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We introduce Multris, a separation logic for verifying functional correctness of programs that combine

multiparty message-passing communication with shared-memory concurrency. The foundation of our work

is a novel concept of multiparty protocol consistency, which guarantees safe communication among a set

of parties, provided each party adheres to its prescribed protocol. Our concept of protocol consistency is

inspired by the bottom-up approach for multiparty session types. However, by considering it in the context of

separation logic instead of a type system, we go further in terms of generality by supporting new notions of

implicit transfer of knowledge and implicit transfer of resources. We develop tactics for automatically verifying

protocol consistency and for reasoning about message-passing operations in Multris. We evaluate Multris on

a range of examples, including the well-known two- and three-buyer protocols, as well as a new verification

benchmark based on Chang and Roberts’s ring leader election protocol. To ensure the reliability of our work,

we prove soundness of Multris w.r.t. a low-level channel semantics using the Iris framework in Coq.
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1 Introduction
Message passing is an attractive concurrency paradigm due to its simplicity and expressiveness.

Verification of message-passing programs has thus received a lot of attention. A prominent approach

is the discipline of session types [20, 21], which is built around protocols consisting of sequences of

send (!𝜏) and receive (?𝜏) actions that specify what operations should be performed in what order

on a channel. While session type systems can automatically guarantee desirable properties such as

memory safety and deadlock freedom through type checking, they do not guarantee functional

correctness, i.e., they do not guarantee that assert statements never fail at run-time, nor that the

output of the program satisfies a specification. As a result, several systems for functional verification

based on session types have been developed [8, 13, 34, 11, 37, 47, 16, 17, 26]. We categorize these as:

(1) Whether the verification system supports message-passing communication between two
parties (binary) only, or between multiple parties (multiparty) [22, 23].
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(2) Whether the verification system supports programswhose correctness relies on the interaction
of message passing with shared memory concurrency. This is important because empirical

studies of large message-passing programs in Go and Scala [42, 45] show that programmers

often use shared memory in practice.

(3) Whether the verification system is higher-order, i.e., it supports the verification of programs

that send functions and channels as messages. This is important to reason about programs

that use delegation or are written in functional style [14].

(4) Whether the verification system comes with a foundational proof [3] of soundness that is

machine-checked by a general-purpose proof assistant such as Agda, Isabelle, Coq or Lean.

The formal soundness theorem states that if a program can be verified according to the rules

of the verification system, then it is functionally correct w.r.t. the operational semantics of

the language. This is valuable given that the literature is known to contain unsound results

about type systems for multiparty session types [38].

To date, there are verification systems that cover (1), but only support (2–4) to a limited extent; and

verification systems that cover (2–4), but not (1). The design-by-contract system by Bocchi et al.

[8] covers (1), but does not support reasoning about shared memory and higher-order programs,

and neither has a foundational soundness proof. Similarly, the refinement type system by Zhou

et al. [47] covers (1), and while it is embedded in the F* proof assistant, this is primarily to make

use of the infrastructure of F*—a machine-checked soundness proof is missing. On the other end of

the spectrum, the Actris separation logic [16, 17, 25] in the Iris framework in Coq [29, 27, 31, 28]

covers (2–4), but not (1)—Actris only supports message passing between two parties.

This paper works towards closing this gap by presenting Multris, which is (to our knowledge)

the most powerful verification system for message passing to date, and support reasoning about

multiparty message passing combined with shared memory and higher-order message passing.

Multris features a foundational soundness proof in Coq using Iris. Before describing our conceptual

contributions, we give a brief introduction to Multris.

Example and Key Features of Multris. Let us consider the following small but illustrative

multi-party program consisting of three threads that are executed in parallel:

Party A:
let 𝑙 = ref 40 in
𝑐𝐴 [𝐵] .send(𝑙); 𝑐𝐴 [𝐶] .recv();
assert(! 𝑙 == 42)

Party B:
let 𝑥 = 𝑐𝐵 [𝐴] .recv() in
𝑐𝐵 [𝐶] .send(𝑥)

Party C:
let 𝑙 = 𝑐𝐶 [𝐵] .recv() in
𝑙 ← ! 𝑙 + 2;
𝑐𝐶 [𝐴] .send()

The individual parties operate on their respective channel endpoints 𝑐𝑖 , over which they send and

receive messages to/from other parties, via 𝑐𝑖 [ 𝑗] .send(𝑣) and 𝑐𝑖 [ 𝑗] .recv(), respectively. Party A

allocates a reference containing the value 40 and sends this to Party B. Party B simply forwards the

reference to Party C. Party C increases the value of the reference and sends an acknowledgment

(the unit value) to Party A. Party A asserts that the value of the reference is 42.

Multris uses protocols that are inspired by local types [22, 23] in multiparty session types

and dependent separation protocols in Actris. The protocol ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p expresses that a

message can be sent to party 𝑖 with value 𝑣 satisfying 𝑃 , and continue with protocol p. Dually,
?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p says a message can be received from party 𝑖 with value 𝑣 satisfying 𝑃 . The

binders ®𝑥 : ®𝜏 are used to introduce logical variables. To verify the example program, we use:

p𝐴 ≜ ! [𝐵] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ?[𝐶] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. end
p𝐵 ≜ ?[𝐴] (𝑣 :Val) ⟨𝑣⟩. ! [𝐶] ⟨𝑣⟩. end
p𝐶 ≜ ?[𝐵] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [𝐴] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. end
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An important ingredient of the Multris protocols is the assertion {𝑃 }. Unlike prior work on mul-

tiparty verification [8, 47], but like Actris, 𝑃 is an arbitrary separation logic proposition instead

of a pure proposition. This means we can use it to transfer ownership of a location ℓ ↦→ 𝑥 from

one party to another. Since Multris is based on Iris, the power of the binders ®𝑥 : ®𝜏 and assertion 𝑃

allow it to handle challenging features. Particularly, Hoare triples {𝑃 } 𝑒 {𝛷} and channel ownership
assertions 𝑐 ↣ p are first-class Multris propositions and can be used in the protocol assertions,

thereby supporting higher-order programs that send functions and channels as messages

Soundness of Multris guarantees that if we can prove the Hoare triple {𝑐𝑖↣p𝑖 } Party 𝑖 {True}
for every party 𝑖 , the program as a whole cannot lead to a failing assert. A crucial condition for

soundness is protocol consistency, i.e., that the behavior of all senders and receivers matches up.

Contribution #1: Protocol consistency in separation logic. There are two well-studied

methods to ensure protocol consistency in multiparty session types: top-down [22, 23] and bottom-
up [38]. Using the top-down method, one starts with a global protocol, from which the protocols

for each party are projected. Using the bottom-up method, one starts from the protocols for each

party, and verifies all interactions. In this paper we pursue the bottom-up method because it is very

general and scales well to functional verification in separation logic.

In the context of type systems, Scalas and Yoshida [38] already pointed out that not all consistent

systems of local protocols can be projected from a global protocol, i.e., the bottom-up approach

is more general than the top-down approach. By considering a separation logic instead of a type

system, we can use the binders ®𝑥 : ®𝜏 and assertions {𝑃 } in protocols to go even further in terms of

generality—we allow for implicit transfer of information and implicit transfer of resources.
To demonstrate these notions, let us take a look at the example. Party A sends a reference (ℓ : Loc)

to Party B, who forwards that reference to Party C. Since Party B just forwards the reference to

Party C, protocol p𝐵 just says that Party B receives and forwards an arbitrary value (𝑣 :Val). That
is, protocol p𝐵 hides to Party B that it needs to forward a reference, and instead this information is

implicitly transferred from Party A to Party C. Similarly, since Party B does not need access to the

stored value of the reference, there are no assertions {𝑃 } in protocol p𝐵 . That is, the ownership
ℓ ↦→ 𝑥 is implicitly transferred from Party A to Party C.

Our key idea to enable this generality is to have a central coordinator at the level of separation

logic (our operational semantics is truly concurrent and has no physical central coordinator). During

the verification of protocol consistency, this central coordinator keeps track of the information and

takes ownership of resources that are implicitly transferred. Note that while this concrete example

is somewhat artificial, it demonstrates an important pattern—protocols should be as abstract as

possible and only expose the aspects that are relevant for the correct functioning of the party in

isolation. Our novel notion of protocol consistency allows for exactly that.

Contribution #2: Tactical support for protocol consistency. To establish protocol consis-

tency we develop a Coq tactic that explores all possible ways of executing a collection of local

protocols, and thereby reduces protocol consistency to reasoning about the protocol assertions

{𝑃 }. Our Coq tactic is based on two fundamental ideas. First, to make the automatic exploration

feasible, we use a synchronous semantics. Scalas and Yoshida [38] show that protocol consistency

is undecidable for an asynchronous semantics of simply-typed multiparty session types (with

recursion). However, since the binders ®𝑥 : ®𝜏 and assertions {𝑃 } in protocols range over arbitrary

objects in higher-order logic and may contain arbitrary Iris propositions, protocol consistency

in Multris is still undecidable. Even so, we observe that using the proof technique of framing in

separation logic protocol consistency of some non-trivial protocols can be proved automatically.

Second, to support recursive protocols, we make use of the later modality and Löb induction [36, 5].
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To verify consistency of a recursive protocol, Löb induction allows us to assume that consistency

holds one step later without the need to find a generalized induction hypothesis.

We exploit the support for framing and Löb induction in the Iris Proof Mode in Coq [31, 30] to

implement these ideas. Furthermore, using the Iris Proof Mode we provide a basic form of proof

automation through tactics for symbolic execution of programs against their protocols.

Contribution #3: Foundational verification. Multris comes with a foundational proof [3] of

soundness in the Coq proof assistant: whenever our tactics succeed, we obtain an (axiom-free) Coq

proof that says the program is functionally correct w.r.t. the operational semantics of the language.

We define the semantics of our synchronous multiparty operations through a shallow embedding

on top of the Iris HeapLang language. We then use Iris to define the channel ownership assertion
𝑐↣p and verify Multris’s novel proof rules w.r.t. that definition. Finally, we define our tactics in

such a way they produce closed proofs using Multris’s proof rules.

We emphasize that the Multris proof rules for send and recv closely resemble those of Actris—

the only difference has to do with the participant annotations [𝑖] since we are in the multiparty

instead of the binary case. We consider this similarity to be a strength of Multris—with limited

extensions to the surface logic, we can now verify multiparty programs. This is similar to the way

the protocols and typing rules of binary session types are extended to the multiparty case. Yet, the

soundness proof of Multris is fundamentally different from that of Actris. It involves a different

channel implementation, a new notion of protocol consistency (which does not exist in the binary

case), and new corresponding meta-theory and Coq tactics.

Contribution #4: Multiparty verification benchmark. Most literature on multiparty session

types have used the two- and three-buyer protocols [22, 6] as canonical benchmarks. While we do

support these benchmarks (and have mechanized them, see our accompanying artifact [18]), we

propose a new benchmark based on Chang and Robert’s [10] ring leader election algorithm.

Ring leader election is interesting as the correctness of each party depends on the full network

(the entire ring), while they are only locally aware of parts of the network (i.e., their neighbors). We

propose various dimensions to the benchmark—implementation, language, guarantees, scalability,

proof automation, and features—and indicate for which of these dimensions we can solve the

benchmark already and which provide useful directions for future research by the community.

Outline. §2 gives a tour of Multris highlighting its key features, proof rules, and novel notion of

protocol consistency (Contribution #1). §3 presents our new multiparty verification benchmark

based on ring leader election (Contribution #4). §4 describes themodel ofMultris and its foundational

soundness proof (Contribution #3). §5 describes our mechanization in Coq and the tactic for proving

protocol consistency (Contribution #2). §6 concludes with related and future work. All of our results

and examples have been mechanized in Coq [18].

Limitations. Similar to Iris (and other concurrent program logics that build on it) we verify

partial correctness, which means that we do not prove termination nor deadlock freedom. Proving

termination of concurrent programs is an open problem for higher-order logics such as Iris, even

in the absence of message passing. Deadlock freedom has only recently been investigated for

Iris-based logics in a context where the message-passing operations are primitives [26], instead of

being implemented using low-level heap operations as done in this work.

