its contents available one step later (under ⊲); similarly we only need to prove
it one step later to (re)establish the invariant. The inv-access rule—alongside providing the
contents of the invariant—also tells us how we can close/reestablish the invariant.

Inv-alloc

⊲ % ⊢ |⇛E %

inv-access

N ∈ E

%
N
⊢ |⇛E E\N

⊲ % ∗ (⊲ % −∗ |⇛E\N E True)

upd-mono

% ⊢ &

|⇛E1 E2 % ⊢ |⇛E1 E2&

upd-mask-trans

|⇛E1 E2 |⇛E2 E3&

|⇛E1 E3&

upd-mask-weaken

E2 ⊆ E1 |⇛E1 E3&

|⇛E1 E2 |⇛E2 E3&

These rules, along with the definition of weakest preconditions above allow us to prove a rule
for accessing invariants during an “atomic” step of computation, i.e., a program that reduces
to a value in a single step of computation.

wp-atomic

N ∈ E %
N

⊲ % −∗ wpE\{N} 4
{

G . ⊲ % ∗Q (E)
}

atomic(4)

wpE 4
{

Q
}

Note how wp-atomic might appear to consume the invariant. This is not an issue, though, as
invariants are persistent and hence freely duplicable and shareable [Jung et al. 2018].
In the rest of this paper we will make heavy use of one kind of ghost resource, which we

explain in terms of abstract predicates. Given a set � we define two predicates • W (0) and
◦ W (0), for any 0 ∈ �, respectively called the full part and the fragment of the resource; W is
the name of the resource instance used for disambiguation. These predicates are defined in
terms of Iris ghost resources internally and satisfy the following rules, which essentially say
that the full part and the fragment must always agree:
auth-agree

• W (0) ∗ ◦ W (1) ⊢ 0 = 1

auth-alloc

⊢ |⇛E ∃W . • W (0) ∗ ◦ W (0)
auth-update

• W (0) ∗ ◦ W (0) ⊢ |⇛E • W (1) ∗ ◦ W (1)

We refer to Jung et al. [2018] for a more thorough treatment of how invariants, the update
modality, the later modality, and ghost state is constructed in Iris.

To define the Trillium program logic, we enrich the Iris-style weakest precondition to consider
(1) program traces, (2) locales, and (3) a lock-step relation between the program trace and the model
trace. Formally, this is defined as a guarded fixpoint of the equation below:

wpZ
E
4
{

Q
}

≜
(

4 ∈ Val ∗ ∀g, ^. ( (g, ^) −∗ |⇛E ( (g, ^) ∗Q (4)
)

∨
(

4 ∉ Val ∗ ∀g, ^, f,  , tp. last (g) = (tp[Z ↦→  [4]], f) ∗ ( (g, ^) −∗ |⇛E ∅

reducible(4, f) ∗ ⊲∀4′, f ′, 45 1, · · · , 45 = . (4, f) ⇝ (4
′, f ′; 45 1, · · · , 45 =) −∗ |⇛

∅ E

∃m ∈ M, d . last (^)
d
−→ m ∗
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( (g
Z
−→ (tp[Z ↦→  [4′], fr (Z , tp)1 ↦→ 45 1, . . . , fr (Z , tp)= ↦→ 45 =], f

′), ^
d
−→ m) ∗

wpZ
E
4′
{

Q
}

∗ ∗
1≤8≤=

wpfr (Z ,tp)8
E

45 8

{

Ψ
})

Instead of just program configurations, the definition now considers all program traces g where
the expression 4 is about to make a step at the locale Z , under an evaluation context  ; and for
all steps that 4 may take, there must exist a model state m ∈ M that the last state of the model
trace ^ can step to. Moreover, instead of a state interpretation, it tracks a trace interpretation ( of
the program and model traces, which will allow us not only to interpret the state of the language
and the current model state as resources. Note also that in the case where 4 is a value, in order to
establish the postcondition, we can also access the trace interpretation. This change is required for
the soundness of some of our proof rules which apply even when the program is a value but whose
correctness relies on the resources in the trace interpretation—we will discuss this later on.

That the definition of the Trillium weakest precondition has the intended meaning is the content
of the following general adequacy theorem.

Theorem 3.2 (Adeqacy). Let 4 be a program, f a program state, Z the locale of 4 in an otherwise

empty thread pool, andQ an Iris predicate on values. Let m ∈ M be a model state and b a relative

image-finite relation on finite traces of the program and the model. Let 2 = ({Z ↦→ 4} , f) be the initial
configuration of the program. If b (2,m) holds for the initial singleton traces, and furthermore we have

|⇛⊤( (2,m) ∗ wp
Z
⊤ 4

{

Q
}

∗ AlwaysHolds(b, 2,m)

then 2 ≾b m holds in the meta-logic.

In particular, we must show that the trace interpretation holds for the initial singleton traces, that
the weakest precondition holds, and that the predicate AlwaysHolds(b, 2,m) holds. The predicate
AlwaysHolds(b, 2,m) is an Iris predicate that states that b (which is a relation on finite traces, not
mentioning resources of the logic) does in fact always hold, assuming that all invariants hold, that
postconditions hold (for any thread that has terminated up to that point in the trace), that the
trace interpretation holds, and that the program never gets stuck. We refer to our accompanying
Coq development for the precise definition of the AlwaysHolds predicate. In practice, designing
program logics on top of Trillium is thus a matter of carefully picking a trace interpretation that
admits user-friendly reasoning principles while allowing the user to conclude strong b relations.6

The adequacy theorem of Trillium is much stronger than that of the ordinary Iris program
logic. Recall that the usual adequacy theorem only establishes postcondition validity, progress, and
invariant preservation. Trillium’s adequacy theorem, on the other hand, establishes intensional
refinement for any relation b which in turn can include all three aforementioned guarantees. In
addition, as per Lemma 2.4, it allows us to show that infinite traces of execution of the program
also have corresponding infinite model traces. Consequently, the adequacy theorem of Trillium is
much more complicated to establish. The proof is in two stages. We first show that the weakest
precondition implies a finite approximation of intensional refinement stated in terms of guarded
recursion of Iris’s base logic. We then show that the aforementioned guarded recursive definition
implies intensional refinement—this is where we exploit relative image-finiteness. We refer to the
accompanying Coq development for the details of the proof.

6In fact, Trillium is conservative in that one can always pick a trivial model LTS, , and b yielding no further intricacies in
the program logic, and the regular safety guarantees of Iris.
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4 THE FAIRIS LOGIC

In this section we present the Fairis logic; an instantiation of Trillium for proving liveness proper-
ties under fairness assumptions, such as fair termination, of programs written in an OCaml-like
programming language. Most non-trivial concurrent programs only enjoy liveness properties,
including termination, under fair thread scheduling. To see this, consider the program in Figure 3.
In this example, the function yn_start creates a new reference b initialized at 0, and starts two
threads: yes swaps the value of b from true to false in a loop k times, and the no swaps it from
false to true as many times. For thread yes to make progress, it has to wait for no to set the value
of b to true, and vice versa. Clearly, this program would not terminate with an unfair scheduler
which only gives execution time to, say, yes. But this program does terminate in practice, because
operating systems’ schedulers and processors do behave fairly. We discuss the details of the proof
of termination of the example in Figure 3 in §4.2.1.
Our approach to taking fairness into account when reasoning about liveness properties is to

incorporate it into the model LTS as follows. First, we use the labels of the model LTSM, which
we will henceforth call roles in this section, in order to be able to express fairness at the level
of the model. Intuitively, a role is the abstraction of the concept of a thread at the model level.
Bear in mind, though, that, as we will discuss, threads and roles are not always in one-to-one
correspondence. To this end, we introduce a construction Fuel(M) which augments the modelM
to keep track of the correspondence between threads and roles in order to provide finite stuttering.
This construction also adapts the relation b and lifts it to a relation Fuel(b) between traces of the
program and traces of Fuel(M). For brevity, we will write bfuel instead of Fuel(b).

In order to show that the program enjoys a certain liveness property % , i.e., that all fair execution
traces g of the program satisfy % (g), we carry out the proof in the following steps:

(1) We choose a modelM and a relation b .
(2) We prove a specification for our program using the Fairis program logic whose adequacy

theorem ensures that all program traces (including unfair executions) refine some trace of
the instrumented model Fuel(M) for the relation bfuel.

(3) We have proved (once and for all) that given two traces g and g ′, if b̂fuel (g, g ′), and g is fair,
then so is g ′. (Intuitively, this holds because we have constructed Fuel(M) and bfuel such that
they only allow finite stuttering in each thread.)

(4) We prove that all fair traces ofM satisfy the desired property % .
(5) We prove that % is preserved by bfuel, in that b̂fuel (g, g ′) and % (g ′) implies % (g).
(6) We prove that, if for a trace g in Fuel(M) we have that the corresponding trace g ′ satisfies % ,

then so does g , this roughly corresponds to the fact that % is invariant under finite stuttering.
(7) From all of the above, we conclude % (g) for any fair trace g of the program.