2 Tour of Multris
At a high level, Multris consists of the following components, which we briefly illustrate here and

then describe in more detail in the corresponding sections:
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§2.1 Introduces a programming language with constructs for multiparty message passing, permit-

ting programs such as the following:

let (𝑐0, 𝑐1, 𝑐2) = new_chan(3) in
fork { let 𝑥 = 𝑐1 [0] .recv() in 𝑐1 [2] .send(𝑥 + 20) } ;
fork { let 𝑥 = 𝑐2 [1] .recv() in 𝑐2 [0] .send(𝑥 + 30) } ;
𝑐0 [1] .send(100)︸              ︷︷              ︸
Send 100 to party 1

; let 𝑥 = 𝑐0 [2] .recv()︸         ︷︷         ︸
Receive 150 from party 2

in assert(𝑥 = 150)

§2.2 States our goal: a separation logic for verifying multiparty message-passing programs such

as the program above, with a soundness theorem that establishes that if {𝑃 } 𝑒 {𝑄} is derivable,
then running program 𝑒 in state 𝑃 does not crash, and 𝑄 holds in the final state. For instance, if

{True} 𝑒 {True} is proved for the program above, we establish that assert(𝑥 = 150) cannot fail.
§2.3 Extends the separation logic with channel ownership 𝑐↣𝑝 , which asserts that channel 𝑐 may

be used at protocol 𝑝 . The protocol 𝑝 specifies the message passing behavior of a channel:

Protocol for 𝑐0 : 𝑝0 ≜

Send 𝑥 : Z to 1︷              ︸︸              ︷
! [1] (𝑥 : Z) ⟨𝑥⟩.

Receive 𝑥 + 50 from 2︷           ︸︸           ︷
?[2] ⟨𝑥 + 50⟩. end

Protocol for 𝑐1 : 𝑝1 ≜ ?[0] (𝑥 : Z) ⟨𝑥⟩. ! [2] ⟨𝑥 + 20⟩. end
Protocol for 𝑐2 : 𝑝2 ≜ ?[1] (𝑥 : Z) ⟨𝑥⟩. ! [0] ⟨𝑥 + 30⟩. end

§2.4 Describes our program logic rules for updating the protocol state at each channel operation:

{𝑐0↣𝑝0} 𝑐0 [1] .send(100) {𝑐0↣𝑝′
0
} where 𝑝′

0
= ?[2] ⟨150⟩. end

§2.5 Introduces a notion of protocol consistency that ensures that demands of a receiver are always

met by the corresponding sender at the protocol level. For instance, checking that the protocols

(𝑝0, 𝑝1, 𝑝2) above are consistent involves the proof obligation (𝑥 + 20) + 30 = 𝑥 + 50.
§2.6 Presents a brute-force procedure for automatically resolving the large majority of proof effort

associated with verifying protocol consistency assertions.

These sections go into each component in more detail, and provide examples to illustrate language

and protocol features of Multris, such as mutable state, recursion, and higher-order messaging.

2.1 The Multris Programming Language
The Multris programming language supports message-passing concurrency with constructs for

creating channels, sending and receiving messages, and forking threads. The language also in-

cludes constructs for constants, arithmetic operations, control flow, pairs, functions, tagged unions,

references, and atomic operations. The grammar of the language is shown in Fig. 1.

Our multiparty channels are synchronous and implemented as an independent communication

channel between each pair of parties, as follows:

new_chan(𝑛) creates a multiparty channel with 𝑛 parties, returning the endpoints (𝑐0, ... , 𝑐𝑛−1).
𝑐𝑖 [ 𝑗] .send(𝑣) sends a value 𝑣 to party 𝑗 via endpoint 𝑐𝑖
𝑐𝑖 [ 𝑗] .recv() receives a value from party 𝑗 via endpoint 𝑐𝑖

The communication structure is such that a 𝑐𝑖 [ 𝑗] .send(𝑣) is matched by a 𝑐 𝑗 [𝑖] .recv(). These two
parties then perform a synchronous exchange when communicating: both send and receive are

blocking, and the sender blocks until the receiver has received the message. Synchronization is

only between the parties involved: the rest of the parties can continue to execute in parallel while

a subset of the parties are blocked.
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𝑒 ::= new_chan(𝑛) | 𝑐 [𝑖] .send(𝑣) | 𝑐 [𝑖] .recv() | fork {𝑒} | (Message passing concurrency)

𝑛 | true | false | 𝑒 + 𝑒 | 𝑒 − 𝑒 | 𝑒 < 𝑒 | ... (Constants and operators)

assert(𝑒) | let 𝑥 = 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | (Control flow)

(𝑒, 𝑒) | fst 𝑒 | snd 𝑒 | 𝜆𝑥. 𝑒 | 𝑒 𝑒 | rec f 𝑥 . 𝑒 (Pairs and functions)

inl 𝑒 | inr 𝑒 | match 𝑒 with inl 𝑒 ⇒ 𝑒; inr 𝑒 ⇒ 𝑒 end | (Tagged unions)

ref 𝑒 | free 𝑒 | ! 𝑒 | 𝑒 ← 𝑒 | Xchg 𝑒 𝑒 (References and atomics)

Fig. 1. The grammar of the Multris programming language.

The fork {𝑒} construct forks a new thread to execute 𝑒 . The assert(𝑒) construct asserts that
the expression 𝑒 evaluates to true. In Coq, the language semantics is defined with a small-step

operational semantics with a thread pool, and the assert(𝑒) construct is made to get stuck if 𝑒

evaluates to false. This way, if we prove that a program does not get stuck, then we have also

proved that all assertions in the program are true.

The construct rec f 𝑥 . 𝑒 is like 𝜆𝑥 . 𝑒 , but allows the body of the function 𝑒 to refer to itself

using the name f. The constructs ref 𝑣 and free 𝑟 allocate and deallocate a mutable reference cell,

respectively. The construct ! 𝑟 reads the value of a reference cell, and 𝑟 ← 𝑣 writes a value to a

reference cell. The construct Xchg 𝑟 𝑣 atomically sets the value of reference 𝑟 to 𝑣 and returns the

original value of 𝑟 . References can be freely mixed with message passing, as shown in the following

variant of the preceding example:

let (𝑐0, 𝑐1, 𝑐2) = new_chan(3) in
fork { let ℓ = 𝑐1 [0] .recv() in ℓ ← ! ℓ + 20; 𝑐1 [2] .send(ℓ) } ;
fork { let ℓ = 𝑐2 [1] .recv() in ℓ ← ! ℓ + 30; 𝑐2 [0] .send() } ;
let ℓ = ref 100 in 𝑐0 [1] .send(ℓ); 𝑐0 [2] .recv(); assert(! ℓ = 150)

This program creates a reference cell ℓ with value 100, and sends ℓ to party 1. Party 1 increments

the value of ℓ by 20 and forwards the reference ℓ to party 2. Party 2 increments ℓ by 30 and sends

an empty message to party 0, as 0 already knows about ℓ . Finally, party 0 asserts that the value

stored in ℓ is 150. Note that the assertion crucially relies on the synchronization of the message

passing, as otherwise it would be possible for the increment of party 1 to get lost, if party 2 read

the value of ℓ before party 1 incremented it.

2.2 The Multris Logic and Adequacy Theorem
Our goal is to develop a separation logic that lets us prove correctness of message-passing programs,

such as the example in the previous section. Our program logic will be presented in weakest-

precondition style, from which Hoare triples can be defined as {𝑃 } 𝑒 {𝛷} ≜ 𝑃 ⊢ wp 𝑒 {𝛷}. The
Multris separation logic has an adequacy theorem that states that if we can derive a weakest

precondition assertion wp 𝑒 {𝑣 . 𝜙 (𝑣)}, where 𝜙 (𝑣) is a purely logical assertion, then the program 𝑒

will not crash, and any returned value 𝑣 will satisfy the predicate 𝜙 (𝑣). This is formally stated as:

Theorem 2.1 (Multris Adeqacy). A proof of wp 𝑒 {𝑣 . 𝜙 (𝑣)} implies that 𝑒 is safe, i.e., if
( [𝑒], ∅) −→∗t ( [𝑒0 ... 𝑒𝑛], ℎ), then for each 𝑖 ≤ 𝑛 either 𝑒𝑖 is a value or (𝑒𝑖 , ℎ) can step. Furthermore, any
returned value 𝑣 of 𝑒 satisfies 𝜙 (𝑣).
The notion of safety depends on the operational semantics (®𝑒, ℎ) −→∗t (®𝑒′, ℎ′) of the language,

which is a small step semantics over a thread pool ®𝑒 and a heap ℎ. This semantics has been defined in

such a way that invalid operations, such as sending a message to a party that is not on the channel,
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Separation logic propositions:

𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 (Propositional logic)

| ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑥 = 𝑦 (Higher-order logic with equality)

| 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 (Separation logic)

| ⊲ 𝑃 | wp 𝑒 {𝛷} (Step indexing and weakest preconditions)

| ℓ ↦→ 𝑣 | 𝑐↣p (Heap cell and channel ownership)

Basic weakest precondition rules:
Wp-pure-step

𝑒1 {pure 𝑒2 wp 𝑒2 {𝛷}
wp 𝑒1 {𝛷}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-val

𝛷 𝑣

wp 𝑣 {𝛷}
−−−−−−−−−−∗

Wp-wand

wp 𝑒 {𝛷} (∀𝑣 . 𝛷 𝑣 −∗ Ψ 𝑣)
wp 𝑒 {Ψ}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-rec

wp 𝑒 [𝑥 := 𝑣] [𝑓 := rec f 𝑥 . 𝑒] {𝛷}
⊲wp (rec f 𝑥 . 𝑒) 𝑣 {𝛷}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-bind

wp 𝑒
{
𝑣 .wp 𝐾 [𝑣] {𝛷}

}
wp 𝐾 [𝑒] {𝛷}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Löb

⊲ 𝑃 −∗ 𝑃
𝑃

−−−−−−−−−

Heap manipulation rules:

Wp-alloc

wp ref 𝑣 {ℓ . ℓ ↦→ 𝑣}
−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-load

ℓ ↦→ 𝑣

wp ! ℓ {𝑤.𝑤 = 𝑣 ∗ ℓ ↦→ 𝑣}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-store

ℓ ↦→ 𝑣

wp ℓ ← 𝑤 {ℓ ↦→ 𝑤}
−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-free

ℓ ↦→ 𝑣

wp free ℓ {True}
−−−−−−−−−−−−−−−−−−−−−∗

Fig. 2. The basic rules of separation logic.

or running assert(𝑏) where 𝑏 is false, will cause the program to get stuck. These conditions are

therefore not considered safe, and the soundness theorem guarantees that they will not happen if

the program is verified using the weakest precondition logic. Ultimately, the adequacy theorem

captures that the Multris weakest preconditions (and derived Hoare triples) are sound with respect

to the operational semantics.

The Multris separation logic is built on Iris [29, 27, 28, 31, 32], and as such inherits many of its

features. The basic rules of Iris are shown in Fig. 2, and include rules for reasoning about weakest

preconditions and mutable references of the heap via ℓ ↦→ 𝑣 . The star on the right side of an

inference rule
𝑃
𝑄
∗ indicates that the rule is a separating implication inside the separation logic,

that is, ⊢ (𝑃 −∗ 𝑄) holds true. This is stronger than 𝑃
𝑄

without a star, which indicates a meta-level

implication (⊢ 𝑃) ⇒ (⊢ 𝑄). Multiple premises are joined via separating conjunction, that is
𝑃 𝑄

𝑅
∗

corresponds to ⊢ ((𝑃 ∗𝑄) −∗ 𝑅). The only rule without a star is the Löb rule, where the stronger

rule
⊲𝑃−∗𝑃

𝑃
∗ does not hold. Even so, the given Löb rule is strong enough for all our use cases. We

refer the reader to Jung et al. [28] for a detailed explanation of the rules of Iris.