This may seem like a lot of steps, but (7) is automatic, and given a fixed property % , steps (5) and (6)
can be proved independently of the program and of the modelM. Step (6) is trivial for the case
of termination and properties of the always-eventually form as these are preserved under finite
stuttering. Finally, in case of termination, we have formulated a simple criterion for step (4) which
is local in the sense that one does not need to consider traces but rather need to inspect individual
transitions inM. See our accompanying appendix and Coq formalization for this local criterion.
What the user obtains from the adequacy theorem of Fairis is ≼bfuel between the program and

the model LTS Fuel(M); bfuel is relative image-finite by construction whenever b is. Crucially,
all the liveness properties we are interested in—such as termination or “always-eventually” trace
properties—are stable under finite stuttering. Hence, if all fair traces ofM satisfy our property
so do all fair traces of Fuel(M). Consequently, the user only has to prove that the property can
be transported along the ≼bfuel intensional refinement relation from Fuel(M) to the program. In
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let rec yes b n =

if cas b true false then n := !n-1;

if !n > 0 then yes b n

let rec no b m =

if cas b false true then m := !m-1;

if !m > 0 then no b m

let yn_start k = let b = ref true in

(yes b (ref k) || no b (ref k))

Fig. 3. The Yes and No threads.

. . . m,⊥ m,⊤ m+1,⊥ m+1,⊤ . . .No

Yes

Yes

No

No

Yes

Yes

No

No

We write ⊤ for true and ⊥ for false.

Fig. 4. The modelMyes_no.

some cases, e.g., §4.2.3, we may be interested in proving a liveness property under an assumption
stronger than fairness, i.e., that all fair traces that satisfy a certain property & satisfy the desired
liveness property % . In such cases the user of Fairis is responsible for proving that the property &
can be transported from the program to Fuel(M) and from Fuel(M) toM—in case of the example
in §4.2.3, we are interested in infinite fair traces; infinitude, like finiteness, trivially transports as
it is preserved by intensional refinement and finite stuttering. The Fuel construction essentially
augments the model LTS to add two pieces of information: (1) for each thread id Z , the set of roles
that are associated to Z , and, (2) for each role d , the value of its so-called fuel, i.e., a number which
measures how long the program can still postpone taking a step in that role in b . This allows us
to assign obligations to threads, i.e., assign a set of live roles to a thread—a role is said to be live if
it can still take steps. A thread that has a set ' of roles assigned to it must eventually (restricted
by fuel) take a step in each of those roles. This is enforced by mandating that to take a step of
computation, a thread must have a non-empty set ' of live roles, and that after the step all fuels
in ' are decreased, except if this step was matched by a non-stuttering step corresponding to a
role d ∈ ' (one of its live roles) in the underlying LTSM. In that case, the thread may increase
the fuel of role d (but the fuel for all other roles in ' must decrease) as long as it remains under a
certain global cap which we will denote with Fcap.7 Alternatively, a thread can delegate some of
its obligations to a thread that it forks. The adequacy theorem of Fairis requires a proof in the
program logic that enforces that threads may only stop if there are no live roles assigned to them
anymore; this is encoded through threads’ postconditions.

The Fairis adequacy theorem is a special case of the Trillium adequacy theorem. The theorem is
shown below, and has differences from the Trillium adequacy theorem highlighted:

Theorem 4.1 (Fairis-Adeqacy). Let 4 be a program, f a program state, Z the locale of 4 in an

otherwise empty thread pool. Let m ∈ M be a model state, and b a relative image-finite relation on

program traces and model traces. Let 2 = ({Z ↦→ 4} , f) be the initial configuration of the program,

and m̃ be the initial state of Fuel(M) corresponding to m, i.e., m together with Z assigned to a map

Finit of all roles with Fcap fuel. If b (2,m) and

|⇛⊤ (◦WM (m) ∗ Z Z⇒ Finit ∗∗ℓ ;E∈f
ℓ ↦→ E) −∗

( (2, m̃) ∗ wpZ⊤ 4
{

F. Z Z⇒ ∅
}

∗ AlwaysHolds(b, 2, m̃)

then 2 ≾bfuel m̃ holds in the meta-logic.

Here, ◦WM (m) and tid Z⇒ Finit are initial resources used in the Fairis program logic rules. In
particular, ◦WM (m) is an exclusive resource that tracks the current state of the user model, while

7This global cap, fixed for each refinement proof, ensures relative image-finiteness (Definition 2.6) of Fuel(M) .
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Z Z⇒ fs associates the locale Z with a partial map fs : Role(M) ⇀ N that associates model roles with
their fuels. The authoritative part •WM (m) of the resource is kept as part of the trace interpretation;
the nameWM is a globally fixed name for the entire proof created as part of the proof of the adequacy
theorem. The resource ◦WM (m) is available to the user of the Fairis program logic to be able to
relate the state of the program to the state of the model (which always agrees with the one tracked
in the trace interpretation as per resource rules), usually in an invariant. This relation in the logic
is then what the user will use to establish the b relation as required—we will see this in examples
below. Initially, all roles are assigned to the single thread in the thread-pool with fuels all being
Fcap. The last piece of resource the user acquires from the adequacy theorem is the full ownership
of the entire initial state (heap) f in that we obtain points-to propositions for all locations in f .
The adequacy theorem, and the rule for forking threads as we will see later, enforce that upon
termination (in the postcondition) the thread must own no live roles. Finally, note that even though
the adequacy theorem establishes a ≾bfuel relation, the user only needs to prove AlwaysHolds for b
and not for bfuel.

In the rest of this section we cover how we apply Fairis to prove various liveness properties. First,
we present the key ideas of the Fairis program logic, along with its reasoning rules, used for proving
the weakest precondition of programs §4.1. We then give a tour of how the Fairis program logic
can be used to prove liveness properties of programs §4.2, including fair termination of the yes-no
example discussed earlier. Finally, we outline some of the technical details involved in obtaining
the Fairis adequacy theorem §4.3.
The examples that we present in this section are simple examples designed to demonstrate

viability of the Trillium approach to liveness properties under fair scheduling assumptions. As such,
in all these examples the LTS model used includes the entire core functionality of the program;
only the administrative program steps, e.g., beta-reduction, are not included which are taken into
account via stuttering enabled by the fuel construction. Hence, in that sense, the LTS models of
these examples are not very abstract. For more involved examples, we expect that the level of
abstraction of the LTS model compared to the program should be similar to that of Aneris examples;
c.f. the Paxos example of §5 where the model abstracts away a substantial amount of implementation
details. However, to substantiate this claim one needs a proper experimental evaluation, using a
wide range of more advanced examples, which is beyond the scope of the current work, and thus
we leave it for future work.

4.1 The Fairis Program Logic

The Fairis program logic combines the reasoning principles of conventional Iris program logics
with reasoning principles involving fuel and model resources. To properly compartmentalize these
orthogonal reasoning principles, the program logic employs two layers of reasoning: an outer
(model) layer and an inner (program) layer.

The intuition is that at every program step, the program will either do a fuel step, corresponding
to stuttering, or a model step, corresponding to a step in the underlying model. Both of these are
handled by the outer model layer. Regardless of which kind of step the program takes, the inner
layer will then be used to reason about the actual program step. The rules of the inner program
logic only concern the program on its own and hence very closely resemble those of the ordinary
program logic of Iris.

The inner program logic layer is expressed in terms of a different weakest preconditionwpE 4 ⟨Q⟩
(note the angle brackets instead of braces for the postcondition). This weakest precondition is a
(heavily) simplified version of Trillium’s weakest precondition where the state interpretation (it
indeed only mentions the state and not the entire trace) only concerns the heap of the program. In
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Fuel & model rules (outer program logic)
wp-step-fuel

Z Z⇒ fs++ fs ≠ ∅

wpE 4
〈

4′ . Z Z⇒ fs −∗ wpZ
E
4′
{

Q
}

〉

wpZ
E
4
{

Q
}

wp-role-dealloc

◦WM (m) m d
−→/ _ Z Z⇒ {d := _} ⊎ fs

(◦WM (m) ∗ Z Z⇒ fs) −∗ wpZ
E
4
{

Q
}

wpZ
E
4
{

Q
}

wp-step-model

◦WM (m) m d
−→ m′ Z Z⇒ {d := _} ⊎ (fs++)

wpE 4
〈

4′ . (◦WM (m
′) ∗ Z Z⇒ {d := Fcap} ⊎ fs) −∗ wp

Z

E
4′
{

Q
}

〉

wpZ
E
4
{

Q
}

wp-role-fork

Z Z⇒ (fs1 ⊎ fs2)
++ fs1 ⊎ fs2 ≠ ∅

∀Z ′ . Z ′ Z⇒ fs2 −∗ wp
Z ′

E
4
{

Z ′ Z⇒ ∅
}

wpZ
E
fork (4)