The primary new proposition added to Iris by Multris is the channel ownership assertion:

𝑐↣p

This assertion states that we own the channel 𝑐 and that the channel is currently ready to be used

according to the protocol p. We will describe these protocols next.
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2.3 The Multris Protocol Language
The Multris protocol language allows specifying the expected message-passing behavior of a

channel. A protocol is a sequence of messages that parties can send and receive on a channel. The

protocols for the example program in §2.1 are shown below:

Protocol for 𝑐0 : 𝑝0 ≜ ! [1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ?[2] ⟨()⟩{ℓ ↦→ 𝑥 + 50}. end
Protocol for 𝑐1 : 𝑝1 ≜ ?[0] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [2] ⟨ℓ⟩{ℓ ↦→ 𝑥 + 20}. end
Protocol for 𝑐2 : 𝑝2 ≜ ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [0] ⟨()⟩{ℓ ↦→ 𝑥 + 30}. end

The protocol for 𝑐0 sends to party 1 (indicated by ![1]) a message containing ℓ (indicated by ⟨ℓ⟩)
and transfers ownership over ℓ as well (indicated by {ℓ ↦→ 𝑥}). In the second step of the protocol, it

expects to receive from party 2 (indicated by ?[2]) an empty message (indicated by ⟨()⟩), along
with the ownership of the reference ℓ , that it initially sent to party 1, which has been incremented

by 50 (indicated by {ℓ ↦→ 𝑥 + 50}). The protocols for 𝑐1 and 𝑐2 are similar, but with different parties

and different increments.

The full grammar of the protocol language is as follows.

p ∈ iProto ::= ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p | ?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p | end | 𝜇𝑥 . p
The meaning of these protocols is:

• ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p: We must send a message to party 𝑖 with value 𝑣 . The message must

satisfy the precondition 𝑃 . The message is followed by a continuation protocol p. The binders
®𝑥 : ®𝜏 are used to introduce logical variables that can be used in 𝑣 and 𝑃 as well as in the

continuation protocol p. When verifying a program, the proof of the sender may choose any
values of these logical variables.

• ?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p: We can receive a message from party 𝑖 , which will have value 𝑣 satisfying

condition 𝑃 . The continuation protocol is p. The binders ®𝑥 : ®𝜏 work similarly to the send case,

except that the receiver must be verified to work for all values of these variables.
• end: The end of the protocol.

• 𝜇𝑥 . p: A recursive protocol. The protocol can refer to itself using the name 𝑥 . The logic also

supports recursive protocols with parameters (i.e., fixpoints over 𝐴→ iProto).

The Multris protocol language fully integrates with the surrounding higher-order separation logic.

As a result, we can leverage functionality of higher-order logic, such as pattern matching, allowing

for branching structures inside the protocols, and define protocols such as the following:

&[𝑖]
{
inl( ®𝑥1 : ®𝜏1)⟨𝑣1⟩{𝑃1} ⇒ p1
inr( ®𝑥2 : ®𝜏2)⟨𝑣2⟩{𝑃2} ⇒ p2

}
≜

?[𝑖] ( ®𝑥 : ®𝜏1 + ®𝜏2)
⟨match ®𝑥 with inl ®𝑥1 ⇒ inl 𝑣1; inr ®𝑥2 ⇒ inr 𝑣2 end⟩
{match ®𝑥 with inl ®𝑥1 ⇒ 𝑃1; inr ®𝑥2 ⇒ 𝑃2 end}.
match ®𝑥 with inl ®𝑥1 ⇒ p1; inr ®𝑥2 ⇒ p2 end

Here, the binders use a sum-type, which dictates whether we receive inl or inr. Depending on the

projection of the binders, we either receive 𝑃1 or 𝑃2 and continue as either p1 or p2. We leverage

this type of branching protocol in §3.1.

We now cover how the rules of the Multris logic guarantee that the channel endpoints comply

with their given protocols.

2.4 The Multris Message-Passing Logic
The key rules of Multris that allow one to reason about message passing are displayed in Fig. 3:

Rule Wp-new: This rule states that if we create a new multiparty channel with 𝑛 > 0 parties using

new_chan(𝑛), we can pick 𝑛 consistent protocols (p0, ... , p𝑛−1) and get an 𝑛-ary separation
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Wp-new

consistent (p0, ... , p𝑛−1) 𝑛 > 0

wp new_chan(𝑛) {(𝑐0, ... , 𝑐𝑛−1). 𝑐0↣p0 ∗ · · · ∗ 𝑐𝑛−1↣p𝑛−1}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-fork

wp 𝑒 {True}
wp fork {𝑒} {True}
−−−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-send

𝑐↣ ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p 𝑃 [®𝑥 := ®𝑡]
wp 𝑐 [𝑖] .send(𝑣 [®𝑥 := ®𝑡])

{
𝑐↣p[®𝑥 := ®𝑡]

}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

chan-sub

𝑐↣p1 p1 ⊑ p2

𝑐↣p2
−−−−−−−−−−−−−−−−−−−−−−−∗

Wp-recv

𝑐↣?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p
wp 𝑐 [𝑖] .recv()

{
𝑤. ∃®𝑡 . 𝑤 = 𝑣 [®𝑥 := ®𝑡] ∗ 𝑐↣p[®𝑥 := ®𝑡] ∗ 𝑃 [®𝑥 := ®𝑡]

}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ Sub-end

end ⊑ end

Sub-send

∀ ®𝑥2 : ®𝜏2. 𝑃2 −∗ ∃ ®𝑥1 : ®𝜏1. (𝑣1 = 𝑣2) ∗ 𝑃1 ∗ ⊲(p1 ⊑ p2)
! [𝑖] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. p1 ⊑ ! [𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. p2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Sub-recv

∀ ®𝑥1 : ®𝜏1. 𝑃1 −∗ ∃ ®𝑥2 : ®𝜏2. (𝑣1 = 𝑣2) ∗ 𝑃2 ∗ ⊲(p1 ⊑ p2)
?[𝑖] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. p1 ⊑ ?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. p2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fig. 3. The Multris rules for multiparty message-passing concurrency.

conjunction of channel ownership assertions 𝑐0↣p0 ∗ · · · ∗ 𝑐𝑛−1↣p𝑛−1 for the new channel

endpoints. We cover protocol consistency in the following section, and remark that all

protocols shown thus far are consistent.

Rule Wp-send: This rule states that if we have a channel 𝑐 with channel ownership assertion

𝑐↣ ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p, then we can choose an instantiation ®𝑥 := ®𝑡 of the binders, and the

value 𝑣 [®𝑥 := ®𝑡] must then match the value specified in the protocol. We must also provide a

proof that the precondition 𝑃 [®𝑥 := ®𝑡] holds, and the channel ownership assertion will then

be updated to 𝑐↣p[®𝑥 := ®𝑡].
Rule Wp-recv: This rule states that if we have a channel 𝑐 with channel ownership assertion

𝑐↣?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p, then we can receive a value𝑤 from the channel, and we learn that

the value𝑤 is equal to the value 𝑣 [®𝑥 := ®𝑡] specified by the protocol, for some instantiation

®𝑥 := ®𝑡 of the binders. We also obtain the condition 𝑃 [®𝑥 := ®𝑡], and the channel ownership

assertion will be updated to 𝑐↣p[®𝑥 := ®𝑡].
Rule Wp-fork: This rule states that to fork a thread 𝑒 , it is enough to verify that 𝑒 does not crash.

Rule chan-sub: This rule captures that for any owned channel endpoint with protocol p1, we can
instead use its subprotocol p2 (where p1 ⊑ p2).

Rules Sub-send, Sub-recv, Sub-end: These rules capture how to prove the subprotocol relation. We

can strengthen sending protocols, e.g., ! [𝑖] (𝑖 : Z) ⟨𝑖⟩{𝑖 < 42}. p ⊑ ! [𝑖] (𝑖 : Z) ⟨𝑖⟩{𝑖 < 40}. p,
and conversely weaken receiving protocols. We can also use these rules to prematurely

“satisfy” sending protocols. For example, by giving up ownership of ℓ ↦→ 42, we can prove

! [𝑖] (ℓ : Loc, 𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. p ⊑ ! [𝑖] ⟨ℓ⟩. p
With these rules we can prove the weakest precondition for the program shown in §2.2, given

the protocols shown in §2.3. The proof follows almost entirely from symbolic execution, with the

exception of the protocol consistency, which we will cover in the following section.
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𝑝0 ≜ ! [1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ?[2] ⟨()⟩{ℓ ↦→ 𝑥 + 50}. end
𝑝1 ≜ ?[0] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [2] ⟨ℓ⟩{ℓ ↦→ 𝑥 + 20}. end
𝑝2 ≜ ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [0] ⟨()⟩{ℓ ↦→ 𝑥 + 30}. end

𝑐0 sends to 𝑐1 (message: ℓ , resources: ℓ ↦→ 𝑥 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

𝑝′
0
≜ ?[2] ⟨()⟩{ℓ ↦→ 𝑥 + 50}. end

𝑝′
1
≜ ! [2] ⟨ℓ⟩{ℓ ↦→ 𝑥 + 20}. end

𝑝2 ≜ ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [0] ⟨()⟩{ℓ ↦→ 𝑥 + 30}. end
𝑐1 sends to 𝑐2 (message: ℓ , resources: ℓ ↦→ 𝑥 + 20)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

𝑝′
0
≜ ?[2] ⟨()⟩{ℓ ↦→ 𝑥 + 50}. end

𝑝′′
1

≜ end

𝑝′
2
≜ ! [0] ⟨()⟩{ℓ ↦→ 𝑥 + 50}. end
𝑐2 sends to 𝑐0 (message: ( ) , resources: ℓ ↦→ 𝑥 + 50)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

𝑝′′
0

≜ end

𝑝′′
1

≜ end

𝑝′′
2

≜ end

Fig. 4. An example of the Multris protocol consistency simulation.

Note that the rules of Multris resemble those of (binary) Actris. They are generalized by adding

participant annotations [𝑖], similarly to how binary session types are extended to the multiparty

case. The differences are twofold. First, Wp-new involves our novel notion of protocol consistency,

which does not exist in the binary case. Second, the model (§4) is fundamentally different.

2.5 Multris Protocol Consistency
When a new multiparty channel of size 𝑛 is created, we choose protocols (𝑝0, ... , 𝑝𝑛−1) for each
party of the channel. The verifier must ensure that the protocols (𝑝0, ... , 𝑝𝑛−1) are consistent, i.e.,
that the behaviors of the senders and corresponding receivers match up. Our notion of protocol

consistency is very general, so we will first consider an example.

Protocol consistency is checked by simulating the possible interactions on the abstract protocol

level. Consider the simulation for the preceding example protocols (𝑝0, 𝑝1, 𝑝2) shown in Fig. 4. For

the initial protocols, there is only one possible interaction: 𝑐0 sends to 𝑐1. In this interaction, 𝑐0
sends the value of ℓ to 𝑐1, as well as the ownership of the reference cell ℓ . Once this step has been

taken, the new protocol for 𝑐0 is 𝑝
′
0
, and the new protocol for 𝑐1 is 𝑝

′
1
, as shown in Fig. 4. The new

protocol for 𝑐2 remains the same, as it is not involved in this interaction.

For the new protocols, 𝑐1 sends to 𝑐2. In this interaction, 𝑐1 sends an empty message to 𝑐2. In

order for the resource assertions to match, we must instantiate the logical variables in the receiver’s

protocol 𝑝2 with ℓ and 𝑥 + 20. In general, in each step we must show that for all possible choices of

the logical variables in the sender’s protocol, there exists an instantiation of the receivers protocol

that makes the messages and resource assertions match up. In fact, the resources need not match

up exactly, but the sender’s resource assertion must imply the receiver’s resource assertion. In the

last step, the protocols match trivially, and all parties have completed their interactions.
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In this particular example, there was always only one possible interaction at each step, but in

general, there may be multiple possible interactions, and the verifier must show that all possible

interactions are consistent (e.g., if party 0 sends to 1, and party 2 sends to 3, then it is non-

deterministic which one happens first). It is important to note that protocol consistency is a purely

protocol-level notion, and is independent of the actual program that is being verified.

The general case of protocol consistency. In the general case we have a set of protocols

(𝑝0, ... , 𝑝𝑖 , ... , 𝑝 𝑗 , ... , 𝑝𝑛−1) where 𝑖 and 𝑗 have protocols that are ready to communicate:

𝑝𝑖 = ! [ 𝑗] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. 𝑝′𝑖 𝑝 𝑗 = ?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. 𝑝′𝑗
In this case a communication between 𝑖 and 𝑗 could happen. Therefore, we need to ensure that for
all choices of ®𝑥1 : ®𝜏1, there exists a choice of ®𝑥2 : ®𝜏2 such that:

(1) The message 𝑣1 that the sender 𝑖 sends is consistent with the message 𝑣2 that the receiver 𝑗

expects.

(2) The condition 𝑃1 that the sender guarantees implies the condition 𝑃2 that the receiver expects.

(3) The continuation protocols 𝑝′𝑖 and 𝑝′𝑗 remain consistent with the new set of protocols

(𝑝0, ... , 𝑝′𝑖 , ... , 𝑝′𝑗 , ... , 𝑝𝑛−1) after the communication has happened.

Implicit transfer of information. We allow the number of binders and their types to differ

between the sender and receiver. We merely insist that for every choice of ®𝑡1 instantiating ®𝑥1 : ®𝜏1,
there exists a choice of ®𝑡2 instantiating ®𝑥2 : ®𝜏2 such that the messages match up, the conditions

are implied, and the continuation protocols are consistent. This allows, for instance, to match a

concrete sender with a parametric receiver:

𝑝0 ≜ ! [1] ⟨20⟩. end 𝑝1 ≜ ?[0] (𝑥 : Z) ⟨𝑥⟩{𝑥 > 0}. end

Binders introduced by senders are available for use in instantiating the binders of receivers in the

entirety of the continuation protocol, not just in the receiver that is the target of the send. This

allows for implicit transfer of information, such as in the following example:

p0 ≜ ! [1] (𝑥 : Z) ⟨𝑥⟩. ?[2] ⟨𝑥 + 2⟩. end
p1 ≜ ?[0] (𝑣 :Val) ⟨𝑣⟩. ! [2] ⟨𝑣⟩. end
p2 ≜ ?[1] (𝑥 : Z) ⟨𝑥⟩. ! [0] ⟨𝑥 + 2⟩. end

Here, 0 sends a number 𝑥 to 1, although 1 receives it as a value. However, the protocol consistency

retains knowledge of the true value of 𝑣 = 𝑥 , and so 2 can receive it as such.

Implicit transfer of resources. We allow accumulating resources from previous interactions.

Once a communication between ! [ 𝑗] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. 𝑝′𝑖 and ?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. 𝑝′𝑗 has happened,
we retain any leftover resources of 𝑃1 that were not used to satisfy 𝑃2. This allows for implicit
transfer of resources, such as in the example from §1:

p0 ≜ ! [1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ?[2] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. end
p1 ≜ ?[0] (𝑣 :Val) ⟨𝑣⟩. ! [2] ⟨𝑣⟩. end
p2 ≜ ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [0] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. end

Here, the resource ℓ ↦→ 𝑥 that the sender 0 yields is implicitly transferred to 2 through 1, even

though 1’s protocol does not mention neither ℓ , 𝑥 , nor ℓ ↦→ 𝑥 . This is sound as the protocol

consistency retains knowledge of the true value of 𝑣 = ℓ along with the resource ℓ ↦→ 𝑥 through

the exchanges with 1.
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Soundness of implicit transfer. The reader may wonder why implicit transfer of resources is

sound. To understand this, let us first consider where the resources come from, and where they go.

The resources are initially provided by the sender, when the sender sends a message and applies the

Wp-send rule. The Wp-send rule requires that the precondition 𝑃 holds, and the sender must prove

this. Second, the Wp-send rule requires a channel ownership assertion 𝑐↣ ! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p.
The channel ownership assertion holds a reference to the channel invariant. The soundness proof

for the Wp-send rule places the resources 𝑃 in the channel invariant, and the channel invariant is

updated to reflect the new state of the channel.

Some time later, a receiver receives a message, and applies the Wp-recv rule. The key to the

soundness of the Wp-recv rule is that the channel invariant also stores a witness of consistent ®p
for the set of protocols ®p that the currently active parties are following. Because of the way

consistent ®p works, the resources p can be used to take a simultaneous step in the protocol of

the sender and the receiver, and obtain consistent ®p′ for the new set of protocols, as well as the

resources 𝑄 that are returned to the receiver.

In particular, note that 𝑃 is not necessarily equal to 𝑄 (if they were equal, that would be explicit
transfer of resources). Instead, the consistent ®p witness can keep (part of) 𝑃 in the channel

invariant, and conversely, consistent ®p can give additional resources to a subsequent receiver

that were not explicitly sent by the corresponding sender (but were implicitly sent by a previous

sender). The proof obligations that have to be satisfied when proving consistent ®p ensure that

the resources put in the channel invariant and taken out of the channel invariant are always

consistent with the trace of communication that has happened so far, and all possible interleavings

of communication that could happen in the future.

Recursive protocols. We allow for consistency proofs of recursive protocols using Löb induction.

If during the course of the consistency proof, we loop back to the initial set of protocols, Löb

induction allows us to immediately finish the proof. This may strike the reader as wildly unsound:

if our aim is to prove that an initial set of protocols is consistent, then how can we assume that
they are consistent, simply by the fact that we revisit them? The key is that we are proving partial
correctness: we are proving that if a communication happens, then the sender and receiver will

behave correctly. We are not proving that a communication will happen, nor that the protocol will
terminate. Even so, this is highly useful if we want to verify services that loop indefinitely. This is a

common pattern in separation logic, where one proves that a program does not crash, and satisfies

its postcondition if it terminates, but does not prove termination. The support for recursion lets us

prove consistency of protocols, such as the following recursive variant of the above protocol:

p0 ≜ 𝜇𝑝. ! [1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ?[2] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. 𝑝
p1 ≜ 𝜇𝑝. ?[0] (𝑣 :Val) ⟨𝑣⟩. ! [2] ⟨𝑣⟩. 𝑝
p2 ≜ 𝜇𝑝. ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ! [0] ⟨()⟩{ℓ ↦→ (𝑥 + 2)}. 𝑝

Protocol consistency rules. The consistency of protocols is formally defined by the rules in

Fig. 5. The key is the second line of the premise for proving dual ®p 𝑖 𝑗 :
∀ ®𝑥1 : ®𝜏1 . 𝑃1 −∗ (∃ ®𝑥2 : ®𝜏2. 𝑣1 = 𝑣2 ∗ 𝑃2 ∗ ⊲ consistent (®p[𝑖 := p1] [ 𝑗 := p2]))

This rule allows the binders to differ, because we only need to prove that for all choices of sender

binders ®𝑥1 : ®𝜏1, there exists a choice of receiver binders ®𝑥2 : ®𝜏2. The sender’s proposition 𝑃1 is available
to prove the receiver’s proposition 𝑃2, and to prove the continuation protocols consistent. The later

modality ⊲ is used for Löb induction to prove the consistency of recursive protocols.

The present ®p 𝑖 obligation exists to prevent parties from trying to synchronize with non-existent

parties, which evidently result in an illegal operation on trying to access a non-existent buffer.
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(∀𝑖 . present ®p 𝑖) (∀𝑖, 𝑗 . dual ®p 𝑖 𝑗)
consistent ®p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
®p𝑖 = 𝑎[ 𝑗] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p −∗ 𝑗 ∈ ®p

present ®p 𝑖
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

®p𝑖 = ! [ 𝑗] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. p1 −∗ ®p𝑗 = ?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. p2 −∗
∀ ®𝑥1 : ®𝜏1. 𝑃1 −∗ (∃ ®𝑥2 : ®𝜏2. 𝑣1 = 𝑣2 ∗ 𝑃2 ∗ ⊲ consistent (®p[𝑖 := p1] [ 𝑗 := p2]))

dual ®p 𝑖 𝑗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fig. 5. The Multris rules for protocol consistency.

2.6 Protocol Consistency Proof Automation
Proving protocol consistency is a non-trivial part of verifying multiparty programs in Multris. We

develop an effective (albeit naïve) brute-force procedure to resolve such consistency assertions. The

protocol consistency proof obligation includes separation logic entailment, and is thus inherently

undecidable. When the procedure fails on a sub-goal, the user must make some progress manually

before re-invoking the procedure on the remainder of the sub-goal. The majority of all protocol

consistency proof obligations in this paper were proved automatically, with only a few steps

requiring manual reasoning, such as unfolding recursive protocols and applying Löb induction.

The procedure is as follows. For any protocol system ®p the procedure iterates over each pair

𝑖, 𝑗 ∈ ®p. It first checks whether the pair synchronizes; i.e., whether 𝑖 is a sender to 𝑗 , and vice versa if
𝑗 is a receiver from 𝑖 . For every unsynchronized pair, the proof is complete. For every synchronized

pair, we proceed as follows:

(1) Introduce binders ®𝑥1 : ®𝜏1 and resources 𝑃1 of the sender.

(2) Instantiate binders ®𝑥2 : ®𝜏2 of receiver with evars, delegating concrete instantiation to term

unification in the subsequent steps.

(3) Resolve obligation value equality 𝑣1 = 𝑣2 via term unification; yield a sub-goal on failure.

(4) Resolve resource obligation of receiver 𝑃2 via framing; yield a sub-goal on failure. Framing

tries to resolve the assertion 𝑃2 by searching for a unifiable resource in the proof context

𝑅0 ∗ ... ∗ 𝑅𝑛 of previously introduced assertions (via Iris’s iFrame in Coq).

(5) Update protocols of synchronized pairs to their tails p1 and p2 and recursively resolve

consistency, retaining any resources of 𝑃1 not used to resolve 𝑃2.

The procedure lets us automatically resolve intricate protocol consistency assertions, such as the

example for implicit resource transfer in §2.5. First we consider the synchronization between party

0 and 1. The binders of party 0, ℓ and 𝑥 , are introduced alongside the resource ℓ ↦→ 𝑥 . The binder of

party 1, 𝑣 , is instantiated with an evar, and concretely instantiated as ℓ (up to implicit coercion from

reference to value) through term unification when resolving ℓ = 𝑣 . The resource obligations of

party 1 is True and so we retain ℓ ↦→ 𝑥 . The next synchronization we need to consider is between

party 1 and 2. We instantiate ℓ when resolving the value equality, as before. We resolve the resource

obligation ℓ ↦→ 𝑥 via term unification between the introduced 𝑥 of party 0, and the evar 𝑥 of party

2. The last synchronization between party 2 and 0 is trivial, as it aligns syntactically.

Despite its simplicity, the automation procedure was sufficient to automatically resolve nearly

all of the proof effort associated with protocol consistency assertions presented in this paper.

The crux of the automation procedure lies in unification for instantiating binders and framing of

resources: while binders and resources may not immediately align syntactically, they often align

up to unification after several synchronization steps. Our implementation leverages the Iris Proof

Mode [32, 30] embedded in the Coq proof assistant.
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3 Multiparty Verification Benchmark: Ring Leader Election
We demonstrate the expressive power of Multris by verifying a variant of Chang and Roberts’s [10]

ring leader election algorithm (§3.1). We then discuss the limitations of our approach and propose

a ring leader election benchmark challenge for the verification community (§3.2).

The key aspects of leader election are leader uniqueness and leader agreement: only one leader

is elected, and all participants agree on the leader. These properties are challenging to verify as

they require reasoning about the global state of the system, while each participant only interacts

locally. We show that our protocol consistency relation is well suited to verify both properties. We

also show that using separation logic, there is an elegant way to encode both properties. For leader

uniqueness, we let the local protocols compete for some exclusive resource, and guarantee that

only one participant succeeds, as a result of protocol consistency. Similarly, for leader agreement,

we guarantee that any subsequent protocol that depends on the locally elected leader is still sound.

3.1 Verifying Chang and Roberts’s Ring Leader Election Algorithm
Chang and Robert’s [10] ring leader election algorithm assumes that 𝑛 participants, with unique IDs

𝑖𝑑0 ... 𝑖𝑑 (𝑛−1) , are arranged in a ring. Every participant 𝑖 receives messages from counter-clockwise

participant (𝑖 − 1)%𝑛, and sends messages to clockwise participant (𝑖 + 1)%𝑛. The algorithm

deterministically elects the participant with the highest numerical ID max(𝑖𝑑0, ... , 𝑖𝑑 (𝑛−1) ) as the
leader. We present a simplified version of the algorithm that allows at most one ongoing election.

The version supporting multiple concurrent elections is left for future work as part of our proposed

benchmark (§3.2).