{

Z Z⇒ fs1
}

Program rules (inner program logic; an excerpt)

wp-alloc

wpE ref E ⟨F.∃ℓ .F = ℓ∗ ↦→ E⟩

wp-load

ℓ ↦→ E

wpE ! ℓ ⟨F.F = E ∗ ℓ ↦→ E⟩

wp-store

ℓ ↦→ E

wpE ℓ ← F ⟨ℓ ↦→ F⟩

wp-cas

ℓ ↦→ E

wpE cas ℓ E1 E2

〈

F. (E = E1 ∗F = true ∗ ℓ ↦→ E2) ∨

(E ≠ E1 ∗F = false ∗ ℓ ↦→ E)

〉

wp-beta

wpE (_G . 4) E ⟨4
′ . 4′ = 4 [E/G]⟩

Fig. 5. The rules of the Fairis program logic

particular, this inner program logic on its own would be useless. It is only useful, and extremely so,
because the outer program logic has already taken care of the details of the model including the fuel.
Additionally, the inner weakest precondition strictly captures a single step of reduction as for further
steps the outer program logic must intervene again to manage the model-side details. As a result,
the postcondition of the inner weakest preconditions are predicates over arbitrary expressions as
opposed to values, i.e., a predicateQ : Expr→ iProp. Similar to the outer weakest precondition, we
often write wpE 4 ⟨4

′ . &⟩ ≜ wpE 4 ⟨_4
′ . &⟩, and wpE 4 ⟨&⟩ ≜ wpE 4 ⟨4

′ . 4′ = () ∗&⟩. Additionally,
we often useF instead of 4′ for the return value binder, to denote that the returned expression is a
value. The definition of the inner weakest precondition is given in the accompanying appendix.

An overview of the layers and their rules can be found in Figure 5. The rules of the inner program
logic are entirely standard. We will thus not explain them in detail. The wp-step-fuel rule captures
that we can take a fuel step whenever the fuel of all the roles of the non-empty fuel map is non-zero
(Z Z⇒ fs++ and fs ≠ ∅, where fs++ denotes the map fs where all fuels are incremented by 1). We must
then prove the inner weakest precondition, where the postcondition captures that we re-obtain the
fuel map (Z Z⇒ fs), where all fuel has been decremented, for the remaining proof obligation.

The wp-step-model rule captures that we can take a model step whenever the underlying model
can take a step over some role d ; we have ◦WM (m) indicating the current model state, and m d

−→ m′

indicating we can take a step. Wemust then show that the role d is associated with the current locale
Z , and that the fuel of all non-d roles are non-zero (Z Z⇒ {d := _} ⊎ fs++). Just as in wp-step-fuel

we must show the inner weakest precondition, which in turn gives us back the model and fuel
resources. The model resource is updated to the new model state, ◦WM (m

′), and the fuel map has the
fuel of d replenished to the maximum fuel cap, Fcap, while all non-d fuels have been decremented,
Z Z⇒ {d := Fcap} ⊎ fs. The conjunction of these rules effectively enforce, that for any role d for
which we can only take finitely many steps in the thread that d is assigned to, we are forced to
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take a step corresponding to d . Otherwise, we would run out of fuel for the role d and hence not
be able to take anymore steps, be it a stuttering step, or a step of any role other than d .

The rules wp-role-dealloc and wp-role-fork allow us to discharge our obligations (roles we are
responsible for). The rule wp-role-dealloc removes a role from the fuel map of the locale when
all the obligations of that role are fulfilled, i.e., when the role “terminates” and cannot take any
more steps. The rule wp-role-fork, on the other hand, allows the thread to delegate some of its
obligations (roles) by forking a thread and passing those roles to the newly forked threads. Note
how the fuel is decremented for all roles, including those that are passed to the newly forked threads.
This restriction is necessary for the soundness of the logic as otherwise one could indefinitely
postpone taking a step in role by repeatedly forking new threads. Furthermore, note how the rule
wp-role-fork requires the postcondition of the forked thread to have a live role when it terminates,
effectively forcing it to discharge all its obligations before termination.

4.2 Examples

In this section we cover a suite of examples to demonstrate how Fairis can be used to prove fairness-
dependent liveness properties. In particular, we first prove fair termination of the yes-no example
(Figure 3) discussed earlier. We will then present an example in §4.2.2 where the model LTS is not
image-finite but still the b relation is relative image-finite cf. Definition 2.6. Finally, we demonstrate
how Fairis can be used to show liveness properties beyond termination in §4.2.3.

4.2.1 Fair Termination: Yes-No. We initially consider the application of Fairis for proving fair
termination, which we formally state as follows over the initial configuration 2 of the program:

fairly_terminating(2) ≜ ∀g . first(g) = 2 =⇒ fair(g) =⇒ finite(g)

In particular, we prove fair termination for the yes-no program presented in Figure 3, using the
associated model shown in Figure 4. Proving fair termination of the model is relatively straight-
forward. In our Coq formalization we apply the local criterion mentioned earlier; this criterion
is explained in our accompanying appendix. Moreover, as discussed earlier, termination can be
trivially transported fromM to Fuel(M). Hence, to prove fair termination of the yes-no program,
we just have to show that it is refined by the yes-no model using Fairis.

To do so, we apply the adequacy theorem of Fairis, using a trivial b relation, and an empty initial
state f for the program. This choice means that AlwaysHolds(Fuel(b), 2, m̃) holds trivially for any
2 and m̃. Since the yes-no model (Figure 4) is finitely branching, any b relation on it is trivially
relative image-finite. What remains to prove is the weakest precondition of the yes-no program:

(◦WM (m) ∗ Z Z⇒ {Yes := Fcap;No := Fcap}) −∗ wp
Z
⊤ yn_start =

{

Z Z⇒ ∅
}

where< is the state (=,⊤) in Figure 4, and 0 < = is any positive natural number. As for applying
the rules updating the underlying model, the only steps in the program where this happens are the
two cas operations in the yes and no threads. These are precisely the horizontal steps in Figure 4
when the cas operation succeeds and the loop when the cas operation fails—as cas is atomic, we
can access the invariant (see the rest of the proof argument) during a cas operation. All the other
steps in the program are stuttering steps.
The proof starts by using wp-alloc to resolve the allocation of the flag reference, obtaining

; ↦→ true. As per conventional Iris methodology for concurrent programs, the proof employs an
invariant to safely share the flag reference among the two threads. This invariant additionally
ensures that the program behaves according to the model LTS by incorporating the ◦WM part of
the model resource. Recall that = corresponds to how many times the model must cycle between
flipping the flag 1 back and forth before termination. In order to tie the state of the model to the
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let rec decr_loop l =

if !l > 0 then l := !l - 1 else #()

let nondet_start l =

l := (nondet () + 1);; decr_loop l

Fig. 6. The non-deterministic nat example.
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Fig. 7. The non-deterministic nat model.

references managed by the two threads, we incorporate two additional resource predicates • Wyes
and • Wno in the invariant, each tracking how many times each thread must still flip the flag 1—the
fragmental parts of these resources will be passed to the two threads. The invariant used to prove
the yes-no program, yesno_inv(Wyes, Wno, ;), is as follows:

yesno_inv(Wyes, Wno, ;) ≜ ∃=,1. ◦WM (=,1) ∗ (=,1) ≠ (0, false) ∗ ; ↦→ 1 ∗
(

1 = true ∗ • Wyes (=) ∗ • Wno (=)
)

∨
(

1 = false ∗ • Wyes (=) ∗ • Wno (= − 1)
)

Note how in the case the flag is false the value of the no thread may lag behind because it has not
yet had the chance to flip the flag in this “round” to be able to catch up. Furthermore, note how
this invariant asserts that the state (0, false) is not ever reached in the model when the program
is refining the model. This is crucially the case because we only ever call yn_start with a strictly
positive argument. It only remains to prove the following specifications of the two threads

(yesno_inv(Wyes, Wno, ;)
NYN ∗ Z Z⇒ {Yes := 42} ∗ ◦ Wyes (=) ∗ 0 < =) −∗ wpZ⊤ yes ; =

{

Z Z⇒ ∅
}

(yesno_inv(Wyes, Wno, ;)
NYN ∗ Z Z⇒ {No := 42} ∗ ◦ Wno (=) ∗ 0 < =) −∗ wpZ⊤ no ; =

{

Z Z⇒ ∅
}

Note that the fuel of 42 is picked somewhat arbitrarily; it only needs to be below Fcap (which we
can arbitrarily pick) and large enough for the proof to go through.