The simplified algorithm is as follows. There are two types of messages: election(𝑘) messages

and elected(𝑘) messages. Election(𝑘) messages received by participant 𝑖 are compared to its ID and:

(1.1) If 𝑘 > 𝑖𝑑𝑖 , send election(𝑘), else

(1.2) If 𝑘 = 𝑖𝑑𝑖 , we are elected, send elected(𝑖𝑑𝑖 ), else

(1.3) If 𝑘 < 𝑖𝑑𝑖 , send election(𝑖𝑑𝑖 ).

Received elected(𝑘) messages received by participant 𝑖 are compared to its ID and:

(2.1) If 𝑘 = 𝑖𝑑𝑖 , terminate by returning 𝑘 , else

(2.2) If 𝑘 ≠ 𝑖𝑑𝑖 , send elected(𝑘), and terminate by returning 𝑘 .

An election is initiated when a participant 𝑖 sends an election(𝑖𝑑𝑖 ) message clockwise.

To illustrate how the algorithm works, let us consider a concrete example with 4 participants,

where each participant’s ID corresponds to its position in the ring, i.e., 𝑖𝑑𝑖 = 𝑖 . Let participant 0
initiate the election by sending the initial election(0) message, which is iteratively increased through

case (1.3) until the election(3) message is sent by participant 3. The election(3) message is passed

through the ring via case (1.1), and eventually returns to participant 3, resulting in case (1.2), where

participant 3 sends the elected(3) message. Similarly, the elected(3) message is passed through the

ring via case (2.2), until it returns to participant 3, resulting in case (2.1), concluding the algorithm.

In the rest of this section we certify leader uniqueness and agreement of Chang and Roberts’s

algorithm. We do this by giving a topology-agnostic implementation and specification for the indi-

vidual participants, and a proof of two examples using the aforementioned concrete configuration

with 4 participants. A key step is to define local Multris protocols for the individual participants

(based on the prose algorithm above), which are agnostic to the topology of the ring. By proving

that a system consisting of the local protocol for each participant is consistent, we can leverage our

adequacy theorem to obtain leader uniqueness and agreement.

Participant processes. We encode election(𝑖) messages as inl 𝑖 and elected(𝑖) messages as inr 𝑖 .
We write i𝑙 and i𝑟 for the left and right neighbors of participant 𝑖 , respectively. They are defined
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as i𝑙 ≜ (𝑖 + 1)%𝑛 and i𝑟 ≜ (𝑖 − 1)%𝑛, for the given ring of size 𝑛. Note that the participants do not

need to be aware of the size 𝑛 of the ring, they just need to know the positions of their neighbors.

The leader election process for each participant is implemented as follows:

process 𝑐 𝑖 ≜
match 𝑐 [i𝑟 ] .recv() with
| inl 𝑖′ ⇒ if 𝑖 < 𝑖′ then 𝑐 [i𝑙 ] .send(inl 𝑖′); process 𝑐 𝑖 (1.1)

else if 𝑖 = 𝑖′ then 𝑐 [i𝑙 ] .send(inr 𝑖); process 𝑐 𝑖 (1.2)
else 𝑐 [i𝑙 ] .send(inl 𝑖); process 𝑐 𝑖 (1.3)

| inr 𝑖′ ⇒ if 𝑖 = 𝑖′ then 𝑖′ (2.1)
else 𝑐 [i𝑙 ] .send(inr 𝑖′); 𝑖′ (2.2)

end

The implementation is in 1-to-1 correspondence with the prose version, where each of the cases

are accounted for. A participant with channel endpoint 𝑐 can initiate an election by sending an

initial election message clockwise with the participant’s own ID 𝑖:

init 𝑐 𝑖 ≜ 𝑐 [i𝑙 ] .send(inl 𝑖); process 𝑐 𝑖

Top-level program for leader uniqueness. To verify that ring leader election guarantees

leader uniqueness, we use the following top-level program:

ring_ref_prog 𝑛 ≜
let ℓ = ref 42 in
let (𝑐0, ... , 𝑐𝑛−1) = new_chan(𝑛) in
for(𝑖 = 1 ... (𝑛 − 1))

{
fork

{
let 𝑖′ = process 𝑐𝑖 𝑖 in if 𝑖′ = 𝑖 then free ℓ else ()

}}
let 𝑖′ = init 𝑐0 0 in if 𝑖′ = 0 then free ℓ else ()

We first allocate a reference ℓ , for which the exclusive permission is up for election. We then

initialize the network, and spawn 𝑛 participants. The main thread will initiate the election, which

will determine who gets to deallocate ℓ . Once the leader election is complete, all participants will

try to deallocate the reference, if they deduce that they are the leader (i.e., 𝑖 = 𝑖′). Because the leader
frees ℓ , the program is safe only if there is at most one leader (avoiding a double free), which is the

key property we aim to verify.

Verification of leader uniqueness. We define the local ring leader election protocol for each

participant 𝑖 as well as a local protocol for the participant that initiates the election:

ring_prot(𝑖 : N) (𝑃 : iProp) (𝑝 : N→ iProto) : iProto ≜ 𝜇rec.

&[i𝑟 ]


inl(𝑖′ : N)⟨𝑖′⟩ ⇒ if 𝑖 < 𝑖′ then ! [i𝑙 ] ⟨inl 𝑖′⟩. rec (1.1)

else if 𝑖 = 𝑖′ then ! [i𝑙 ] ⟨inr 𝑖⟩. rec (1.2)
else ! [i𝑙 ] ⟨inl 𝑖⟩. rec (1.3)

inr(𝑖′ : N)⟨𝑖′⟩{𝑖 = 𝑖′ −∗ 𝑃} ⇒ if 𝑖 = 𝑖′ then 𝑝 𝑖′ (2.1)
else ! [i𝑙 ] ⟨inr 𝑖′⟩. 𝑝 𝑖′ (2.2)


init_prot(𝑖 : N) (𝑃 : iProp) (𝑝 : N→ iProto) : iProto ≜

! [i𝑙 ] ⟨inl 𝑖⟩{𝑃 }. ring_prot 𝑖 𝑃 p

The branching protocol structure from §2.3 allows us to write the ring_prot protocol in 1-to-1

correspondence with the participant process, reflecting each of its cases. The protocol is parametric

in the resources 𝑃 that are up for election, which are given to the elected leader in case (2.1). The

protocol is parameterized by a tail p, which in turn is parametric in the elected leader 𝑖′. The
resource 𝑃 is given up when the election is initiated (first message in init_prot) and only given to
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the leader in the end. This is achieved using our implicit resources transfer technique, which avoids

having the participant pass the resource around explicitly in all messages of the ring_prot protocol.
With these protocols we verify that the processes of each participant and the initiator satisfy:

{𝑐↣ ring_prot 𝑖 𝑃 p} process 𝑐 𝑖 {𝑖′ . 𝑐↣ (p 𝑖′) ∗ (𝑖 = 𝑖′ −∗ 𝑃)}
{𝑐↣ (init_prot 𝑖 𝑃 p) ∗ 𝑃 } init 𝑐 𝑖 {𝑖′ . 𝑐↣ (p 𝑖′) ∗ (𝑖 = 𝑖′ −∗ 𝑃)}

The key step of verifying our top-level program ring_ref_prog for the case of 4 participants is

proving consistency of the following protocol system:

𝑐0↣ init_prot 0 (ℓ ↦→ 42) (𝜆𝑖′ . end)
𝑐𝑖↣ ring_prot 𝑖 (ℓ ↦→ 42) (𝜆𝑖′ . end) for each 𝑖 ∈ [1, 2, 3]

Consistency is established by repeatedly aligning all synchronizations and ultimately observing

that only one participant attempts to obtain the resource ℓ ↦→ 42. The consistency proof was fully

automated by our brute-force tactic, except the unfolding of recursive definitions and application

of Löb induction. We chose 4 participants as it was the lowest number where some participants do

not interact directly (e.g., participant 0 and 2). We remark that our automation scales up beyond

this benchmark, having been tested up to 10 participants.

With the above protocols we verify the following specification for the top-level program:

{True} ring_ref_prog 4 {True}
This Hoare triple guarantees that the program is safe to execute via our adequacy theorem (Theo-

rem 2.1), thus certifying that the algorithm implementation achieves leader uniqueness.

Top-level program for leader agreement. The top-level program ring_ref_prog certifies

leader uniqueness, since at most one participant deallocates the reference. However, it does not

certify leader agreement—that all participants agree on the elected process after the election.

Suppose participant 0 believes that participant 1 is elected. While this result would violate leader

agreement, it would not result in a safety violation as it would not result in a double free.

To certify leader agreement, we allocate an additional binary channel, which we use as a coordi-

nator that receives each elected ID, and asserts that they are all the same. This will rule out the

aforementioned faulty election result as the central coordinator would crash when trying to assert

that the elected leader (3) is the same as the leader believed by participant 0 (1).

To verify the new top-level program, we give the channel endpoint resource up for election, and

let the elected leader relay their elected ID, after which point it delegates the channel endpoint

through the ring, so that each participant can relay their elected ID to the coordinator.

The implementation of the top-level program is as follows:

relay_del 𝑐 𝑐′ 𝑖 𝑖′ ≜
if 𝑖 = 𝑖′ then 𝑐′ [0] .send(𝑖′); 𝑐 [i𝑙 ] .send(); 𝑐 [i𝑟 ] .recv()
else 𝑐 [i𝑟 ] .recv(); 𝑐′ [0] .send(𝑖′); 𝑐 [i𝑙 ] .send()

ring_del_prog 𝑛 ≜
let (𝑐𝑟 , 𝑐𝑠 ) = new_chan(2) in
fork

{
let 𝑖′ = 𝑐𝑟 [1] .recv() in while(true){assert(𝑐𝑟 [1] .recv() = 𝑖′)}

}
let (𝑐0, ... , 𝑐𝑛−1) = new_chan(𝑛) in
for(𝑖 = 1 ... (𝑛 − 1))

{
fork

{
let 𝑖′ = process 𝑐𝑖 𝑖 in relay_del 𝑐𝑖 𝑐𝑠 𝑖 𝑖′

}}
let 𝑖′ = init 𝑐0 0 in relay_del 𝑐0 𝑐𝑠 0 𝑖′

We first define a joined relay/delegate procedure relay_del for relaying the elected ID and delegating

the channel endpoint as follows: If the given participant is the leader (𝑖 = 𝑖′), it relays its ID
over 𝑐′, and then delegates the endpoint permission clockwise. Otherwise, the participant awaits
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the endpoint permission, after which point it relays its elected ID, and forwards the endpoint

permission clockwise.

In the top-level program ring_del_prog we first allocate the binary channel coordinator and fork

a thread that receives relayed IDs and asserts that they are equal. Each participant carries out the

leader election like before, and then carries out the relay/delegation procedure with the elected ID,

after finishing the leader election. The top-level program is only safe to execute if all elected IDs

are identical, as the coordinator would otherwise not be able to assert their equality.

Verification of leader agreement. We start the verification by specifying the relay/delegate

procedure using the following protocols:

relay_prot 𝑖′ ≜ 𝜇rec. ! [0] ⟨𝑖′⟩. rec
init_relay_prot ≜ ! [0] (𝑖′ : N) ⟨𝑖′⟩. relay_prot 𝑖′

del_prot 𝑖 𝑖′ 𝑐′ ≜ if 𝑖 = 𝑖′ then ! [i𝑙 ] ⟨()⟩{𝑐′↣ relay_prot 𝑖′}. ?[i𝑟 ] ⟨()⟩{𝑐′↣ relay_prot 𝑖′}. end
else ?[i𝑟 ] ⟨()⟩{𝑐′↣ relay_prot 𝑖′}. ! [i𝑙 ] ⟨()⟩{𝑐′↣ relay_prot 𝑖′}. end

The init_relay_prot protocol captures that the leader first determines the elected ID 𝑖′, after which
point everyone must relay the same ID via the recursively defined relay_prot protocol. The del_prot
protocol captures that the leader must first delegate the channel endpoint permission of the

coordinator, after which point it can await its return. Conversely, non-leaders await the channel

endpoint permission, and then pass it on.

Next, we prove the following specification of the relay/delegate procedure:

{𝑐↣ (del_prot 𝑖 𝑖′ 𝑐′) ∗ (𝑖 = 𝑖′ −∗ 𝑐′↣ init_relay_prot)} relay_del 𝑐 𝑐′ 𝑖 𝑖′ {True}
The precondition says that if the participant is the leader, it should own the 𝑐′ channel endpoint
with the initial relay protocol, which it has obtained as the result of the election. The channel 𝑐′ is
used to first relay the elected ID, after which point it sends it clockwise around the ring.

The key to the verification of the relay/delegate procedure is proving consistency of the following

two protocol systems:

𝑐𝑟 ↣?[0] (𝑖′ : N) ⟨𝑖′⟩. 𝜇rec. ?[0] ⟨𝑖′⟩. rec
𝑐𝑠↣ init_relay_prot

𝑐0↣ init_prot 0 (𝑐𝑠↣ init_relay_prot) (𝜆𝑖′ . del_prot 0 𝑖′ 𝑐𝑠 )
𝑐𝑖↣ ring_prot 𝑖 (𝑐𝑠↣ init_relay_prot) (𝜆𝑖′ . del_prot 𝑖 𝑖′ 𝑐𝑠 ) for each 𝑖 ∈ [1, 2, 3]

The protocol consistency of the second system relies on the fact that there is consensus on the

elected leader, as participants would otherwise disagree on the protocol of the delegated coordinator

channel, which is parametric in the elected leader. Our brute-force tactic fully automated the

consistency proofs, except the unfolding of recursive definitions and application of Löb induction.

With the above protocol system we verify the top-level program for 4 participants:

{True} ring_del_prog 4 {True}
This Hoare triple again guarantees that the program is safe to execute via our adequacy theorem.

3.2 Ring Leader Election Benchmark
Verifying an implementation of the ring leader election algorithm is a challenging task. While we

covered some aspects, more remain to be covered.We propose the following benchmark to challenge

the verification community to develop more expressive and scalable verification systems. We believe

that this benchmark is an interesting and challenging problem in addition to the canonical two-

and three-buyer [22, 6] benchmarks in the literature on multiparty session types.
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The benchmark is to verify an implementation of ring leader election, satisfying variations of

the following categories of properties:

• Algorithm, e.g., unique IDs, anonymous, randomized.

• Implementation, e.g., 𝜆-calculus, shared memory, 𝜋-calculus, low-level distributed system.

• Guarantees, e.g., safety, functional correctness, deadlock freedom, termination.

• Consistency, e.g., brute-force procedure, manual, model checking, by construction.

• Scalability, e.g., fixed participants/elections, arbitrary participants/elections.

• Features, e.g., delegation, non-deterministically chosen participant IDs.

We verify Chang and Robert’s [10] algorithm that uses unique IDs for each participant. We

believe that anonymous and randomized variants will be more difficult to verify. We implement
the algorithm in a 𝜆-calculus-like language with shared-memory. We believe that this makes

the verification more challenging than 𝜋-calculus, which can abstract over low-level details of

the individual nodes. Although the abstractions provided by the 𝜋-calculus may in turn allow

for supporting some of the other properties. We guarantee safety and functional correctness.

We believe the latter is crucial to properly show that the appropriate leader is elected. Even so,

we do not guarantee deadlock-freedom or termination, which are equally interesting properties.

Our proofs rely on the brute-force procedure for proving protocol consistency, which impedes

scalability. As a result, we only allow a fixed number of participants and a single ongoing election.

As expressivity seem to be at odds with automation of the protocol consistency proof, we find

that properly scaling the implementation alongside challenging properties (such as functional

verification) is a high-ranking benchmark. In the same vein, we encourage the addition of more

features supported by the system, such as channel delegation, as they may further complicate the

protocol consistency proof.

4 Model and Soundness
In this section, we explain how the rules shown in Fig. 3 are proved sound. We first show how

the Multris adequacy theorem is a direct instance of the Iris adequacy theorem (§ 4.1), as our

channels are implemented on top of the HeapLang language (§4.2). We then present how to define

channel endpoint ownership and verify the multiparty channel rules of Multris using a novel logical

abstraction called the Multris ghost theory (§4.3). Finally, we discuss how our multiparty dependent

separation protocols and protocol consistency are defined, and how we validated the Multris ghost

theory (§4.4). Together, these proofs validate the rules shown in Fig. 3.

4.1 Inheritance of the Iris Adequacy Theorem
The multiparty channel endpoints of Multris are implemented directly on top of the HeapLang

instantiation of Iris, and the proofs of their specifications are derived through the corresponding

program logic. As a result, the Multris adequacy theorem Theorem 2.1 follows directly from the

identical Iris adequacy theorem:

Theorem 4.1 (Iris Adeqacy). A proof of wp 𝑒 {𝑣 . 𝜙 (𝑣)} implies that 𝑒 is safe, i.e., if ( [𝑒], ∅) −→∗t
( [𝑒0 ... 𝑒𝑛], ℎ), then for each 𝑖 ≤ 𝑛 either 𝑒𝑖 is a value or (𝑒𝑖 , ℎ) can step. Furthermore, any returned
value 𝑣 of 𝑒 satisfies 𝜙 (𝑣).

4.2 Multiparty Channel Implementation
The implementation of our shared-memory multiparty channels can be seen in Fig. 6. The im-

plementation uses an 𝑛 × 𝑛 matrix𝑚 of references, where each reference (denoted𝑚𝑖, 𝑗 ) acts as a

one-sized buffer over which participant 𝑖 can send a value to participant 𝑗 . Channel endpoints are
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new_chan(𝑛) ≜
let𝑚 =

new_mat 𝑛 𝑛 None in
((𝑚, 0), ... , (𝑚,𝑛 − 1))

𝑐 [ 𝑗] .send(𝑣) ≜
let (𝑚, 𝑖) = 𝑐 in
𝑚𝑖, 𝑗 ← Some 𝑣 ;
(rec f _. match !𝑚𝑖, 𝑗 with

| None ⇒ ()
| Some _⇒ f ()
end) ()

𝑐 [ 𝑗] .recv() ≜
let (𝑚, 𝑖) = 𝑐 in
let 𝑥 = Xchg 𝑚 𝑗,𝑖 None in
match 𝑥 with
| None ⇒ 𝑐 [ 𝑗] .recv()
| Some 𝑣 ⇒ 𝑣

end

Fig. 6. The Multris channel implementation.

represented as tuple (𝑚, 𝑖), where𝑚 is the matrix, and 𝑖 is the participant ID associated with the

channel endpoint.

The new_chan(𝑛) operation allocates an 𝑛 × 𝑛 matrix and returns 𝑛 participant tuples with IDs

ranging from 0 to (𝑛 − 1).
The 𝑐 [ 𝑗] .send(𝑣) operation synchronously sends value 𝑣 by storing Some 𝑣 in the send buffer

𝑚𝑖, 𝑗 , and then spins until the value has been taken out by the receiver.

The 𝑐 [ 𝑗] .recv() operation synchronously receives the next incoming value, by atomically taking

any value out of its inbound buffer𝑚 𝑗,𝑖 , using Xchg 𝑚 𝑗,𝑖 None. If the value was is Some 𝑣 , the value
𝑣 is simply returned, setting the reference to None. Otherwise, the receive loops, having made no

changes to the state, as Xchg 𝑚 𝑗,𝑖 None is effectively a no-op.

For brevity’s sake we omit details about the matrix library, which is relatively standard.

4.3 Verification of the Multiparty Channel Specifications
The Multris channel specifications are defined in terms of the channel endpoint ownership 𝑐↣p.
To verify the specifications, we must thus first provide a definition for the 𝑐↣p resource. To do so,

we leverage the Iris methodology: constructing a ghost theory that effectively yields a separation

logic approach to a state transition system, which models the domain problem, and then connect

it to the implementation. In particular, we construct the so-called Multris ghost theory (whose

construction is detailed in §4.4), and use it verify our specifications as detailed in this section.

The Multris ghost theory. The Multris ghost theory captures a language-agnostic semantics

of synchronous multiparty communication; governing how we can allocate fresh systems, and

make semantically sound transitions, with respect to the underlying logic. This is made precise by

the resources and rules, explained in the following text, and shown in Fig. 7.

The Multris ghost theory has two resources: prot_ctx 𝜒 𝑛 and prot_own 𝜒 𝑖 p. The resources are
associated with each other using the logical identifier 𝜒 , called a ghost name. The prot_ctx 𝜒 𝑛
fragment acts as a central coordinator, ensuring that everyone transitions according to the global

consistency. It also captures the number of participants in the system 𝑛. The prot_own 𝜒 𝑖 p records
the current protocol p of participant 𝑖 .

The rules of the ghost state capture the transitions of the modeled state transition system. The

updates are reflected via ghost updates |⇛, which can be applied during program verification, as

made precise by the following associated rule:

Bupd-wp

𝑃 ∗ 𝑅 −∗ wp 𝑒 {𝑣 . 𝑄}
(|⇛𝑃) ∗ 𝑅 −∗ wp 𝑒 {𝑣 . 𝑄}
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Grammar:

𝑡,𝑢, 𝑃,𝑄, p ::= ... | prot_ctx 𝜒 𝑛 | prot_own 𝜒 𝑖 p | ...
Rules:

proto-alloc

consistent ®p

|⇛∃𝜒. prot_ctx 𝜒 |®p | ∗ ∗
𝑖 ↦→ p ∈ ®p

prot_own 𝜒 𝑖 p
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ proto-le

prot_own 𝜒 𝑖 p1 p1 ⊑ p2

prot_own 𝜒 𝑖 p2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

proto-step

prot_ctx 𝜒 𝑛 𝑃1 [ ®𝑥1 := ®𝑡1]
prot_own 𝜒 𝑖 (! [ 𝑗] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. p1) prot_own 𝜒 𝑗 (?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. p2)
|⇛ ⊲∃( ®𝑡2 : ®𝜏2). prot_ctx 𝜒 𝑛 ∗ prot_own 𝜒 𝑖 (p1 [ ®𝑥1 := ®𝑡1]) ∗ prot_own 𝜒 𝑗 (p2 [ ®𝑥2 := ®𝑡2]) ∗

(𝑣1 [ ®𝑥1 := ®𝑡1]) = (𝑣2 [ ®𝑥2 := ®𝑡2]) ∗ 𝑃2 [ ®𝑥2 := ®𝑡2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

proto-valid

prot_ctx 𝜒 𝑛 prot_own 𝜒 𝑖 p

𝑖 < 𝑛
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

proto-valid-present

prot_ctx 𝜒 𝑛 prot_own 𝜒 𝑖 (𝑎[ 𝑗] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p)
⊲ 𝑗 < 𝑛

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Fig. 7. The Multris ghost theory.

The proto-alloc rule allocates resources for a consistent system of protocols ®p, with a fresh

identifier 𝜒 . It returns a single prot_ctx 𝜒 𝑛, and a prot_own 𝜒 𝑖 p for each 𝑖 ↦→ p ∈ ®p. The proto-

step rule reflects a synchronous transition; it requires the presence of the central coordinator

prot_ctx 𝜒 𝑛, a sending participant prot_own 𝜒 𝑖 (! [ 𝑗] ( ®𝑥1 : ®𝜏1) ⟨𝑣1⟩{𝑃1}. p1), a corresponding

receiving participant prot_own 𝜒 𝑗 (?[𝑖] ( ®𝑥2 : ®𝜏2) ⟨𝑣2⟩{𝑃2}. p2), and the resources specified by the

sending protocol, for some term instantiation 𝑃1 [ ®𝑥1 := ®𝑡1].
The ghost update proto-step yields an instantiation of the binders of the receiving protocol

( ®𝑡2 : ®𝜏2), evidence that the protocol values are equal 𝑣1 [ ®𝑥1 := ®𝑡1] = 𝑣2 [ ®𝑥2 := ®𝑡2], and the re-

sources of the receiving protocol 𝑃2 [ ®𝑥2 := ®𝑡2]. The update preserves the central coordinator

prot_ctx 𝜒 𝑛, and updates the protocols to their respective tails prot_own 𝜒 𝑖 (p1 [ ®𝑥1 := ®𝑡1]) and
prot_own 𝜒 𝑗 (p2 [ ®𝑥2 := ®𝑡2]); the sending protocol continues with the given term instantiation ®𝑡1,
while the receiving protocol continues with the returned instantiation of its binders ®𝑡2.

The rules proto-valid and proto-valid-present let us infer that indices of the participants, and

correspondent participants, are bounded by the size of the system.