We use these specifications along with wp-role-fork to delegate the role obligations to the two
threads, which completes the proof of the main thread which can (and must) now terminate as it
has no roles associated to it anymore. We use wp-step-fuel to resolve all the stuttering steps in
between model steps. The crux of the rest of the proof is the cas operations, where we update
the model using the rule wp-step-model, regardless of it succeeding or not. In particular, we open
the invariant around the operation using the rule inv-access, and then resolve the operation with
wp-cas. Based on whether the cas operation succeeds, we either take the decrementing or the
looping step in the model. In either case, the invariant is preserved. If we succeed, we update our
model resource ◦ WM (=) accordingly to preserve the invariant. If we fail, we simply do nothing and
loop. In both cases, a model step has taken place in the underlying logic and hence the fuel for
thread’s role can be replenished. The program loops until we eventually hit 0, in which case we can
use wp-role-dealloc to discharge the role obligation, as the role can no longer step in the model,
thus fulfilling the postcondition.

4.2.2 Sound Infinite Branching: Non-deterministic Nat. In §1 we remarked that the model should be
relatively image-finite for the Trillium (and thereby Fairis) adequacy theorem to be sound. In this
section we consider a model which is infinitely branching, while still being relative image-finite, by
virtue of the user picked relation b .

The program we consider can be seen in Figure 6. This program works on a pre-allocated
reference ℓ as input. It then assigns a non-zero non-deterministically chosen natural number = to
the reference, which it decrements until it hits zero, after which point it terminates. A specification
for the non-deterministic number operation is simply wpE nondet ⟨F.∃=.F = =⟩. The model of the
program can be seen in Figure 7. It starts in an initial state∞, from which it can go to any natural
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let rec incr_loop l n =

if cas l n (n+1) then incr_loop l (n+2) else incr_loop l n

let eo_start l =

let x := !l in (incr_loop l x || incr_loop l (x+1))

Fig. 8. The even-odd example.
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Fig. 9. The even-odd model.

number =. While the model is terminating (all traces are finite), it is also infinitely branching to
accommodate for the fact that the program may non-deterministically step to any natural number.
In order to prove relative image-finiteness we apply the Fairis adequacy theorem with the

following user relation:

b ℓnondet (g, ^) ≜ (last (^) = ∞∧ heap(last (g)) (ℓ) = −1) ∨ (∃=. last (^) = = ∧ heap(last (g)) (ℓ) = =)

That is, the state of the model always correspond to the number stored in the location, once it has
been initialized—before that the location stores −1. This relation ensure relative image-finiteness,
as for every program step, there is only one valid model step. Intuitively, the model side number
we step to is uniquely (and hence finitely) determined by the program.

To be able to prove AlwaysHolds(bnondet (ℓ), 2,m) we allocate a resource predicate, starting in the
initial model state • W (∞) and ◦ W (∞), and use the former establish the following invariant at the
very beginning of our verification:

nondet_inv(W, ℓ) ≜ ∃cn. ◦WM (cn) ∗ • W (cn) ∗ (cn = ∞ ∗ ℓ ↦→ −1) ∨ (∃=. cn = = ∗ ℓ ↦→ =)

This invariant enforces that the location points to a natural number corresponding to the model.
Additionally, whenever the model is in the initial ∞ state, the location stores −1. Note that the
relation b follows directly from the invariant.
To prove fair termination of the program, it only remains to prove the following specification:

(nondet_inv(W, ℓ)
Nnondet ∗ ◦ W (∞) ∗ Z Z⇒ {nondet := Fcap}) −∗ wp

Z
⊤ nondet_start ℓ

{

Z Z⇒ ∅
}

It is straightforward to prove that the invariant holds throughout the program, and that it implies
the user defined relation. The only non-stuttering step in the proof is the assignment step in the
then branch of decr_loopwhich allows us to replenish the fuel in every loop iteration. An interesting
aspect of this proof is that we use an invariant in the proof despite the fact that program is not
concurrent. In this case, the invariant is not used to facilitate sharing between threads but rather
to enforce an invariant of the program, i.e., that the value of the reference must always, after
initialization, correspond to what is determined in the model LTS.

4.2.3 Liveness Properties Beyond Termination: Even-Odd. In this section we demonstrate how Fairis
can be used to prove liveness properties beyond termination.

Consider the program shown in Figure 8. The program works on a location ℓ assumed to store 0
initially. It forks off two threads that each indefinitely increment the location whenever it is even
or odd, respectively. The property that we prove is that the counter ℓ visits all natural numbers in
order. This property only makes sense for maximal traces, i.e., traces that are either infinite or can
take no further step—as we will discuss, all maximal traces of this program are infinite. Formally,
the property we prove is the following:

evenodd_prop(ℓ, c) ≜ ∀g . first(g) = c ⇒ fair(g) ⇒ maximal(g) ⇒

(∀8 . ∃=. heap(g (=)) (ℓ) = 8) ∧ (all numbers visited)

(∀=. ∃8 . heap(g (=)) (ℓ) = 8 ∧ ∃ 9 . 8 ≤ 9 ∧ g (= + 1) (ℓ) = 9) (monotonicity)
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We prove the property above by relating the program in Figure 8 with the model LTS Figure 9. To
this end, we prove the following property about the model Figure 9.

evenodd_prop_mdl(ℓ,m) ≜ ∀^. first(^) = m⇒ fair(^) ⇒ infinite(^) ⇒

(∀8 . ∃=. g (=) = 8) ∧ (all number visited)

(∀=. ∃8 . g (=) = 8 ∧ ∃ 9 . 8 ≤ 9 ∧ g (= + 1) = 9) (monotonicity)

First, the property evenodd_prop_mdl(ℓ,m) is stable under finite stuttering—monotonicity is
expressed using ≤ which is preserved by stuttering. Second, notice the discrepancy between this
property and evenodd_prop(ℓ, c) where the latter only assumes maximality of the trace while the
former requires infinitude. This property is easy to prove under fairness assumptions. A fair infinite
trace cannot have a tail that just consists with one of the loops. Hence, it must visit all numbers.
Monotonicity follows rather trivially.

To finish the proof, we need to establish that (1) any maximal execution trace is infinite, and (2)
that the liveness property can be transported from the fuel-instrumented model to the execution
trace. To this end, we will pick b relations as follows:

b ℓeven_odd (g, ^) ≜ bsteps (g) ∧ b
ℓ
match (g, ^)

bsteps (g) ≜ ∃Z , c
′ . last (g)

Z
−→ c′

b ℓmatch (g, ^) ≜ ∀= < length(g). g (=) (ℓ) = ^ (=)

Note that, again, because the model in Figure 9 is finitely branching, the relation beven_odd is trivially
relative image-finite. Moreover, if we have g ≼̂b ℓeven_odd ^ , given the bsteps (g) part of b ℓeven_odd together

with maximality of g , we can conclude that g must be infinite. This established by (1) above. The
other part of the relation we pick, b ℓmatch, simply expresses that the value stored in reference ℓ is
always the same as the number in the model trace. In order to prove AlwaysHolds(b ℓeven_odd, 2,m)

we must show that b ℓsteps is preserved throughout program execution. This, however, is a simple
consequence of post-condition validity and progress properties that we can assume as we prove
AlwaysHolds. On the one hand, we know that the program cannot be stuck, that is each thread is
either a value or it can take further steps. On the other hand, we cannot have that all threads are
values, as if they were, then their postconditions would all hold. This would allow us to conclude
that we have reached a state on the model side that has no live roles, which is in contradiction
with the definition of the model as given in Figure 9. Now, for establishing the other part of
AlwaysHolds(b ℓeven_odd, 2,m), we follow an approach similar to the two preceding examples. We use
resource predicates • We (=), ◦ We (=), • Wo (=), and ◦ Wo (=), and we will use the full parts in the invariant
below while the fragment parts are passed to the two threads. The invariant below immediately
allows us to establish that b ℓmatch is preserved throughout program’s execution.

EO_inv(We, Wo, ℓ) ≜

∃=. ◦WM (=) ∗ ℓ ↦→ = ∗
(

iseven(=) ∗ • We (=) ∗ • Wo (= + 1)
)

∨
(

isodd (=) ∗ • We (= + 1) ∗ • Wo (=)
)

This invariant combines the ideas of the invariants of the preceding two examples. In particular, it
lets us modularly prove that the number stored in ℓ corresponds to the model state. Note how in
each case, whether = is even or odd, the number tracked by the odd and even threads, respectively,
are out of sync by being one ahead of =. This very closely reflects the behavior of the program; the
thread that is out of sync is waiting for the in-sync thread to perform its increment.
Finally, we need to prove the weakest precondition of the program.

(EO_inv(We, Wo, ℓ)
Neo ∗Z Z⇒ {even := Fcap; odd := Fcap} ∗◦ We (0) ∗◦ Wo (1) −∗ wp

Z
⊤ eo_start ℓ

{

Z Z⇒ ∅
}
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f tauZ−−−−→ f′ f visZ (dC )−−−−−−→ f′

st f.m = f′ .m f.m d
−−→ f′ .m

th Z ∈ rng(th) th(d) = Z
dom roles(f′) ⊆ roles(f) roles(f′) \ roles(f) ⊆ lroles(f′) \ lroles(f)
dec ∀d ∈ dom(f.map(Z )), fm′ (d) < fm(d) ∀d ∈ dom(f.map(Z )) \ {dC }, fm′ (d) < fm(d)
ch ∀d, th′ (d) ≠ th(d) ⇒ fm′ (d) < fm(d) ∀d ≠ dC , th′ (d) ≠ th(d) ⇒ fm′ (d) < fm(d)
ni ∀d ∉ dom(f.map(Z )), fm′ (d) ≤ fm(d) ∀d ∉ dom(f.map(Z )), fm′ (d) ≤ fm(d)
ref ∀d ∈ roles(f′) \ roles(f) ∪ {dC }, fm′ (d) ≤ Fcap

Fig. 10. Transitions between two states f and f′ in Fuel(M) where th ≜ thf, th
′ ≜ thf′ , etc. All conditions in

the column must be satisfied for the transition in the top row to be valid.

We prove the two threads satisfy the following specifications for any =:

(EO_inv(We, Wo, ℓ)
Neo ∗ Z Z⇒ {even := 42} ∗ ◦ We (=) −∗wp

Z
⊤ incr_loop ℓ =

{

Z Z⇒ ∅
}

(EO_inv(We, Wo, ℓ)
Neo ∗ Z Z⇒ {odd := 42} ∗ ◦ Wo (=) −∗wp

Z
⊤ incr_loop ℓ =

{

Z Z⇒ ∅
}

The proof follows similarly to the one of §4.2.1. We similarly open the invariant around the cas
operation and in either case, whether it succeeds or fails, we take the appropriate model step.

4.3 Obtaining the Fairis Adequacy Theorem

This section describes in more detail how the Fairis logic and its adequacy theorem are obtained. In
particular, we describe the critical Fuel-construction which, given a modelM, yields a Trillium
model Fuel(M) that handles fairness preservation and finite stuttering. The Fairis logic is then
obtained by instantiating Trilliumwith this model and a well-chosen trace interpretation predicate (
and relation bfuel .

The Fuel-construction. Recall that a state f of Fuel(M) has two components: a state f.m of the
fairness modelM, and a partial function f.map : ThreadId ⇀ (Role(M) ⇀ N) associating roles to
thread ids and fuels (natural numbers) to roles. In actuality, not all such pairs are states of Fuel(M),
as states must satisfy certain conditions. Each role must be associated to at most one thread id:

∀Z1 ≠ Z2. dom(f.map(Z1)) ∩ dom(f.map(Z2)) = ∅

and each live role must be associated to a thread id:

∀d ∈ lroles(f.m). ∃Z ∈ ThreadId. d ∈ dom(f.map(Z ))

where the live roles lroles(m) of a state m ∈ M are defined as the set {d | ∃m′, m d
−→ m′} of

roles that can take a step from m. Intuitively, to prove fairness of a model trace which refines a
fair program execution, we need to show that any live role eventually takes a step, so we need
to relate all live roles to locales. We write roles(f) for the set of roles allocated in f.map, formally,
⊎Z ∈dom(f.map)dom(f.map(Z )).

Roles that are in roles(f) \ lroles(f.m) have a specific purpose: threads must be associated to a role
to be allowed to take steps. It is often the case that a thread has logically terminated (in that it took
all the steps corresponding to steps in the model) but has not actually terminated. This flexibility
allows the thread to terminate in a bounded number of steps without cluttering the model.

We now turn to the more delicate aspect of the Fuel-construction: the transitions. There are two
types of transitions: silent stuttering steps are labeled with tauZ , where Z is meant to be the locale
of the thread that takes the stuttering step, and visible steps, corresponding to the underlying model
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steps which are labeled with visZ (d) annotated with the local Z taking the step, and the underlying
role d inM. The locales in labels are necessary to relate Fuel(M) steps with the map f.th.
Figure 10 presents the list of conditions that define each type of transition. The conditions are

stated using two auxiliary maps fmf : Roles ⇀ N associating role with its fuel, and thf : Roles ⇀
ThreadId associating each role to some thread id. These two maps are derived from f.map as follows:

fmf (d) = f ⇐⇒ ∃Z , fs. f.map(Z ) = fs ∧ fs(d) = f thf (d) = Z ⇐⇒ d ∈ dom(f.map(Z ))

Condition st restricts the evolution of the underlying fairness model, th relates the thread with
the state; dom restricts the evolution of the domain: the only new roles are the roles which became
live in the new underlying state (if any); dec states that all threads associated to the thread that took
the step must decrease their fuel, except possibly for the role that took a step, ni states that roles
that changed theads must decrease their fuel; ni states that all other roles cannot increase their fuel,
and finally ref restricts the new fuel of the new roles and of the role that took the step to the global
bound Fcap. This last condition is necessary to restrict the branching of the model Fuel(M), to be
able to use the adequacy theorem of Trillium. It may not be obvious why condition ch is necessary:
otherwise two threads could, at each step, take visible steps with roles d1 and d2 and, during that
step, and change ownership of d3, whose fuel could remain constant according to condition nd.

Logical Resources and the Trace Interpretation. The logical predicate Z Z⇒ fs reflects a coherent
view of the data in the Fuel(M) model, as explained below.

To define the Z⇒ predicate we use Iris’s support for custom ghost state. These predicates satisfy,
among other things, the following rules:

FuelMap-agree

FuelMap(FM) Z Z⇒ 5 B

FM (Z ) = 5 B

FuelMap-update

FuelMap(FM) Z Z⇒ 5 B

|⇛FuelMap(FM [Z := 5 B′]) ∗ Z Z⇒ 5 B′

The link between the state of the Fuel-model and these resources, as well as between locales
recorded in the Fuel-model and the program’s locales, is specified in the trace interpretation ( (g, ^).
First, g and ^ must have the same size, and their corresponding labels must match: the 8th label Z8
of g is equal to locale(;8 ). Here ;8 is the 8th label of ^, and locale extracts the locale from a label
of Fuel(M), i.e., locale(tauZ ) = locale(visZ (d)) = Z . Second, the respective last states (tp, f) and
(m, fm) of g and ^ satisfy the following Iris predicate:

∃FM . FuelMap(FM) ∗ •WM m ∗ coherent (FM,m, fm) ∗ dom(FM) ⊆ dom(tp) ∗ ownHeap(f)

where ownHeap(f) is the usual state interpretation of the Iris program logic reflecting the program’s
heap into Iris resources. Furthermore, coherent (FM,m, fm) is a predicate capturing that the ghost
fuel map is coherent with respect to the model state. In particular, coherence captures that the
ghost fuel map and model fuel map have the same locales, and that any role present in the former
is also present in the latter with a larger or equal fuel. Additionally, coherence captures that any
live role of the model exists in the ghost fuel map.

Adequacy. To use Trillium’s adequacy theorem, the last missing piece is to choose the rela-
tion bfuel = Fuel(b). It turns out that, for our purpose, this relation can be rather weak. Given a finite

program execution g = (tp1, f1)
Z1
−→ (tp2, f2)

Z2
−→ · · ·

Z=−1
−−−→ (tp=, f=), and a finite Fuel(M)-trace

^ = (m1,map1)
;1
−→ (m2,map2)

;2
−→ · · ·

;=−1
−−−→ (m=,map=), we define bfuel (g, ^) as follows:

bfuel (g, ^) ≜ b (g, ^) ∧
(

∀9, Z 9 = locale(; 9 )
)

∧ (1)
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(

∀8, rng(thf8 ) ⊆ dom(tp8 ) ∧ ∀Z , d, thf8 (d) = Z tp8 [Z ] is a value⇒ d ∉ lroles(m8 )
)

(2)

We can now use Trillium’s adequacy theorem (Theorem 3.2) to prove Fairis’s adequacy theorem
(Theorem 4.1) given the following lemma.

Lemma 4.2. The following holds for the parameters we have chosen:

AlwaysHolds(Fuel(b), 2, <̃) =⇒ AlwaysHolds(b, 2,<)

Proof sketch. Let us consider a program execution g and a model trace ^ . It suffices to consider
their last states, which we write respectively as (tp, f) and f. That rng(thf) ⊆ dom(tp) follows from
coherent (FM, f.m, fmf) and from the fact that dom(thf) = dom(fmf). We prove the contrapositive
of the second conjunct of (2) above. Assume a locale Z and a role d such that thf (d) = Z and
such that tp[Z ] is a value. Since we know all the postconditions of terminated threads hold, we
know Z Z⇒ ∅, which means, according to coherent (FM, f.m, fmf), that d cannot be live in f.m. The
condition (1) on labels follows directly from the trace interpretation. □

Fairness Preservation. The adequacy theorem of Fairis gives us that the intial states of the program
and of the Fuel(M) model are related: (4, f) ≾bfuel m̃. This refinement is useful because it has good
properties: preservation of fairness and preservation of termination. To make things precise, we
define some operations on traces: Any finite or infinite trace ^ of Fuel(M) induces a trace ^ inM
which we obtain by removing tau transitions and projecting out the m component. Since there can
only be finitely many tau transitions in a row (any such transition decreases the sum of all fuels),
^ is finite if and only if ^ is finite. And since b̂fuel relates traces of the same length, if ^ is finite and

if b̂fuel (g, ^) holds, then g is finite.