Finally, the rule proto-le captures that prot_own 𝜒 𝑖 p is closed under the subprotocol relation.

In the following section we demonstrate how the Multris ghost theory is used to prove the rules

of the HeapLang instantiation of Multris.

Channel endpoint ownership. The crux of verifying the channel implementation is to come

up with the right definition for the channel endpoint ownership 𝑐↣p, which reflects the imple-

mentations correspondence to the Multris ghost theory. To achieve this, we consider the channel

implementation as a state transition system, with the following three states: (1) No value has been

sent, (2) a value has been sent but not received, and (3) the value has been received but the sender

has not finished synchronization. Each of the transitions can then be associated with a transfer of

resources, to facilitate the transition in the proto-step rule of the Multris ghost theory. In particular,

we need to transfer the protocol ownership of the sender to the receiver when putting the value
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𝑐↣p ≜
∃𝜒, ®𝛾𝐸,𝑚,𝑛, 𝑖, 𝑝′ .
𝑐 = (𝑚, 𝑖) ∗ prot_ctx 𝜒 𝑛 ∗ is_matrix𝑚 𝑛 𝑛 (𝜆𝑖, 𝑗, ℓ . ∃𝛾𝑡 . chan_inv 𝜒 ®𝛾𝐸𝑖 𝛾𝑡 𝑖 𝑗 ℓ )
⊲(p′ ⊑ p) ∗ •𝐸 (next 𝑝′)

®𝛾𝐸𝑖 ∗ ◦𝐸 (next 𝑝′)
®𝛾𝐸𝑖 ∗ prot_own 𝜒 𝑖 p′

chan_inv 𝜒 𝛾𝐸 𝛾𝑡 𝑖 𝑗 ℓ ≜
(ℓ ↦→ None ∗ tok 𝛾𝑡) ∨ (1)(
∃𝑣, p. ℓ ↦→ Some(𝑣) ∗ prot_own 𝜒 𝑖 (! [ 𝑗] ⟨𝑣⟩. p) ∗ ◦𝐸 (next p)

𝛾𝐸
)
∨ (2)

(∃p. ℓ ↦→ None ∗ prot_own 𝜒 𝑖 p ∗ ◦𝐸 (next p)
𝛾𝐸) (3)

Fig. 8. The channel endpoint ownership definition.

in the buffer (go from state (1) to (2)). The receiver can then obtain resources when witnessing

the value in the buffer, use them to apply the proto-step rule, and transfer the updated protocol

ownership of the sender back (going from state (2) to (3)) when resetting the buffer. Finally, when

the sender finishes the synchronization, by witnessing that the buffer has been reset, it can obtain

the updated protocol ownership (going from state (3) back to (1)).

To achieve this formally, we use the standard Iris methodology of encoding such state transition

systems using invariants: propositions that hold in between any steps of the program. In particular,

we define the invariant for synchronous transfer (chan_inv) as shown in Fig. 8. The first state

simply captures that the value has not been sent (ℓ ↦→ None), alongside an exclusive token (tok 𝛾𝑡 )
that lets use distinguish it from the final state. The second state captures that the value has been sent

(ℓ ↦→ Some(𝑣)), alongwith the satisfied protocol ownership of the sender (prot_own 𝜒 𝑖 (! [ 𝑗] ⟨𝑣⟩. p)),
and a piece of ghost state that lets us remember the protocol tail when it is returned ( ◦𝐸 (next p)

𝛾𝐸
).

The final state captures that the value has been read, and reset to the empty state (ℓ ↦→ None), along
with the returned protocol ownership of the sender (prot_own 𝜒 𝑖 p), updated to the original tail

(p), as evidenced by the associated ghost state ( ◦𝐸 (next p)
𝛾𝐸
).

With this invariant, we define the channel endpoint ownership as shown in Fig. 8. The definition

captures that:

(1) The endpoint is the tuple (𝑚, 𝑖) of the matrix𝑚, and the participant id 𝑖 .

(2) Shared access (via an invariant) to the protocol context prot_ctx 𝜒 𝑛.
(3) The synchronization invariant of all participant pairs 𝑖, 𝑗 of the matrix𝑚.

(4) The endpoint ownership is closed under subprotocols p′ ⊑ p.
(5) The unification ghost state for the transferred protocol: •𝐸 (next p′)

𝛾𝐸
and ◦𝐸 (next p′)

𝛾𝐸
.

(6) The protocol ownership of the participant prot_own 𝜒 𝑖 p.

Channel endpoint verification. The proof of the channel endpoint rules shown in Fig. 3

follows from the channel endpoint definition and the Multris ghost theory.

The Wp-new rule follows trivially from allocating all of the appropriate ghost state for each of

the channel endpoints. This includes the Multris ghost theory, and the protocol context invariant,

the unification ghost state of each endpoint, the exclusive tokens used in the synchronization

invariants, and the synchronization invariants themselves.

To prove the Wp-send rule we follow the transitions of the invariant from state (1) to (2), when

we store the sent value Some(𝑣), and then from (3) to (1), when we synchronize, by reading that

the value has been reset to None. We can first infer that we are in state (1) of the invariant, as we

have local ownership of the exclusive protocol (prot_own 𝜒 𝑖 (! [ 𝑗] ®𝑥 : ®𝜏 ⟨𝑣⟩{𝑃 }. p)). We first satisfy
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the protocol locally, using the proto-le rule, to instantiate the protocol binders, and provide the

protocol resources 𝑃 . We then update the unification pair to the protocol tail •𝐸 (next p)
𝛾𝐸

and

◦𝐸 (next p)
𝛾𝐸
. We can then satisfy invariant transition from (1) to (2), by giving up the satisfied

protocol ownership, and one part of the unification ghost state, while taking out the exclusive

token tok 𝛾𝑡 . We subsequently satisfy the invariant transition from (3) to (1), when observing that

the reference is None, at which point we conclude that we are in (3), via tok 𝛾𝑡 , after which point

we exchange the returned protocol ownership and unification ghost state, with the exclusive token.

To prove theWp-recv rule we follow the transitions of the invariant from state (2) to (3), when we

atomically read the stored value Some(𝑣) and update it to None via Xchg. In particular, we infer that

we are in state (2) as the value has been stored. We then take out the satisfied protocol ownership

of the sender, and use it along with the local receiving protocol ownership, and the proto-step

rule. We immediately put the updated protocol of the sender back in the invariant, along with the

unification ghost state, before closing the invariant. We can immediately satisfy the postcondition

with the residuals of the proto-step rule.

4.4 Protocol Consistency and Validation of the Multris Ghost Theory
In this section we briefly remark on the model of multiparty dependent separation protocols, the

definition of our protocol consistency, and on the multiparty subprotocol relation. We then cover

how we validated the Multris ghost theory as a result.

Multiparty dependent separation protocols. The multiparty dependent separation protocols

are defined similarly to the binary variant of Actris [17, §9.1]. We simply add a participant identifier

to the message constructor, to determine the participant with which we communicate:

action ::= send | recv
iProto � 1 + (action × N × (Val→ ▶iProto→ iProp))
end ≜ inl()

! [𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p ≜ inr(send, 𝑖, (𝜆𝑤, p′ . ∃®𝑥 : ®𝜏 . (𝑣 = 𝑤) ∗ 𝑃 ∗ (p′ = next p)))
?[𝑖] ( ®𝑥 : ®𝜏) ⟨𝑣⟩{𝑃 }. p ≜ inr(recv, 𝑖, (𝜆𝑤, p′ . ∃®𝑥 : ®𝜏 . (𝑣 = 𝑤) ∗ 𝑃 ∗ (p′ = next p)))

Protocols are either terminating (inl()), or exchange a message (inr ...). Message exchanges are

defined as predicates over the exchanged values and the exchanged tails, to facilitate the dependent

binders. To justify the negative recursive occurence of iProto we make use of Iris’s support for

solving recursive domain equations [2, 7] based on step-indexing [4, 1, 5]. Crucial is that the

recursive occurrence of iProto is guarded with the type-level later (▶), which is constructed via

next at the term level. We refer the interested reader to Hinrichsen et al. [17, §9.1].

Protocol consistency. With the multiparty variant of the dependent separation protocols, we

give an intensional definition to synchronous protocol consistency as follows:

consistent ®p ≜ (∀𝑖 . present ®p 𝑖) ∗ (∀𝑖, 𝑗 . dual ®p 𝑖 𝑗)
present ®p 𝑖 ≜ ∀𝑎, 𝑗,𝛷. ®p[𝑖] = inr(𝑎, 𝑗,𝛷) −∗ 𝑗 ∈ ®p
dual ®p 𝑖 𝑗 ≜ ∀𝛷1,𝛷2. ®p[𝑖] = inr(send, 𝑗,𝛷1) −∗ ®p[ 𝑗] = inr(recv, 𝑖,𝛷2) −∗

∀𝑣1, p1. 𝛷1 𝑣1 (next p1) −∗
(∃𝑣2, p2 . 𝛷2 𝑣2 (next p2) ∗ ⊲ consistent (®p[𝑖 := p1] [ 𝑗 := p2]))

This protocol consistency relation captures the consistency rules shown in Fig. 5 by definition.

We remark that this definition is syntactically similar to the intensional definition of synchronous

multiparty session type consistency, given by Scalas and Yoshida [38]. Even so, it is semantically
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distinct, due to the dependent binders binding into subsequent protocols, and from the embedding

in separation logic which enables implicit transfer resources.

Subprotocols. The subprotocol definition of the multiparty dependent separation protocols

is much similar to the binary one presented in Hinrichsen et al. [17, §9.2]. However, since our

setting is synchronous, we do not have the rule pertaining to swapping (⊑-SWAP), where receiving

protocols may be related to sending ones [35]. Even so, we inherit all the remaining rules (used to

validate Sub-send and Sub-recv). Similar to Actris, this allow us to carry out proofs of programs

such as the one pertaining to protocol compositionality, presented in Hinrichsen et al. [17, §6.3].

Validating the Multris ghost theory. With the definition of protocol consistency in hand, we

define the resources of the Multris ghost theory akin to the original binary Actris ghost theory

in Hinrichsen et al. [17, §9.4]. We let the protocol context resource prot_ctx 𝜒 𝑛 govern protocol

consistency of all protocols, and let the fragments prot_own 𝜒 𝑖 p reflect the current state of the

protocols, up to subprotocols. The formal definitions are:

prot_ctx 𝜒 𝑛 ≜ ∃®p. |®p | = 𝑛 ∗ •®p 𝜒 ∗ ⊲ consistent ®p
prot_own 𝜒 𝑖 p ≜ ∃p′ . ◦(𝑖, p) 𝜒 ∗ ⊲(p′ ⊑ p)

These resources, along with the definition of protocol consistency, are sufficient for proving the

rules of the Multris ghost theory. In particular, we can prove the proto-alloc rule as we can freely

allocate the necessary ghost resources, and wrap them up with the provided protocol consistency.

The proto-step rule follows directly from dual. The proto-valid rule follows from the underlying

list ghost state. The proto-valid-present rule follows from present. Finally, the proto-le rule

follows directly, since we explicitly close the protocols of prot_own under the subprotocol relation.

Soundness of implicit resource transfer via implicit ownership in separation logic.
Resources flowing in and out of the protocol consistency assertion and system context resource

prot_ctx 𝜒 𝑛 facilitates the implicit resource transfer as covered in §2.5, but the mechanism may not

be immediately obvious. The crux to this is how separation logic assertions can implicitly capture

ownership. Consider the following trivially true separation implication:

𝑃 −∗ 𝑄 −∗ (𝑃 ∗𝑄)

Suppose we have the resources 𝑃 , and provide them to resolve the first requirement of the assertion,

resulting in:

𝑄 −∗ (𝑃 ∗𝑄)

While true, the assertion might look odd at first glance; by providing just 𝑄 , we obtain both 𝑃 and 𝑄 .
This is due to the fact that the assertion implicitly assert ownership of 𝑃 , on the condition that 𝑄 is

supplied. Conceptually, this is similar to partial function application resulting in function closures.