Let us now explain why fairness is preserved in the other direction: if b̂fuel (g, ^) and g is fair, then
^ is fair. We endow traces of Fuel(M) with the natural notion of fairness where we only look at the
roles of the transitions, not the locales. It is obvious that if ^ is fair then ^ is fair, as tau-transitions
do not play any role in fairness. Therefore, preservation of fairness boils down to:

Lemma 4.3. If g is fair and if b̂fuel (g, ^), then ^ is fair.

Proof sketch. The proof is quite technical and consists of two nested inductions, but the idea
is the following: consider some state f of ^ and d which is live in that state, and call Z = thf (d)
its associated locale. We need to prove there eventually exists a d transition in ^. Since we have
a fixed fair program trace g , there exists = such that the next step of Z is in at most = steps. We
proceed by induction over (fmf (d), =), ordered lexicographically.
Without loss of generality, we can assume it is the first state of ^. Write Z for thf (d). Consider

the first step of the program with locale Z ′. There are two cases: (1) Z ≠ Z ′. Then we apply the
induction hypothesis with the next state, the same fuel, and = − 1. (2) Z = Z ′. If it is a d-transition
we conclude. Otherwise, the fuel associated to d decreases, and we apply the induction hypothesis
with the next state, a smaller fuel and some arbitrary =′ obtained as above. □

5 THE ANERIS LOGIC

To reason about distributed systems, we instantiate Trillium with AnerisLang, the programming
language accompanying Aneris, a higher-order distributed separation logic [Krogh-Jespersen
et al. 2020]. AnerisLang is an OCaml-like programming language with network primitives for
creating (socket) and binding (socketbind) network sockets as well as sending (sendto) and
receiving (receivefrom) messages. The operational semantics of AnerisLang is designed so that
the primitives closely model Unix sockets and UDP (unreliable) networking.
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TheAneris instantiation of Trillium is conceptually simple as wewill target safety trace properties.
This means that we can “bake-in” the reflexive closure of the model and hence freely allow model
stuttering. The result is a program logic and reasoning principles that are virtually identical to the
original (non-relational) Aneris program logic, where the only difference is the addition of a single
rule (aneris-take-step) that allows us to relate an atomic step of the program to a corresponding
step in the LTS model.

aneris-take-step

wpZ
E
4
{

E . ◦WM (X
′) −∗ Q (E)

}

◦WM (X) X ⇀M X ′ Atomic(4) 4 ∉ Val

wpZ
E
4
{

Q
}

While fairly simple, this instantiation will still allow us to prove interesting properties. In what
follows, we will show how we use Aneris to transport safety (trace) properties of TLA+ protocol
models to distributed programs that implement them. In the Appendix we also show how we, under
reasonable liveness assumptions, can prove eventual consistency [Vogels 2009] of a Conflict-Free
Replicated Data Type [Shapiro et al. 2011]. We leave a more principled approach to proving liveness
properties of distributed systems as future work.
We use the Aneris instantiation of Trillium to show an intensional refinement between imple-

mentations of two classical distributed algorithms, Two-Phase Commit (TPC) [Gray 1978] and
Single-Decree Paxos (SDP) [Lamport 1998, 2001], and their TLA+ [Lamport 1992] models. As simple
corollaries of the refinement, we show using a single modular specification (1) that clients are safe,
i.e., they do not crash, (2) a formal proof that the implementation correctly implements a protocol,
and (3) correctness of the implementation by leveraging existing correctness properties of the
models. The TLA+ specification of TPC and the TLA+ specification of SDP can both be found in the
official TLA+-examples repository on GitHub. In our formalization, we have manually translated
the TLA+ protocol specifications into STSs in Coq and proved their correctness properties.8

Note that correctness of the implementations can be established using regular Iris ghost resources
and invariants, but doing so through a refinement has the immediate benefit that the necessary
ghost theory is much simpler. The protocol logic is already encoded in the model and we “just”
need to map the state of the model to the physical state of the distributed system. The only place
we will need more sophisticated ghost theory is where the model is underspecified, e.g., in how
SDP distributes ballots among proposers. Additionally, by showing an intensional refinement, we
show that the implementation of, say, SDP actually implements the SDP protocol and not just any
other consensus protocol. While we do not show this explicitly, it also means that it is possible to
transfer other trace properties of the model to the implementation.

Both the implementation, the model, and the refinement proof for the TPC protocol can be found
in the Appendix. The development follows the same methodology as for SDP, which we describe
below; we omit network- and state-related Aneris resources and focus on the core parts relevant
for showing the refinement.

Single-Decree Paxos. The Paxos algorithm is a consensus protocol and its single-decree version
allows a set of distributed nodes to reach agreement on a single value by communicating through
message-passing over an unreliable network.
In SDP, each node in the system adopts one or more of the responsibilities of either proposer,

acceptor, or learner. A value is chosen when a learner learns that a quorum (e.g., a majority) of
acceptors have accepted a value proposed by some proposer. The algorithm works in two phases:
in the first phase, a proposer tries to convince a quorum of acceptors to promise that they will
later accept its value. If it succeeds, it continues to the second phase where it asks the acceptors to

8A user who does not aim to be as foundational could, however, trust the translation and the existing TLA+ proofs.
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fulfill their promise and accept its value. To satisfy the requirements of consensus, each attempt to
decide a value is distinguished with a unique totally-ordered round number or ballot. Each acceptor
stores its current ballot and the last value it might have accepted, if any. Acceptors will only give a
promise to proposers with a ballot greater than their current one, and in that case they switch to the
proposer’s ballot; proposers only propose values that ensure consistency, if chosen. By observing
that a quorum of acceptors have accepted a value for the same ballot, learners will learn that a value
has been chosen. We refer to Lamport [2001] for an elaborate textual description of the protocol.

Model. The TLA+ model of SDP is summarized in Figure 11. The model is parameterized over
a set of acceptors, Acceptor, and a type of values, Value, among which values are chosen. The
state of the model consists of a set of sent messages S ∈ P (PaxosMessage) and two maps
B : Acceptor → Option(Ballot) and V : Acceptor → Option(Ballot × Value) that for each
acceptor record the greatest ballot promise and the last accepted value together with its ballot,
respectively. The message type is defined using a datatype-like notation as

PaxosMessage ≜ msg1a(1) | msg1b(0, 1, >) | msg2a(1, E) | msg2b(0, 1, E)

where 0 ∈ Acceptor, 1 ∈ Ballot, E ∈ Value, and > ∈ Option(Ballot × Value).

&11E (S, &, 1) ≜ {< ∈ S | ∃0, E .< = msg1b(0, 1, Some(E)) ∧ 0 ∈ &}

HavePromised (S, &, 1) ≜ ∀0 ∈ &. ∃< ∈ S, > .< = msg1b(0, 1, >)

IsMaxVote(S, &, 1, E) ≜ ∃<0 ∈ &11E (S, &, 1), 00, 10.< = msg1b(00, 1, Some(10, E))∧

∀<′ ∈ &11E (S, &, 1).

∃0′, 1′, E ′ .<′ = msg1b(0′, 1, Some(1′, E ′)) ∧ 10 ≥ 1
′

ShowsSafeAt (S, &, 1, E) ≜ HavePromised (S, &, 1) ∧ (&11E (S, &, 1) = ∅ ∨ IsMaxVote(S, &, 1, E))

SDP-Phase1a

S,B,V ⇀SDP S ∪ {msg1a(1)} ,B,V

SDP-Phase1b
msg1a(1) ∈ S 1 > B(0) V(0) = >

S,B,V ⇀SDP S ∪ {msg1b(0, 1, >)} ,B[0 ↦→ Some(1)],V

SDP-Phase2a
�E ′ .msg2a(1, E ′) ∈ S �orum(&) ShowsSafeAt (S, &, 1, E)

S,B,V ⇀SDP S ∪ {msg2a(1, E)} ,B,V

SDP-Phase2b
msg2a(1, E) ∈ S 1 ≥ B(0)

S,B,V ⇀SDP S ∪ {msg2b(0, 1, E)} ,B[0 ↦→ Some(1)],V[0 ↦→ Some(1, E)]

Fig. 11. TLA+ specification of single-decree Paxos (SDP).

The SDP-Phase1a transition adds amsg1a(1) message to the set of sent messages; this corresponds
to the proposer asking the acceptors to not accept values for ballots smaller than 1. If a msg1a(1)
message has been sent and 1 is greater than acceptor 0’s current ballot B(0) then the SDP-Phase1b

transition updates 0’s state and sends amsg1b(0, 1, >) message where > is 0’s last accepted value, if
any. This corresponds to an acceptor responding to a proposer’s promise request.

The second phase is initiated using the SDP-Phase2a transition that corresponds to the proposer
proposing a value E for ballot 1 by sending amsg2a(1, E) message. However, the transition can only
be made if no value has previously been proposed for ballot 1 and if a quorum& of acceptors exists
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Listing 1. Acceptor implementation.

let acceptor learners addr =

let skt = socket () in

socketbind skt addr;

let maxBal = ref None in

let maxVal = ref None in

let rec loop () =

let (m, sndr) = receivefrom skt in

match acceptor_deser m with

| inl bal =>

if !maxBal = None ||

Option.get !maxBal < bal then

maxBal := Some bal;

sendto skt

(proposer_ser (bal, !maxVal)) sndr

else ()

| inr (bal, v) =>

if !maxBal = None ||

Option.get !maxBal <= bal then

maxBal := Some bal;

maxVal := Some accept;

sendto_all skt learners

(learner_ser (bal, v))

else ()

end; loop () in loop ()

Listing 2. Proposer implementation.

let proposer acceptors skt bal v =

sendto_all skt acceptors

(acceptor_ser (inl bal));

let majority =

(Set.cardinal acceptors) / 2 + 1 in

let promises =

recv_promises skt majority bal in

let max_promise =

find_max_promise promises in

let av = Option.value max_promise v in

sendto_all skt acceptors

(acceptor_ser (inr (bal, av)))

Listing 3. Client implementation.

let client addr =

let skt = socket () in

socketbind skt addr;

let (m1, sndr1) = receivefrom skt in

let (_, v1) = client_deser m1 in

let (m2, _) = wait_receivefrom skt

(fun (_, sndr2), sndr2 <> sndr1) in

let (_, v2) = client_deser m2 in

assert (v1 = v2); v1.

such that the ShowsSafeAt (S, &, 1, E) predicate holds; this predicate is at the heart of the Paxos
algorithm. Intuitively, the predicate holds if all acceptors in & have promised not to accept values
for any ballot less than 1 (HavePromised (S, &, 1)) and either none of the acceptors have accepted
any value for all ballots less than 1 or E is the value of the largest ballot that acceptors from & have
accepted. Following the SDP-Phase2b transition, acceptor 0 may accept a proposal for value E and
ballot 1 by sending amsg2b(0, 1, E) message and updating its state to reflect this fact. A value E has
been chosen when a quorum of acceptors have sent a msg2b(0, 1, E) message for some ballot 1:

Chosen(S, E) ≜ ∃1,&.�orum(&) ∧ ∀0 ∈ &.msg2b(0, 1, E) ∈ S

As follows from the theorem below, it is not possible for the protocol to choose two different values
at the same time and hence SDP solves the consensus problem.

Theorem 5.1 (Consistency, SDP model). Let ]SDP = (∅, __.None, __.None). If ]SDP ⇀
∗
SDP

(S,B,V) and both Chosen(S, E1) and Chosen(S, E2) hold then E1 = E2.

Implementation. Listing 1 and Listing 2 show implementations of the acceptor and proposer
roles, respectively. The learner implementation and utility functions such as recv_promises and
find_max_promise are found in the Appendix.

The acceptor implementation receives as input a set of learner socket addresses and an address to
communicate on. It creates a fresh socket, binds it to the address, and allocates two local references
to keep track of its current ballot and last accepted value. In a loop, it listens for the two different
kinds of messages that it may receive from the proposers. Given a phase one message, it only
considers the message if the ballot is greater than its current ballot in which case it responds with
its last accepted value. Given a phase two message, it only considers the message if the ballot is
greater than or equal to its current ballot in which case it accepts the value and broadcasts the fact
to all the learners. The learner implementation (included in the Appendix) simply waits for such a
message for the same ballot from a majority of acceptors.
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The proposer implementation receives as input a set of acceptor socket addresses, a bound socket,
a ballot number and a value to (possibly) propose in the ballot. First phase is initiated by sending
a message to all the acceptors and after receiving a response from a majority of the acceptors it
continues to the second phase. In the second phase it picks the value of the maximum ballot among
the responses; if no such value exist, it picks its own. The candidate is finally sent to all acceptors.
Note that this proposer implementation only proposes a value for a single ballot; typically,

proposers will issue new ballots when learning that no decision has been reached due to messages
being dropped or nodes crashing. Moreover, it is crucial that proposers do not issue proposals for
the same ballot. In our Coq formalization, proposer ? repeatedly issues new ballots of the form
: · |Proposer| + ? for : ∈ N by keeping track of the last issued : in a local reference.

Consensus by Refinement. To show that the SDP implementation refines the SDP model we
instantiate the Aneris logic with the model; the key part of the proof is to keep the ◦WM (X) resource
in a global invariant that ties together themodel state and the physical statewith enough information
to verify the implementation and for the refinement relation established through the adequacy
theorem to be strong enough for proving our final correctness theorem (Corollary 5.2). Under this
invariant we will modularly verify each Paxos role and each component in isolation.
To state the invariant, we use three kinds of resources corresponding to:

(1) sets of messages with predicates Msgs• (S) andMsgs◦ (<) such that

Msgs• (S) ∗ Msgs◦ (<) ⊢< ∈ S

Msgs• (S) ⊢ |⇛
(

Msgs• (S ∪<) ∗ Msgs◦ (<)
)

(2) maps, e.g., with predicatesMaxBal• (B) andMaxBal◦ (0, 1) such that

MaxBal• (B) ∗ MaxBal◦ (0, 1) ⊢ B(0) = 1

MaxBal• (B) ∗ MaxBal◦ (0, 1) ⊢ |⇛ (MaxBal• (B[0 ↦→ 1′]) ∗ MaxBal◦ (0, 1
′))

(3) ballots with predicates pending(1) and shot(1, E) such that

pending(1) ∗ shot(1, E) ⊢ False

pending(1) ∗ pending(1) ⊢ False

pending(1) ⊢ |⇛shot(1, E)

shot(1, E1) ∗ shot(1, E2) ⊢ E1 = E2

Equipped with these resource we can state the invariant:

�SDP ≜ ∃S,B,V . ◦WM (S,B,V) ∗ Msgs• (S) ∗ MaxBal• (B) ∗

MaxVal• (V) ∗ BalCoh(S) ∗ MsgCoh(S)

The first part of the invariant ties the current state of the model (S,B,V) to its logical au-
thoritative counterparts which means that by owning a fragmental part you own a piece of the
model: e.g., by owningMaxBal◦ (0, 1) you may open the invariant and conclude B(0) = 1 where
B is the current map of ballots. Intuitively, we will give acceptor 0 exclusive ownership of the
parts of the model that should correspond to its local state (through resourcesMaxBal◦ (0, 1) and
MaxVal◦ (0, >)). Similarly, by owning Msgs◦ (<) one may conclude that the message< has in fact
been added to the set of messages in the model; this predicate we will transfer when sending
physical messages corresponding to<.

In the last part of the invariant, the BalCoh(S) predicate simply requires that if msg2a(1, E) ∈ S
then shot(1, E) holds. This implies that by owning pending(1) you are the only entity that may
propose a value for ballot 1 and it may never change. The MsgCoh(S) predicate ties the physical
state of the program to the model using Aneris-specific predicates for tracking the state of the
network. This, for instance, forces acceptors and proposers to also add to the model state S any
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message they send over the network. Hence, to verify a proposer or an acceptor that sends a
message, the proof must open the invariant, use aneris-take-step to take a step in the model, and
update the corresponding logical resources to close the invariant. Following this methodology, we
give specifications of the following shape to the proposer and acceptor components:

�SDP ∗ MaxBal◦ (0,None) ∗ MaxVal◦ (0,None) ∗ . . . −∗ wp
Z
⊤ acceptor ! 0

{

False
}

�SDP ∗ pending(1) ∗ . . . −∗ wp
Z
⊤ proposer � B:C 1 E

{

True
}

omitting Aneris-specific network connectives in the precondition; the postcondition for acceptor
may be False as it does not terminate. We give a similar specification to the learner. Working in
a modular program logic, we can compose these specifications to get a single specification for a
distributed system with both proposers, acceptors, and learners. By applying the adequacy theorem
to this specification we get that the implementation indeed refines the TLA+ model of SDP.9

Consensus for the Implementation. Given the specification has been established for the implemen-
tation, we can state and prove that the consistency property holds for all executions by transporting
the consistency property of the model. Let

ChosenI (", E) ≜ ∃1,&.�orum(&) ∧ ∀0 ∈ &. ∃< ∈ ".< ∼ msg2b(0, 1, E)

whereM is a set of physical messages and< ∼ B holds when< is the serialization of the model
message B . By picking a trace relation bSDP that requires messages in the model to correspond to
messages in the program state (as implied by MsgCoh(S)):

bSDP (g, ^) ≜ ∃S. last (^) = (S, _, _) ∧messages(last (g)) ∼ S ∧ stu�ering(^)

we combine the adequacy theorem (Theorem 3.2) with our model correctness theorem (Theorem 5.1)
to obtain the following corollary that only talks about the execution of the SDP implementation.