This pattern is reflected in the protocol consistency assertion. Consider the protocols of the

implicit resource transfer example from §2.5:

p0 ≜ ! [1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ...
p1 ≜ ?[0] (𝑣 :Val) ⟨𝑣⟩. ! [2] ⟨𝑣⟩. end
p2 ≜ ?[1] (ℓ : Loc) (𝑥 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑥}. ...
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Unfolding the protocol consistency definition for this specific protocol system, we have something

alike the following nesting of separation implications:

∀(ℓ : Loc), (𝑥 : Z). ℓ ↦→ 𝑥 −∗ (* Send of 0→ 1 *)

∃(𝑣 :Val). ℓ = 𝑣 ∗ True ∗ (* Receive of 0→ 1 *)

True −∗ (* Send of 1→ 2 *)

∃(ℓ : Loc). 𝑣 = ℓ ∗ ℓ ↦→ 𝑥 ∗ (* Receive of 1→ 2 *)

...

Similar to the initial separation logic assertion above, we can prove that this assertion is true, which

is exactly the consistent ®p side goal of allocating the Multris ghost state (and consequentially

allocating a new channel in the program logic with the Wp-new rule).

We now explain how the above assertion develops during program execution. We first resolve

sender of the 0→ 1 synchronization, by supplying an instantiation of the universally quantified

variables, and using the resources provided by the sender (the premise of the Wp-send rule) to

resolve the ℓ ↦→ 𝑥 resource obligation of the first separation implication, yielding:

∃(𝑣 :Val). ℓ = 𝑣 ∗ True ∗ (* Receive of 0→ 1 *)

True −∗ (* Send of 1→ 2 *)

∃(ℓ : Loc). 𝑣 = ℓ ∗ ℓ ↦→ 𝑥 ∗ (* Receive of 1→ 2 *)

...

We then resolve the receiving side of the 0 → 1 synchronization, by obtaining the existentially

quantified variables of the receiver, along with the term unifications, and the (empty) resources

True, yielding:
True −∗ (* Send of 1→ 2 *)

∃(ℓ : Loc). 𝑣 = ℓ ∗ ℓ ↦→ 𝑥 ∗ (* Receive at 1→ 2 *)

...

At this point the protocol consistency (for the updated protocol system), implicitly owns ℓ ↦→ 𝑥 ,

similar to how the generic example above implicitly owned 𝑃 . When resolving the second syn-

chronization 1→ 2, the sender does not need to supply any resources (as per the True resource
obligation), yet the receiver still obtains the implicitly owned ℓ ↦→ 𝑥 .

Finally, note that the protocol context resource prot_ctx 𝜒 𝑛 does not explicitly exhibit the state of
the protocols as a parameter. Instead, we use the ghost state agreement between the local protocols

(owned by the individual participants) and the underlying protocol system ghost state •®p 𝜒
, to

determine the state of the protocol consistency consistent ®p that resides inside prot_ctx 𝜒 𝑛.
More precisely, when proving the proto-step rule, we unfold the protocol context resource

prot_ctx 𝜒 𝑛, to obtain consistent ®p, for some ®p. We unify the protocols of the sender and receiver

with the corresponding protocols in ®p, via the associated ghost state. We then unfold the protocol

consistency definition, to obtain the underlying separation implication between the sender and

receiver. We resolve the premise of the implication with the binder instantiations and resources

of the sender, and obtain the binder instantiations and resources of the receiver (as illustrated

above). We finally update the ghost state to reflect the new state of ®p. With the updated state, we

can close all of the definitions, ultimately hiding the underlying ®p of the protocol context resource

prot_ctx 𝜒 𝑛, which now implicitly owns any resources that were sent but not received.

5 Mechanization
All definitions, theorems, and examples in this paper have been mechanized in Coq using the Iris

framework. The full sources are available in our artifact [18].
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Component Section(s) LOC

Multris domain model §4.4 309

Protocol consistency and Multris ghost theory §4.3, §4.4 1377

Channel implementation and verification §4.2, §4.3 370

Matrix library §4.2 160

Proofmode tactics §5 410

Examples:
• Basic examples from this paper §2 292

• Two-Buyer Example [22] 135

• Three-Buyer Example [6] 200

• Ring Leader Election §3 356

Total 3609

Table 1. Overview of the Multris Coq mechanization.

While the structure of ourmechanizationwas significantly influenced by (binary) Actris, our work

required significant new mechanization effort: defining our novel notion of multiparty protocol

consistency and proving the associated lemmas, verifying the new (synchronous) multiparty ghost

state, and verifying the multiparty channel specifications. In Table 1 we give an overview of the

lines of Coq code associated with each of the contributions of the paper.

In addition to validating the soundness of Multris, our Coq mechanization comes with tactic

support à la Actris for symbolic execution of the multiparty channel primitives as well as for

protocol consistency. This effectively means that the Multris Coq mechanization can be used to

foundationally verify multiparty programs.

The symbolic execution of the channel primitives largely follows the binary case, and the addition

of a correspondent participant can be resolved automatically. A more novel proof effort for a user

instead arise from the consistent ®p obligation of Wp-new. To resolve such obligations, we provide

a tactic implementation of the brute-force procedure presented in §2.6. In particular, we leverage the

existing infrastructure of Coq and the Iris Proof Mode for resolving term unification and resource

framing, respectively.

6 Related and Future Work
Session types. Session types were developed by Honda et al. [20, 21] as a typing discipline for

message-passing programs. Initially, session types were used to type check two-party communi-

cation, but they were later extended to the multiparty setting by Honda et al. [22]. Traditionally,

multiparty session types are top-down—they rely on a global type that describes all interactions of

the system, which is projected to a local type for each participant. These local types are subsequently

used to type check individual processes.

The existence of a global type guarantees that the projected local types are consistent, but it turns

out that not all consistent systems of local types can be projected from a global type [38]. Therefore,

Scalas and Yoshida [38] proposed the bottom-up method to consistency, which checks consistency

of local types directly, rather than projecting them from a global type. Our approach is inspired by

this bottom-up method to consistency. The key difference between Scalas and Yoshida [38] and our

work is that Scalas and Yoshida [38] develop type systems, while we develop a program logic. This

results in several key differences. First, our protocols carry separation logic resources. Second, our

protocols are dependent, i.e., have binders on which the message, resources, and tail of the protocol
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can depend. Third, the soundness proof and model of our logic (i.e., §4: the proofs of the WP-rules

and the definition of channel endpoint ownership) has no counterpart in Scalas and Yoshida [38]

(the closest analogue would be the type soundness proof, which is quite different). Lastly, our logic

is embedded in Iris and proven sound in Coq. Our extension of consistency to this richer setting

allows us to express protocols such as the leader election protocol in §3.

Due to the intricacies of multiparty session types, there has been recent interest in their mecha-

nization [9, 24, 44]. Multris is also in this vein, but instead of mechanization of the meta theory of

multiparty type systems, we focus on the verification of the soundness of a program logic.

Design-by-contract and refinement types for multiparty message passing. Based on

multiparty session types, Bocchi et al. [8] constructed a design-by-contract verification system

in which one can specify global types enriched with binders and assertions, which can then be

projected to local types. Our program logic is more expressive in the following ways: (1) our

consistency relation is more flexible than global types (see above), (2) our protocols are truly

dependent, as the continuation can depend on the binders via an arbitrary meta-level function,

whereas in Bocchi et al. [8] the continuation is fixed, and (3) our protocols carry separation logic

assertions, which allows us to reason about resource sharing and delegation. Furthermore, Multris

is a program logic, and is embedded in Coq, with tactics for carrying out reasoning in the logic.

This has the disadvantage that our logic is not decidable, and manual proof is required, but the

advantage that it is more expressive and can be used to carry out arbitrarily complex mathematical

reasoning to establish functional correctness of the program.

Zhou et al. [47] present a refinement type system for message-passing programs, which allows

for specifying and verifying message-passing programs with dependent types. Their work enables

the use of the F* proof assistant [41] to manually reason about refinement whenever the proof

obligations cannot be automatically discharged by the SMT solver. The ways in which Multris

differs from Zhou et al. [47] is similar to the ways in which Multris differs from Bocchi et al. [8]. A

key similarity is that Zhou et al. [47] make use of a proof assistant (F*), as do we (Coq): the facilities

of the proof assistant are used to reason about refinements (in the case of Zhou et al. [47]) and to

reason about separation logic assertions (in our case). Besides the distinction between a refinement

type system and a program logic, a key distinction is that Multris establishes a fully developed

foundational meta-theory, including a machine-checked adequacy theorem for the logic w.r.t. an

operational semantics. As such, the effort of reasoning carried out in the Multris logic “pays off” as

it establishes a formal functional correctness theorem of the program in question inside the proof

assistant, via our adequacy theorem (Theorem 2.1). The adequacy theorem is a key contribution of

Multris. The analogue of this in Zhou et al. [47] would be to establish a soundness theorem for the

refinement type system w.r.t. the operational semantics of the language, which is not done in their

work (in the development of Multris, this was the most significant effort, see §4). In addition to

functional correctness, the verification system of Zhou et al. [47] guarantees deadlock freedom.

Program logics for message passing. Program logics based on concurrent separation logic

commonly employ protocol mechanisms, often in the form of state transition systems [12, 46, 40]

or the combination of invariants and ghost state [29]. Since these mechanisms are very general, and

allow for verification of all kinds of different concurrent data structures, one could use them to reason

aboutmessage-passing programs directly. In comparison, program logics with a protocol mechanism

based on session types are more domain-specific and provide a higher level of abstraction.

The program logic for message passing that is most closely related to our work is Actris [16, 17],

which also uses separation logic to reason about message-passing programs via dependent protocols.

The key distinction between Actris and Multris is that the former focuses on two-party/binary

message-passing, while we focus on multiparty message-passing. As a result, the Wp-send and
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Wp-recv proof rules of Multris are quite similar to those of Actris while handling multiparty

communication, which we consider a strength of our work. The Wp-new rule of Multris is quite

different, as it requires consistent ®p to hold, which is absent and unnecessary in Actris, which

only considers two-party communication. The implementation of our multiparty channels as well

as the Multris soundness proof are also significantly different from those of Actris.

Before we arrived at the current design of Multris, we explored several variations that we did not

know how to make work. For instance, the combination of global types with dependent protocols

and separation logic results in non-trivial difficulties for soundness, and our proof automation

crucially relies on our channels being synchronous. We leave these challenges for future work.

Jacobs et al. [25] showed that construction of a program logic for two-party case can be simplified.

The multiparty case is significantly more complex, as it requires reasoning about the interleaving of

multiple processes, and the sharing of resources between them. As such, themethod of simplification

used in Jacobs et al. [25] is not directly applicable to the multiparty case. Instead, a more complex

model is required to prove soundness of the logic, as we have done in §4.

Future work. Multris is a first step towards a comprehensive program logic for multiparty

message-passing programs. There are many directions in which this work can be extended. One

direction is to consider asynchronous communication, where messages can be sent and received

at arbitrary times. We chose to focus on synchronous communication in this work, as it makes

protocol consistency proofs simpler: Scalas and Yoshida [38] point out that consistency of local

types is decidable in the synchronous case, but not in the asynchronous case. Our tactics make use

of this advantage, and would need to be extended to (heuristically) handle the asynchronous case.

In general, we would like to consider alternative approaches to establish consistency of local types,

with better abstraction and modularity, as well as compositionality, or with even more automation,

such as model checking. Another promising approach to protocol consistency is the top-down

approach (defining a global protocol specification which is statically projected to endpoints). Li

et al. [33] show that global protocols can support expressive local projections via synthesis. It is

interesting to investigate whether the top-down approach scales to functional verification.

An asynchronous version of Multris would also allow us to consider asynchronous subprotocols

from binary Actris [17], which allow swapping of sends over receives as first introduced byMostrous

et al. [35]. It would moreover open the door to generalize the efficient low-level implementation of

asynchronous channels with linking by Somers and Krebbers [39] to the multiparty case. Going

beyond asynchrony, we would like to consider distributed systems, with processes running on

different machines and communicating over a network, such as in Gondelman et al. [15].

Another direction is to restrict the logic to ensure a stronger property, such as deadlock freedom

à la Jacobs et al. [26]. Finally, we would like to apply the method of logical type soundness in

Iris [43] (which Hinrichsen et al. [19] used for the binary session types) to obtain a semantic type

safety proof for a state-of-the-art multiparty type system such as the one by Jacobs et al. [24].

Data-Availability Statement
The Coq development for this paper can be found in [18].
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