Corollary 5.2. Let 4 be a distributed system obtained by composing = proposers, < accep-

tors, and : learners. For any ) and f , if (4; ∅) →∗ () ;f) and both ChosenI (messages(f), E1) and
ChosenI (messages(f), E2) hold then E1 = E2.

Functional Correctness. Corollary 5.2 is a meta-logic theorem (e.g., in Coq) that only talks about
the program execution and it follows from the adequacy theorem and the model correctness
theorem. However, it is not only in the meta-logic that we can exploit properties of the model to
prove properties about programs as the model is also embedded as a resource in the logic.
Listing 3 shows a client application that receives a message from two different Paxos learners

and asserts that the two values are equal; if the two values do not agree, the program crashes.
We can prove a specification for the client of the shape �SDP ∗ . . . −∗ wp client 0

{

. . .
}

. From
the adequacy theorem it follows that the program is safe, i.e., it does not crash, which means the
asserted statement must always hold. In the proof of this specification, the client will receive ghost
resources from the learners conveying that E1 and E2 have been chosen (i.e., that a quorum of
acceptors have accepted E8 ). By opening the invariant �SDP and hence obtaining the model resource
◦WM (S,B,V), we can combine this knowledge with Theorem 5.1—a property exclusively of the
model—and conclude that E1 = E2. Naturally, we may still compose a distributed system containing
the client together with proposers, acceptors, and learner nodes and derive a specification for the
full system. This single specification for the full distributed system entails both the refinement of
the TLA+ model and the safety of the programs running on all nodes.

9The full Coq proof amounts to about 1100 lines of proof scripts.
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6 RELATED WORK

Refinement-based Verification of Distributed Systems. We focus on works that, as ours, aim at
proving that concrete implementations refine models. The most closely related works are IronFleet
[Hawblitzel et al. 2017] and Igloo [Sprenger et al. 2020]. In contrast to both, our approach is
foundational: the operational semantics of the languages, the models, and the program logics are
all formally defined in Coq, and through adequacy theorems of the program logic, the end result
of a verification is a formal theorem expressed only in terms of the operational semantics of the
programming language and the model.
IronFleet uses the Dafny verifier to verify implementations and encodes the refinement of an

STS in preconditions and postconditions of programs but does not support node-local concurrency.
IronFleet uses a pen-and-paper argument for proving liveness of simple programs (programs that
consist of a simple event loop which calls terminating event handlers).

Igloo proves a particular kind of extensional safety properties. Igloo refines a high-level STS to
a more low-level STS for each node of the system. STSs are annotated with IO operations which
are used to generate IO specifications for network communications of the node in the style of
Penninckx et al. [2015]. Programs are subsequently verified against this generated specification. The
relationship between the implementation and the model considered in Igloo is a fixed relation, i.e.
producing the same IO behavior. In contrast, our work allows an arbitrary intensional refinement
relation to be specified and established between the program and the model.

Refinement in Iris. There has been earlier work on proving contextual refinements using Iris as
discussed in the introduction. Additionally, Perennial [Chajed et al. 2019] defines correctness of a
system using concurrent recovery refinement, requiring that the (possibly crashing) implementation
and specification STS has the same external I/O. This notion of refinement is much coarser and
does not allow you to prove, e.g., fair termination. Tassarotti and Harper [2019] relates concur-
rent probabilistic programs to abstract specifications denoting indexed valuations, exhibiting a
probabilistic coupling when assuming that the implementation terminates.
Our approach to termination-preserving refinement is similar in spirit to the one of Tassarotti

et al. [2017] but applies to reasoning about refinement of general concurrent programs with respect
to abstract models, not just compilation of session-typed programs. To the best of our knowledge,
the expressiveness of the logics is roughly similar. The main difference is that Tassarotti et al. [2017]
augments the Iris base logic with linear propositions, which requires modifying the definition of
resource algebra to add a transition relation. We achieve similar results without heavy modifications,
using that the authoritative state of the model is threaded through the weakest precondition, and
by putting an exclusive structure on the set of roles owned by a thread, which prevents arbitrary
weakening of the role resource, a limited form of linearity.

Besides efforts in Iris, Liang and Feng [2016, 2018] have also used refinement to show a wider
range of liveness properties of concurrent programs, including programs with partial methods,
but focusing on first-order logic and first-order programs. It would be interesting to investigate if
Trillium could serve as a basis for generalizing the verification methods of Liang and Feng [2016,
2018] to higher-order logic and higher-order programs.
Simuliris [Gäher et al. 2022] is a separation logic for fair termination-preserving contextual

refinements for concurrent program transformations that can exploit undefined behavior. In contrast
to both Iris and Trillium, Simuliris is not step-indexed, and thus does not support impredicative
invariants or higher-order ghost state, which we crucially target and rely on.10

10For example, higher-order ghost state is used to define Aneris’s socket protocols.
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Certified Abstraction Layers. A related approach to verification is certified abstraction layers [Gu
et al. 2015], in particular their concurrent variant [Gu et al. 2018], which are used to verify the
CertiKOS verified kernel [Gu et al. 2016]. Our approach is similar to that of CertiKOS in that
both approaches use models to help verify programs. The main difference is that, in the CertiKOS
approach, the person proving a refinement needs to work directly using the semantics of the
program and of the model, which are both sets of traces. Our approach, on the other hand, is to use
a program logic to do the heavy lifting of the refinement proof, which, we believe, lowers the proof
burden dramatically. Another difference is that their notion of concurrent certified abstraction
layers is more complex than our models, which are plain LTSs; but their models can be composed
together.

Paxos Verification Efforts. Paxos and its multiple variants have been considered by many ver-
ification efforts using, e.g., automated theorem provers and model checkers [Chand et al. 2016;
Jaskelioff and Merz 2005; Kellomäki 2004; Maric et al. 2017; Padon et al. 2017]. These efforts all
consider abstract models or specifications in high-level domain-specific languages of Paxos(-like)
protocols and not actual implementations in a realistic and expressive programming language.
Kragl et al. [2020] work in the Boogie verifier and programming language where they express

their high-level model, their low-level (non-distributed) imperative implementation, and the layers
in between, all in Boogie. By contrast, our effort is foundational (in the technical sense of being
formalized in Coq as mentioned above) and the implementation is carried out in the OCaml-like
programming language AnerisLang with UDP network primitives.

García-Pérez et al. [2018] devise composable specifications for a pseudo-code implementation of
Single-Decree Paxos and semantics-preserving optimizations to the protocol on pen-and-paper but
without a formal connection to their implementation in Scala; it would be interesting future work
to implement and verify the same optimizations in our setting.

7 CONCLUSION AND FUTURE WORK

In this paper, we explored how intensional refinement is indeed a viable methodology for strength-
ening higher-order concurrent and distributed separation logics to non-trivial safety and liveness
properties using Trillium and its instantiations. We have developed Fairis, a higher-order concurrent
separation logic, and we have shown how the logic gives us a methodology for proving liveness of
concurrent programs under fair scheduling assumptions. Moreover, we instantiated Trillium with a
distributed language and obtained an extension of Aneris, a distributed separation logic, that we
have used to show refinement relations between distributed systems and their TLA+ models.

Future work includes extending Trillium’s support for modular reasoning to also allow specifica-
tions of library functions to be modular with respect to the model, such that a library function can
be specified with respect to one model and client code can be specified with respect to another
model in isolation. Currently, library functions can be reasoned about modularly in Trillium using
higher-order specifications. For example, our Paxos implementation makes a call to the sendto all
function, whose specification quantifies over arbitrary socket protocols (themselves higher-order
predicates), and in turn the sendto all function internally makes a call to a function set iter, whose
specification uses impredicative quantification to support arbitrary callback functions. An impor-
tant point here, however, is that these library specifications do not interact with the model, i.e.,
execution corresponds to stuttering steps on the model side. A concrete goal would be to give a
modular specification of a fair lock and then verify termination of a client that uses the lock, but
only by relying on its specification.

Data availability statement. The Coq formalization accompanying this work is available on
Zenodo [Timany et al. 2023] and on GitHub at https://github.com/logsem/trillium.
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